Microsoft
Official
Course

AZ-300T03

Understanding Cloud
Architect Technology
Solutions

AZ-300T03

Understanding Cloud Architect
Technology Solutions

diligiHOdd iSN LN3dN1S 'ATNO 1SN 1OIN

Contents

| Module 0 StartHere
Welcome to Understanding Cloud Architect Technology Solutions

| Module 1 Module Selecting Compute and Storage Solutions
Design and Connectivity Patterns
Online Lab - Implementing Azure Storage Access Controls
Review Question

Module 2 Module Hybrid Networking
Hybrid Networking
Virtual Network-to-Network ...
Review Question ...

[| Module 3 Module Measure Throughput and Structure of Data
Address Durability of Data and Caching
Measure Throughput and Structure of Data Access
Online Lab - Implementing Azure Load Balancer Standard
Review Question

| Module 4 Module Implementing Authentication
Implementing authentication in applications
Implement multi-factor authentication
Claims-based authorization
Role-based access control (RBAC) authorization
Implement OAuth2 authentication
Implement managed identities for Azure resources

Access

Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles
Review QUESLIONS .

| Module 5 Module Implementing Secure Data
Encryption OptioNs ..
End-to-end encryption ...
Implement Azure confidential computing ...
Implement SSL and TLS communications
Manage cryptographic keys in Azure Key Vault ...
Review QUESTIONS ...

Module 6 Module Business Continuity and Resiliency in Azure

13
18

19
19
24
26

27
27
33
40
48

49
49
56
58
61
66
929
113
118

121
121
124
125
126
127
128

131

-
o
-
=
B
O
aa
o
o
V)
=
-
<
o
-
E
e
V)
2
2
O
o
V)
=
-
U
=

Business Continuity and Resiliency

High Availability and Disaster Recovery

Resiliency
Application Design

Testing, Deployment, and Maintenance

Data Management

Monitoring and Disaster Recovery

131
132
133
135
140
143
145

E—
Module 0 Start Here

Welcome to Understanding Cloud Architect
Technology Solutions

Welcome to Understanding Cloud Architect
Technology Solutions

Course Overview: Understanding Cloud Architect Technol-
ogy Solutions

Welcome to Understanding Cloud Architect Technology Solutions. This course is part of a series of five
courses to help students prepare for Microsoft's Azure Solutions Architect technical certification exam
AZ-300: Microsoft Azure Architect Technologies. These courses are designed for IT professionals and
developers with experience and knowledge across various aspects of IT operations, including networking,
virtualization, identity, security, business continuity, disaster recovery, data management, budgeting, and
governance.

This course educates IT professionals on how operations are accomplished both in parallel and asynchro-
nously. By using the Azure Application Architecture Guide and Azure reference architectures as a basis,
you will understand how monitoring and telemetry are critical for gaining insight into a system. You will
explore the cloud design patterns that are important. For example, partitioning workloads of a modular
application divided into functional units that can be integrated into a larger application. In such cases,
each module handles a portion of the application's overall functionality and represents a set of related
concerns.

Also, you will understand how load balancing the application traffic, or load, can be distributed among
various endpoints using algorithms. For example, load balancers allowing multiple instances of your
website to be created and thus allowing them to behave in a predictable manner. In Azure, it is possible
to use virtual load balancers, which are hosted in virtual machines, allowing for very specific load balancer
configurations.

Lastly, an overview of hybrid networking that includes site-to-site connectivity, point-to-site connectivity,
and the combination of the two.

2 Module 0 Start Here

The outline for this course is as follows:

Module 1 - Selecting Compute and Storage Solutions

This module includes the following topics:

e Azure Architecture Center

e C(Cloud design patterns

e Competing consumers pattern

e Cache-aside pattern

e Sharding patterns to divide a data store into horizontal partitions, or shards
This module contains the online lab Implementing Azure Storage Access Controls.
Module 2 - Hybrid Networking

This module includes the following topics:

e Site-to-site connectivity

e Point-to-site connectivity

e Combining site-to-site and point-to-site connectivity

e Virtual network-to—virtual network connectivity

As well as connecting across cloud providers for failover, backup, or even migration between providers
such as AWS.

Module 3 - Measuring Throughput and Structure of Data Access

This module includes the following topics:

e DTUs — Azure SQL Database

e RUs — Azure Cosmos DB

e Structured and unstructured data

e Using structured data stores

This module contains the online lab Implementing Azure Load Balancer Standard.
Module 4 - Implementing Authentication

Topics for this module include:

e Implementing authentication in applications (certificates, Azure AD, Azure AD Connect, to-
ken-based)

e Implementing multi-factor authentication

e (Claims-based authorization

e Role-based access control (RBAC) authorization
This module contains the online lab Implementing Custom Role Based Access Control (RBAC) Roles.
Module 5 - Implementing Secure Data
Topics for this module include:

e End-to-end encryption

e Implementing Azure confidential computing

Welcome to Understanding Cloud Architect Technology Solutions

3

e Implementing SSL and TLS communications

e Managing cryptographic keys in Azure Key Vault

Module 6 - Business Continuity and Resiliency in Azure

Business Continuity and Resiliency

e High Availability and Disaster Recovery
e Resiliency

e Application Design

e Testing, Deployment, and Maintenance
e Data Management

e Monitoring and Disaster Recovery

What You'll Learn:

Design and Connectivity Patterns
Hybrid Networking
Address Durability of Data and Caching

Measure Throughput and Structure of Data Access

Prerequisites:

Successful Cloud Solutions Architects begin this role with practical experience with operating systems,
virtualization, cloud infrastructure, storage structures, billing, and networking.

Module 1 Module Selecting Compute and
Storage Solutions

Design and Connectivity Patterns

Azure Architecture Center

The cloud is changing the way applications are designed. Instead of being monoliths, applications are
decomposed into smaller, decentralized services. These services communicate through APIs or by using
asynchronous messaging or eventing. Applications scale horizontally, adding new instances as demand
requires.

These trends bring new challenges. The application state is distributed. Operations are done in parallel
and asynchronously. The system as a whole must be resilient when failures occur. Deployments must be
automated and predictable. Monitoring and telemetry are critical for gaining insight into the system. The
Azure Architecture Center is designed to help you navigate these changes.

Azure Application Architecture Guide
To view the guide, refer to https://docs.microsoft.com/azure/architecture/guide/

The Microsoft Azure Application Architecture Guide is intended for application architects, developers, and
operations teams and describes how to design and implement common software architectures. It is not
service specific and includes the following sections:

e List of architecture styles
e Technology choices for each component of a design
e High-level design principles for applications

e Software quality metrics

Azure reference architectures

To view the guide, refer to https://docs.microsoft.com/azure/architecture/reference-architectures/

6 Module T Module Selecting Compute and Storage Solutions

The Azure Reference Architectures landing page is a collection of architectural diagrams and explanations
for the most-common cloud solution designs. These architectures range from data-centric applications to
n-tier web applications to DevOps platforms and even to infrastructure-only deployments. Each reference
architecture includes:

e A description of the architectural diagram
e Common recommendations

e Considerations in the following categories:
--Scalability

--Security

--Availability

--Manageability

--Steps on how to deploy an example solution

Cloud design patterns

To view the guide, refer to https://docs.microsoft.com/azure/architecture/patterns/

The Azure Architecture Center contains a guide published by the Patterns & Practices team that provides
not just guidance but also over 20 examples of the most-common design patterns used for cloud
applications. These patterns are neither specific to Microsoft ASP.NET or to Microsoft. Each pattern
describes the problem that the pattern addresses, considerations for applying the pattern, and an
example based on Microsoft Azure. Most of the patterns include code samples or snippets that show how
to implement the pattern in Azure. However, most of the patterns are relevant to any distributed system,
whether hosted in Azure or in other cloud platforms.

Application design concepts

Before you dive into the cloud design patterns, it is important to understand a few key design concepts.

Partitioning workloads

A modular application is divided into functional units, also referred to as modules, which can be integrat-
ed into a larger application. Each module handles a portion of the application's overall functionality and
represents a set of related concerns. Modular applications make it easier to design both current and
future iterations of your application. Existing modules can be extended, revised, or replaced to iterate
changes to your full application. Modules can also be tested, distributed, and otherwise verified in
isolation. Modular design benefits are well understood by many developers and architects in the software
industry.

Load balancing

Load balancing is a computing concept where the application traffic, or load, is distributed among
various endpoints by using algorithms. When you use a load balancer, multiple instances of your website
can be created, and they can behave in a predictable manner. This provides the flexibility to grow or
shrink the number of instances in your application without changing the expected behavior.

Design and Connectivity Patterns 7

Load balancing strategy

There are a couple of things to consider when choosing a load balancer. First, you must decide whether
you want to use a physical or a virtual load balancer. In Azure, it is possible to use virtual load balancers,
which are hosted in virtual machines, if a company requires a very specific load balancer configuration.

After you select a specific load balancer, you need to select a load balancing algorithm. You can use
various algorithms, such as round robin or random choice. For example, round robin selects the next
instance for each request based on a predetermined order that includes all of the instances.

Other configuration options, such as affinity or stickiness, exist for load balancers. For example, stickiness
allows you to determine whether a subsequent request from the same client machine should be routed
to the same service instance. This might be required in scenarios where your application servers have a
concept of state.

Transient fault handling

One of the primary differences between developing applications on-premises and in the cloud is the way
you design your application to handle transient errors. Transient errors are as errors that occur due to
temporary interruptions in the service or to excess latency. Many of these temporary issues are self-heal-
ing and can be resolved by exercising a retry policy.

Retry policies define when and how often a connection attempt should be retried when a temporary
failure occurs. Simply retrying in an infinite loop can be just as dangerous as infinite recursion. A break in
the circuit must eventually be defined so that the retries are aborted if the error is determined to be of a
serious nature and not just a temporary issue.

Transient fault handling is a pattern that makes your application more resilient by handling temporary
issues in a robust manner. This is done by managing connections and implementing a retry policy. This
pattern is already implemented in many common Microsoft .NET libraries, such as Entity Framework, and
in the Azure software development kit (SDK). This pattern is also implemented in the Microsoft Enterprise
Library in such a generic manner that it can be brought into a wide variety of application scenarios.

Queues

Queueing is both a mathematical theory and a messaging concept in computer science. In cloud applica-
tions, queues are critical for managing requests between application modules in a manner such that they
provide a degree of consistency regardless of the behavior of the modules.

An application might already have a direct connection to other application modules using direct method
invocation, a two-way service, or any other streaming mechanism. If one of the application modules
experiences a transient issue, this connection is severed and causes an immediate application failure. You
can use a third-party queue to persist the requests beyond a temporary failure. Requests can also be
audited independently of the primary application, because they are stored in the queue mechanism.

8 Module T Module Selecting Compute and Storage Solutions

Retry Pattern

h 500

e 500

00

Problem: intermittent errors with cloud services

An application that communicates with elements running in the cloud must be sensitive to the transient
faults that can occur in this environment. Such faults include the momentary loss of network connectivity
to components and services, the temporary unavailability of a service, or timeouts that arise when a
service is busy.

These faults are typically self-correcting, and if the action that triggered a fault is repeated after a suitable
delay, it is likely to be successful. For example, a database service that is processing a large number of
concurrent requests may implement a throttling strategy that temporarily rejects any further requests
until its workload has eased. An application attempting to access the database may fail to connect, but if
it tries again after a suitable delay, it may succeed.

Solution: application logic to retry requests that have tem-
porarily failed

In the cloud, transient faults are not uncommon, and an application should be designed to handle them
elegantly and transparently, minimizing the effects that such faults might have on the business tasks that
the application is performing.

If an application detects a failure when it attempts to send a request to a remote service, it can handle
the failure by retrying the application logic after a short wait. For the more-common transient failures, the
period between retries should be chosen so as to spread requests from multiple instances of the applica-
tion as evenly as possible. This can reduce the chance of a busy service continuing to be overloaded. If
many instances of an application are continually bombarding a service with retry requests, it may take the
service longer to recover.

If the request still fails, the application can wait again and make another attempt. There should be a limit
on attempts to avoid sending endless requests to a service that may actually be completely inoperable.
All code that accesses the remote service should be implemented using a retry policy such as the one
described here.

Design and Connectivity Patterns 9

Competing consumers pattern

Problem: handling variable quantities of requests

An application running in the cloud may be expected to handle a large number of requests. The number
of requests could vary significantly over time for many reasons. A sudden burst in user activity or aggre-
gated requests coming from multiple tenants may cause an unpredictable workload. At peak hours, a
system might need to process many hundreds of requests per second, while at other times, the number
could be very small. Additionally, the nature of the work performed to handle these requests might be
highly variable.

Using a single instance of the consumer service might cause that instance to become flooded with
requests, or the messaging system may be overloaded by an influx of messages coming from the applica-
tion.

Solution: asynchronous messaging with variable quantities
of message producers and consumers

Rather than processing each request synchronously, a common technique is for the application to pass
them through a messaging system to another service (a consumer service) that handles them asynchro-
nously. This strategy helps to ensure that the business logic in the application is not blocked while the
requests are being processed.

A message queue can be used to implement the communication channel between the application and
the instances of the consumer service. To handle fluctuating workloads, the system can run multiple
instances of the consumer service. The application posts requests in the form of messages to the queue,
and the consumer service instances receive messages from the queue and process them. This approach
enables the same pool of consumer service instances to handle messages from any instance of the
application.

10 Module T Module Selecting Compute and Storage Solutions

Cache-aside pattern
N

Problem: cached data consistency

Applications use a cache to optimize repeated access to information held in a data store. However, it is
usually impractical to expect that cached data will always be completely consistent with the data in the
data store. Application developers should consider a strategy that helps to ensure that the data in the

cache is up-to-date as much as possible but that can also detect and handle situations that arise when
the data in the cache has become stale.

Solution: read-through and write-through caching

Many commercial caching systems provide read-through and write-through/write-behind operations. In
these systems, an application retrieves data by referencing the cache. If the data is not in the cache, it is
transparently retrieved from the data store and added to the cache. Any modifications to data held in the
cache are automatically written back to the data store, as well.

For caches that do not provide this functionality, it is the responsibility of the applications that use the
cache to maintain the data in the cache. An application can emulate the functionality of read-through
caching by implementing the cache-aside strategy. This strategy effectively loads data into the cache on
demand if it's not already available in the cache.

Design and Connectivity Patterns 11

Sharding pattern

Application Application
instance instance

@ Sharding logic: @
< Query

Query

Shard A Shard B Shard C Shard N

/ [
R BB B

Problem: hosting large volumes of data in a traditional
single-instance store

A data store hosted by a single server may be subject to limitations in the following areas:

e Storage space. A data store for a large-scale cloud application may be expected to contain a huge
volume of data that could increase significantly over time. A server typically provides only a finite
amount of disk storage, but it may be possible to replace existing disks with larger ones or to add
disks to a machine as data volumes grow. However, the system will eventually reach a hard limit
whereby it is not possible to easily increase the storage capacity on a given server.

e Computing resources. A cloud application may be required to support a large number of concurrent
users, each of whom runs queries that retrieve information from the data store. A single server hosting
the data store may not be able to provide the necessary computing power to support this load,
resulting in extended response times for users and frequent failures as applications attempting to
store and retrieve data time out. It may be possible to add memory or upgrade processors, but the
system will reach a limit when it is not possible to increase the compute resources any further.

e Network bandwidth. Ultimately, the performance of a data store running on a single server is
governed by the rate at which the server can receive requests and send replies. It is possible that the
volume of network traffic might exceed the capacity of the network used to connect to the server,
resulting in failed requests.

e Geography. It may be necessary to store data generated by specific users in the same region as those
users for legal, compliance, or performance reasons or to reduce the latency of data access. If the
users are dispersed across different countries and regions, it may not be possible to store all the data
for the application in a single data store.

Scaling vertically by adding more disk capacity, processing power, memory, and network connections
may postpone the effects of some of these limitations, but that is likely to be only a temporary solution. A

12 Module T Module Selecting Compute and Storage Solutions

commercial cloud application capable of supporting large numbers of users and high volumes of data
must be able to scale almost indefinitely, so vertical scaling is not necessarily the best solution.

Solution: partitioning data horizontally across many nodes

Divide the data store into horizontal partitions, or shards. Each shard has the same schema but holds its
own distinct subset of the data. A shard is a data store in its own right (it can contain the data for many
entities of different types) running on a server acting as a storage node.

Sharding physically organizes the data. When an application stores and retrieves data, the sharding logic
directs the application to the appropriate shard. This sharding logic may be implemented as part of the
data access code in the application, or it could be implemented by the data storage system if it transpar-
ently supports sharding.

Abstracting the physical location of the data in the sharding logic provides a high level of control over
which shards contain which data, and it enables data to migrate between shards without a reworking of
the business logic of an application if the data in the shards needs to be redistributed later (for example,
if the shards become unbalanced). The tradeoff is the additional data access overhead required in
determining the location of each data item as it is retrieved.

To help ensure optimal performance and scalability, it is important to split the data in a way that is
appropriate for the types of queries the application performs. In many cases, it is unlikely that the
sharding scheme will exactly match the requirements of every query. For example, in a multitenant
system, an application may need to retrieve tenant data by using the tenant ID, but it may also need to
look up this data based on some other attribute, such as the tenant’s name or location. To handle these
situations, implement a sharding strategy with a shard key that supports the most commonly performed
queries.

Online Lab - Implementing Azure Storage Access Controls 13

Online Lab - Implementing Azure Storage Ac-
cess Controls

Lab Steps

Online Lab: Implementing Azure Storage access controls

NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario

Adatum Corporation wants to protect content residing in Azure Storage

Objectives

After completing this lab, you will be able to:
e Create an Azure Storage account.

e Upload data to Azure Storage.

e Implement Azure Storage access controls

Lab Setup

Estimated Time: 30 minutes
User Name: Student

Password: Pa55w.rd

Exercise 1: Creating and configuring an Azure Storage ac-
count

The main tasks for this exercise are as follows:

1. Create a storage account in Azure

2. View the properties of the storage account

14 Module T Module Selecting Compute and Storage Solutions

Task 1: Create a storage account in Azure

1c

From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.
azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure
subscription.

From Azure Portal, create a new storage account with the following settings:
e Subscription: the name of the target Azure subscription
e Resource group: a new resource group named az3000201-LabRG

e Storage account name: any valid, unique name between 3 and 24 characters consisting of lower-
case letters and digits

e Location: the name of the Azure region that is available in your subscription and which is closest to
the lab location

e Performance: Standard

e Account kind: Storage (general purpose v1)
e Replication: Locally-redundant storage (LRS)
e Secure transfer required: Disabled

e \Virtual network: All networks

e Hierarchical namespace: Disabled

Wait for the storage account to be provisioned. This will take about a minute.

Task 2: View the properties of the storage account

1

In Azure Portal, with your storage account blade open, review the Overview section, including the
location, replication, and performance settings.

Display the Access keys blade. On the access keys blade, note that you have the option of copying
the values of storage account names including key1 and key?2. You also have the ability to regenerate
both keys.

Display the Configuration blade.

On the Configuration blade, notice that you have the option of performing an upgrade to General
Purpose v2 account and changing the replication settings. However, you cannot change the perfor-
mance setting (this can only be assigned when the storage account is created).

Result: After you completed this exercise, you have created your Azure Storage and examined its proper-
ties.

Online Lab - Implementing Azure Storage Access Controls 15

Exercise 2: Creating and managing blobs
The main tasks for this exercise are as follows:

1. Create a container

2. Upload data to the container by using the Azure portal

3. Access content of Azure Storage account by using a SAS token

Task 1: Create a container

1. In the Azure portal, navigate to the blade displaying the properties of the storage account you created
in the previous task.

2. From the storage account blade, create a new blob container with the following settings:
e Name: labcontainer

e Access type: Private

Task 2: Upload data to the container by using the Azure por-
tal
1. In the Azure portal, navigate to the labcontainer blade.

2. From the labcontainer blade, upload the file: C:\Windows\ImmersiveControlPanel\images\
splashscreen.contrast-white_scale-400.png.

Task 3: Access content of Azure Storage account by using a
SAS token

1. From the labcontainer blade, identify the URL of the newly uploaded blob.

2. Start Microsoft Edge and navigate to that URL.

3. Note the ResourceNotFound error message. This is expected since the blob is residing in a private
container, which requires authenticated access.

4. Switch to the Microsoft Edge window displaying the Azure portal and, on the splashscreen.con-
trast-white_scale-400.png blade, switch to the Generate SAS tab.

5. On the Generate SAS tab, enable the HTTP option and generate blob SAS token and the correspond-
ing URL.

6. Open a new Microsoft Edge window and, in the navigate to the URL generated in the previous step.

16 Module 1

Module Selecting Compute and Storage Solutions

Note that you can view the image. This is expected since this time you are authorized to access the
blob based on the SAS token included in the URL.

Close the Microsoft Edge window displaying the image.

Task 4: Access content of Azure Storage account by using a
SAS token and a stored access policy.

1
2
B

In the Azure portal, navigate to the labcontainer blade.

From the labcontainer blade, navigate to the labcontainer - Access policy blade.

Add a new policy with the following settings:

e Identifier: labcontainer-read

e Permissions: Read

e Start time: current date and time

e Expiry time: current date and time + 24 hours

In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

If you are presented with the You have no storage mounted message, configure storage using the
following settings:

e Subsciption: the name of the target Azure subscription

e Cloud Shell region: the name of the Azure region that is available in your subscription and which is
closest to the lab location

e Resource group: az3000201-LabRG
e Storage account: a name of a new storage account
e File share: a name of a new file share

From the Cloud Shell pane, run the following to identify the storage account resource you created in
the first exercise of this lab and store it in a variable:

SstorageAccount = (Get-AzStorageAccount -ResourceGroupName az3000201-LabRG)
[0]

From the Cloud Shell pane, run the following to establish security context granting full control to the
storage account:

SkeyContext = $storageAccount.Context

From the Cloud Shell pane, run the following to create a blob-specific SAS token based on the access
policy you created in the previous task:

SsasToken = New-AzStorageBlobSASToken -Container 'labcontainer' -Blob
'splashscreen.contrast-white scale-400.png' -Policy labcontainer-read
-Context S$keyContext

Online Lab - Implementing Azure Storage Access Controls 17

9. From the Cloud Shell pane, run the following to establish security context based on the newly created
SAS token:

SsasContext = New-AzStorageContext $storageAccount.StorageAccountName
-SasToken $sasToken

10. From the Cloud Shell pane, run the following to retrieve properties of the blob:

Get-AzStorageBlob -Container 'labcontainer' -Blob 'splashscreen.con-
trast-white scale-400.png' -Context $sasContext

11. Verify that you successfully accessed the blob.

12. Minimize the Cloud Shell pane.

Task 5: Invalidate a SAS token by modifying its access policy.
1. In the Azure portal, navigate to the labcontainer - Access policy blade.

2. Edit the existing policy labcontainer-read by setting its start and expiry time to yesterday's date.

3. Reopen the Cloud Shell pane.

4. From the Cloud Shell pane, re-run the following to attempt retrieving properties of the blob:

Get-AzStorageBlob -Container 'labcontainer' -Blob 'splashscreen.con-
trast-white scale-400.png' -Context S$sasContext

5. Verify that you no longer can access the blob.

Result: After you completed this exercise, you have created a blob container, uploaded a file into it, and
tested access control by using a SAS token and a stored access policy.

18 Module T Module Selecting Compute and Storage Solutions

Review Question

Module 1 Review Questions

Design Concepts
You are designing a solution for an organization. The solution will be entirely cloud-based.
You must implement a distributed model for workloads.

Which design patterns Should you consider?

Suggested Answer |

« Partitioning workloads

A modular application is divided into functional units that each handles a portion of the application's
functionality.

- Load balancing

Load balancing is a computing concept where the application traffic, or load, is distributed among
various endpoints by using algorithms.

+ Load balancing strategy

There are a couple of things to consider when choosing a load balancer. First, you must decide whether
you want to use a physical or a virtual load balancer. You need to select a load-balancing algorithm suc as
round robin or random choice.

« Transient fault handling

Transient errors are as errors that occur due to temporary interruptions in the service or to excess latency.
You can use retries to handle these types of errors.

e Queues

You can implement queues to ensure that messages are received and processed in a specific order.

Module 2 Module Hybrid Networking

Hybrid Networking

Site-to-site connectivity

I =

IT Pros In-Office Developers In-Office

"

Enterprise Network

-

Q&A Offshore Team <

Enterprise Network

A site-to-site VPN allows you to create a security-enhanced connection between your on-premises site
and your virtual network. To create a site-to-site connection, a VPN device that is located on your
on-premises network is configured to create a security-enhanced connection with the Azure Virtual
Network gateway. Once the connection is created, resources on your local network and resources located
in your virtual network can directly and more-securely communicate. Site-to-site connections do not
require you to establish a separate connection for each client computer on your local network to access
resources in the virtual network.

20 Module 2 Module Hybrid Networking

Point-to-site connectivity

=

IT Pros In-Office

Enterprise Network

Developers Working
from Home

A point-to-site VPN also allows you to create a security-enhanced connection to your virtual network. In
a point-to-site configuration, the connection is configured individually on each client computer that you
want to connect to the virtual network. Point-to-site connections do not require a VPN device. They work
by using a VPN client that you install on each client computer. The VPN is established by manually
starting the connection from the on-premises client computer. You can also configure the VPN client to
automatically restart.

Note: Point-to-site and site-to-site configurations can exist concurrently.

Combining site-to-site and point-to-site connec-
tivity

- |

IT Pros In-Office Developers In-Office

3

Enterprise Network

Developers Working
E@ from Home

Q&A Offshore Team “1

Enterprise Network

Hybrid Networking 21

Site-to-site and point-to-site connections can be combined for a variety of reasons. In the following
diagram, the enterprise has decided to use a site-to-site connection to connect the in-office networks to
Azure. Developers who are working remotely can connect to the virtual networks directly using a point-
to-site connection.

Combining ExpressRoute and site-to-site Con-
nectivity

= =

IT Pros In-Office Developers In-Office

= L K
=

App and Database Servers

Enterprise Network

Q& Offshore Team i

Enterprise Network

You can connect ExpressRoute and a site-to-site VPN on the same virtual network. There are many
reasons you may want to do this:

e You may have multiple branch offices, and it would be cost prohibitive to purchase peering for every
location. You can use a site-to-site VPN for the locations that don't require the fastest or most reliable
connections.

e You may have multiple networks within your enterprise and may want to connect one to Azure using
ExpressRoute and one to Azure using a site-to-site VPN so there are two active connections. The
ExpressRoute connection could be used for higher-risk traffic.

e You can use the site-to-site VPN as a failover link if the ExpressRoute connection fails.

22 Module 2 Module Hybrid Networking

Virtual network-to—virtual network connectivity

W

(o] [¢]

= |

IT Pros In-Office Developers In-Office

West US

Enterprise Network

Multi-Site i @
-} XX
Q&A Offshore Team o) < > .
@ @ .
Enterprise Network

Virtual network—to—virtual network connectivity utilizes the Azure VPN gateways to more-securely
connect two or more virtual networks together with Internet Protocol security (IPsec) / Internet Key
Exchange (IKE) S2S VPN tunnels. Together with the multi-site VPNs, you can connect your virtual net-
works and on-premises sites together in a topology that suits your business needs. The diagram in the

following section shows a simple example of a fully connected topology between virtual networks and
on-premises sites.

Connecting across cloud providers

Since a site-to-site connection is simply an IPsec tunnel, you can connect to networks across cloud
providers. This scenario could be used for failover, backup, or even migration between providers.

Hybrid Networking 23

Azure Virtual @
Network

AWS Virtual

Private Cloud

Amazon Web Services (AWS)

In AWS, you can create a virtual private cloud that provides network capabilities similar to those of a
virtual network in Azure. An Amazon Elastic Compute Cloud (EC2) instance with Openswan (VPN soft-
ware) can then be created for VPN functionality. After those instances are running, you simply create a
gateway on the Azure virtual network side using static routing. The gateway IP address from Azure is then
used to configure Openswan for a tunnel connection between the two virtual networks.

24 Module 2 Module Hybrid Networking

Virtual Network-to-Network

Virtual network-to—virtual network connectivity

W

(2] 2]

= |

IT Pros In-Office Developers In-Office

West US

€|y

Multi-Site

Enterprise Network

=4 XY @
Q&A Offshore Team o) < > .
@ @ .
Enterprise Network

Virtual network—to—virtual network connectivity utilizes the Azure VPN gateways to more-securely
connect two or more virtual networks together with Internet Protocol security (IPsec) / Internet Key
Exchange (IKE) S2S VPN tunnels. Together with the multi-site VPNs, you can connect your virtual net-
works and on-premises sites together in a topology that suits your business needs. The diagram in the
following section shows a simple example of a fully connected topology between virtual networks and
on-premises sites.

Connecting across cloud providers

Since a site-to-site connection is simply an IPsec tunnel, you can connect to networks across cloud
providers. This scenario could be used for failover, backup, or even migration between providers.

Virtual Network-to-Network 25

Azure Virtual @
Network

AWS Virtual

Private Cloud

Amazon Web Services (AWS)

In AWS, you can create a virtual private cloud that provides network capabilities similar to those of a
virtual network in Azure. An Amazon Elastic Compute Cloud (EC2) instance with Openswan (VPN soft-
ware) can then be created for VPN functionality. After those instances are running, you simply create a
gateway on the Azure virtual network side using static routing. The gateway IP address from Azure is then
used to configure Openswan for a tunnel connection between the two virtual networks.

26 Module 2 Module Hybrid Networking

Review Question

Module 2 Review Question

Combining site-to-site and point-to-site connectivity

An organization is developing a new application with the help of a consulting company. The consulting
company is developing part of the solution in a remote location.

Management of your company is concerned to giving teams of external developers access to internal
resources.

Which hybrid networking solution will minimize risk and maximize connectivity? Why might you choose
one networking solution over another?

Suggested Answer |

Site-to-site and point-to-site connections can be combined for a variety of reasons. In this scenario, the
enterprise has decided to use a site-to-site connection to connect the in-office networks to Azure, which
can then be accessed by an off-shore development team, without exposing internal resources to the
offshore team. Developers who are working remotely can connect to the virtual networks directly using a
point-to-site connection.

Module 3 Module Measure Throughput and
Structure of Data Access

Address Durability of Data and Caching

Data Concurrency

ACID

The acronym ACID stands for atomic, consistent, isolated, and durable. To ensure predictable behavior, all
transactions must possess these basic properties, reinforcing the role of mission-critical transactions as
all-or-none propositions:

Atomic: A transaction must execute exactly once and must be atomic, meaning all work completes or
none of it does. Operations within a transaction usually share a common intent and are interdepend-
ent. By performing only a subset of these operations, the system could compromise the overall intent
of the transaction. Atomicity eliminates the chance of processing only a subset of operations.

Consistent: A transaction must preserve the consistency of data, transforming one consistent state of
data into another consistent state of data. Typically, the application developer is responsible for
maintaining consistency.

Isolated: A transaction must be a unit of isolation, which means that concurrent transactions should
behave as if each were the only transaction running in the system. Because a high degree of isolation
can limit the number of concurrent transactions, some applications reduce the isolation level in
exchange for better throughput.

Durable: A transaction must be recoverable and therefore must have durability. If a transaction
commits, the system guarantees that its updates can persist even if the computer crashes immediately
after the commit. Specialized logging allows the system's restart procedure to complete unfinished
operations required by the transaction, making the transaction durable.

A transaction in a database system is a set of operations, which are related, that seek to achieve some or
all the ACID properties. In most relational database management systems (RDBMS), a transaction is a
single unit of work. If a transaction is successful, all of the data modifications made during the transaction
are committed and become a permanent part of the database. The database system erases all data

28 Module 3 Module Measure Throughput and Structure of Data Access

modifications based on that transaction if a transaction encounters any errors or must be rolled back for
another reason.

Caching in distributed applications

Caching is a common technique that aims to improve the performance and scalability of a system. It does
this by temporarily copying frequently accessed data to fast storage that's located close to the applica-
tion. If this fast data storage is located closer to the application than the original source, then caching can
significantly improve response times for client applications by serving data more quickly.

Caching is most effective when a client instance repeatedly reads the same data, especially if all the
following conditions apply to the original data store:

e It remains relatively static.

e |t's slow compared to the cache’s speed.

e It's subject to a significant level of contention.

e |t's far away when network latency can cause access to be slow.

Distributed applications typically implement either or both of the following strategies when caching data:

e Using a private cache, where data is held locally on the computer that's running an instance of an
application or service.

e Using a shared cache, serving as a common source which multiple processes and/or machines can
access.

In both cases, caching can occur on the client-side and the server-side. The process that provides the user
interface for a system, such as a web browser or desktop application, performs client-side caching, while
the process that provides the business services that are running remotely performs the server-side
caching.

Private caching

The most basic type of cache is an in-memory store. It's held in the address space of a single process and
accessed directly by the code that runs in that process. This type of cache is very quick to access. It can
also provide an extremely effective means for storing modest amounts of static data, since the size of a
cache is typically constrained by the volume of memory that's available on the machine hosting the
process.

If you need to cache more information than is physically possible in memory, you can write cached data
to the local file system. This will be slower to access than data that's held in-memory but should still be
faster and more dependable than retrieving data across a network. If you have multiple instances of an
application that uses this model running concurrently, each application instance has its own independent
cache holding its own copy of the data.

Think of a cache as a snapshot of the original data at a point in the past. If this data is not static, it is likely
that different application instances hold different versions of the data in their caches. Therefore, the same
query performed by these instances can return different results.

Address Durability of Data and Caching 29

Information inthe
database changes
between time X and
Application instance time Y
Aretrievesdata at
timeX and cachesit
in-memory

Cacheisa
snapshot of
the dataat
timeX
Application instance
. B retrieves data at
Cad]f;;af time Y andcachesit
snapshot o o in-memory
the dataat -
timeY

\ Application instance B /

Shared caching

Using a shared cache can help alleviate concerns that data might differ in each cache, which can occur
with in-memory caching. Shared caching ensures that different application instances see the same view
of cached data. It does this by locating the cache in a separate location, typically hosted as part of a
separate service.

30 Module 3 Module Measure Throughput and Structure of Data Access

Shared cache
service

Both application
instances seethe *
same cached data

An important benefit of the shared caching approach is the scalability it provides. Many shared cache
services are implemented by using a cluster of servers and utilize software that distributes the data across
the cluster in a transparent manner. An application instance simply sends a request to the cache service.
The underlying infrastructure is responsible for determining the location of the cached data in the cluster.
You can easily scale the cache by adding more servers.

There are two main disadvantages of the shared caching approach:
e The cache is slower to access because it isn't held locally to each application instance.

e The requirement to implement a separate cache service might add complexity to the solution.

Caching considerations

When to cache data

Caching can dramatically improve performance, scalability, and availability. The more data that you have
and the larger the number of users that need to access this data, the greater the benefits of caching
become. That's because caching reduces the latency and contention that's associated with handling large
volumes of concurrent requests in the original data store.

For example, a database might support a limited number of concurrent connections. Retrieving data from
a shared cache, however, rather than the underlying database, makes it possible for a client application to
access this data even if the number of available connections is currently exhausted. Additionally, if the
database becomes unavailable, client applications might be able to continue by using the data that's held
in the cache.

How to cache data effectively

The key to using a cache effectively lies in determining the most appropriate data to cache and caching it
at the appropriate time. You can add the data to the cache on demand the first time it is retrieved by an
application. This means that the application needs to fetch the data only once from the data store, and
that subsequent access can be satisfied by using the cache.

Address Durability of Data and Caching 31

Alternatively, a cache can be partially or fully populated with data in advance, typically when the applica-
tion starts (an approach known as seeding). However, it might not be advisable to implement seeding for
a large cache because this approach can impose a sudden, high load on the original data store when the
application starts running. Caching typically works well with data that is immutable or that changes
infrequently.

Manage data expiration in a cache

In most cases, data that's held in a cache is a copy of data that's held in the original data store. The data
in the original data store might change after it was cached, causing the cached data to become stale.
Many caching systems enable you to configure the cache to expire data and reduce the period for which
data may be out of date.

When cached data expires, it's removed from the cache, and the application must retrieve the data from
the original data store (it can put the newly-fetched information back into cache). You can set a default
expiration policy when you configure the cache. In many cache services, you can also stipulate the
expiration period for individual objects when you store them programmatically in the cache.

Redis Cache

Note: There are two primary cache mechanisms available in Azure-Azure Cache and Azure Redis Cache.
Azure Cache is deprecated and only exists to support existing cloud applications. All new applications
should use the Redis Cache.

Redis Cache is an open-source not only SOL (NoSQL) storage mechanism that is implemented in the
key-value pair pattern common among other NoSQL stores. Redis Cache is unique because it allows com-
plex data structures for its keys.

Azure Redis Cache is a managed service based on Redis Cache that provides you secure nodes as a
service. There are only two tiers for this service currently available:

e Basic: Includes a single node.

e Standard: Includes two nodes in the Primary/Replica configuration and also includes replication
support and a Service Level Agreement (SLA).

Azure Redis Cache provides a high degree of compatibility with existing tools and applications that
already integrate with Redis Cache. You can use the Redis Cache documentation that already exists on the

open source community for Azure Redis Cache.
Storage \

Web Tier Cache ﬁ

v

Azure
Region

sQL /

2 Module 3 Module Measure Throughput and Structure of Data Access

Redis Cache Console

MCT USE ONLY. STUDENT USE PROHIBITED

Measure Throughput and Structure of Data Access 33

Measure Throughput and Structure of Data
Access

Normalized Units

In a world of hyperscale database services, it can be difficult to determine how much performance you
need or how powerful an allocated database is. To help ease this challenge, many cloud vendors have
provided normalized units of measurements that can be used to compare database tiers. Sometimes
these units of measurement have a direct relation to on-premises database equivalents, but it is simpler
to think of them as relative performance guarantees.

For example, if your application uses 20 database units today, 40 database units will guarantee you
approximately double your performance, while 10 database units will guarantee you half of your perfor-
mance.

Let's look at a few examples of normalized units in Azure and examine how you can use them to compare
database service tiers.

DTUs — Azure SQL Database

In Azure SQL Database, we measure database performance in terms of database throughput units
(DTUs). The DTU model is based on a bundled measure of compute, storage, and 10 resources. Perfor-
mance levels are expressed in terms of database transaction units (DTUs) for single databases and elastic
database transaction units (eDTUs) for elastic pools.

DTUs describe the capacity for a specific tier and performance level, and they are designed to be relative
so that you can directly compare the tiers and performance levels. For example, the Basic tier has a single
performance level (B) that is rated at 5 DTU. The S2 performance level in the Standard tier is rated at 50
DTU. This means that you can expect ten times the power for a database at the S2 performance level than
a database at the B performance level in the Basic tier.

The easiest way to visualize a DTU is to think about it in the context of a bounding box. The box repre-
sents the relative power (or resources) assigned to the database. This relative power is a natural blended
measurement of the central processing unit (CPU), memory, and read-write performance:

34 Module 3 Module Measure Throughput and Structure of Data Access

CPU

Writes
speay

Utilization

Memory

Every tier has one or more performance levels. In general, the performance levels in the Premium tier
have a higher rating than the performance levels in the Standard tier, which have a higher rating than
those in the Basic tier. The following chart illustrates this distinction. Service tiers are differentiated by a
range of performance levels with a fixed amount of included storage, fixed retention period for backups,
and fixed price. All service tiers provide flexibility of changing performance levels without downtime.

o
o
o
-
o
u
-
o
o
o
o
o
u
o
o Q
o~
T - - | [|
B S0 51 52 53 P1 P2 P4 P& P11 P15

Measure Throughput and Structure of Data Access 35

RUs — Azure Cosmos DB

Azure Cosmos DB reserves resources to manage the throughput of an application. Because, application
load and access patterns change over time, Azure Cosmos DB has support built-in to increase or decrease
the amount of reserved throughput available at any time.

With Azure Cosmos DB, reserved throughput is specified in terms of request unit processing per
second (RU/s). You reserve several guaranteed request units to be available to your application on a
per-second basis. Each operation in Azure Cosmos DB, including writing a document, performing a query,
and updating a document, consumes CPU, memory, and Input/output operations per second (IOPS). That
is, each operation incurs a request charge, which is expressed in request units.

'y

Rate limit

15

= S ——
] =
> Max RU/sec

g

=< No rate limiting
o

£

E]
8 Min RU/sec

=

Replica Quiescent

A request unit is a normalized measure of request processing cost. A single request unit represents the
processing capacity that's required to read, via self-link or ID, a single item that is 1 kilobyte (KB) and that
consists of 10 unique property values (excluding system properties). A request to create (insert), replace,
or delete the same item consumes more processing from the service and thereby requires more request
units.

36 Module 3 Module Measure Throughput and Structure of Data Access

Normalized across various access methods GET = |EE [(]

1RU = 1read of 1 KB document

Each request consumes fixed RUs =

Applies to reads, writes, queries, and stored procedure POST > =
execution

[
=S|

PUT =

= |=

_ |BAT
auery r_l = ﬂ

Structured and Unstructured Data

Modern business systems manage increasingly large volumes of data, typically ingesting data from
external services that the system generates or that users create. These data sets may have extremely
varied characteristics and processing requirements. Businesses use data to assess trends, trigger business
processes, audit their operations, analyze customer behavior, and other factors.

This heterogeneity means that a single data store is usually not the best approach. Instead, it's often
better to store diverse types of data in different data stores, each focused towards a specific workload or
usage pattern. The term polyglot persistence describes solutions that use a mix of data store technolo-
gies.

Selecting the right data store for your requirements is a key design decision. There are hundreds of
implementations to choose from among SQL and NoSQL databases. Data stores typically are categorized
by how they structure data and the types of operations they support. This article describes several
common storage models.

Using structured data stores

Relational databases organize data as a series of two-dimensional tables with rows and columns. Each
table has its own columns, and every row in a table has the same set of columns. This model is mathe-
matically based, and most vendors provide a dialect of the Structured Query Language (SQL) for retriev-
ing and managing data. An RDBMS typically implements a transactionally consistent mechanism that
conforms to the ACID (Atomic, Consistent, Isolated, Durable) model for updating information.

An RDBMS typically supports a schema-on-write model, where you define the data structure and then all
read or write operations use the schema. An RDBMS is especially useful when strong consistency guaran-
tees are important — where all changes are atomic, and transactions always leave the data in a consistent
state. However, the underlying structures do not lend themselves to scaling out by distributing storage
and processing across machines.

Structured data stores in Azure include:
e Azure SQL Database
e Azure Database for MySQL

Measure Throughput and Structure of Data Access 37

e Azure Database for PostgreSQL

Using Unstructured or semi-structured data
stores

A non-relational database doesn't use the tabular schema of rows and columns that most traditional
database systems use. Rather, non-relational databases utilize an optimized storage model that is based
on specific requirements of the type of data it's story. For example, a non-relational database might store
date as simple key/value pairs, as JSON documents, or as a graph consisting of edges and vertices.

What all of these data stores have in common is that they don't use a relational model. Also, they tend to
be more specific in the type of data they support and how you can query that data. For example, time
series data stores are optimized for queries over time-based sequences of data, while graph data stores
are optimized for exploring weighted relationships between entities. Neither format would generalize
well to the task of managing transactional data.

The term NoSQL refers to data stores that do not use SQL for queries, and instead use other program-
ming languages and constructs to query the data. In practice, “"NoSQL" means "non-relational database,"
even though several of these databases do support SQL-compatible queries. However, the underlying
query execution strategy is usually quite different from the way a traditional RDBMS would execute the
same SQL query. There are several types of NoSQL data stores, and we'll detail the most common in the
next sections of this article.

Document databases

A document database is conceptually similar to a key/value store, except that it stores a collection of
named fields and data (known as documents), each of which could be simple scalar items or compound
elements such as lists and child collections. There are several ways in which you can encode the data in a
document'’s fields, including using Extensible Markup Language (XML), YAML, JavaScript Object Notation
(JSON), Binary JSON (BSON), or even storing it as plain text. Unlike key/value stores, the fields in docu-
ments are exposed to the storage management system, enabling an application to query and filter data
by using the values in these fields.

Typically, a document contains the entire data for an entity. What items constitute an entity are applica-
tion specific. For example, an entity could contain the details of a customer, an order, or a combination of
both. A single document may contain information that would be spread across several relational tables in
an RDBMS.

38 Module 3 Module Measure Throughput and Structure of Data Access

Key Document

[
lee1l c

"customerId™: 344,
"orderItems"™: [
{
"productId": 4524,
quartity": 1,
"price™: 125.67

"productId": 3311,
"quartity": 4,
"price™: 73.86
¥
1,
"orderDate"”: "2817-18-18T12:27:38 +84:88"
H
1

1002 L
"customerId": 263,
"orderItems": [
"productId": 4876,
"guantity": 3,
"price™: 257.64
'
1.
"orderDate”: "2814-81-31T82:89:82 +85:08"
H
1
1003 L

"customerId": 383,
"orderItems"™: [
{
"productId": 1957,
quartity": 1,
"price™: 279.63
¥
1,
"orderDate”: "2816-89-18T@1:33:53 +&4:88"
H
1

Document stores in Azure include:

e Azure Cosmos DB

Graph databases

A graph database stores two types of information, nodes and edges. You can think of nodes as entities.
Edges which specify the relationships between nodes. Both nodes and edges can have properties that
provide information about that node or edge, similar to columns in a table. Edges can also have a
direction indicating the nature of the relationship.

The purpose of a graph database is to allow an application to efficiently perform queries that traverse the
network of nodes and edges, and to analyze the relationships between entities. The following diagram
shows an organization's personnel database structured as a graph. The entities are employees and
departments, and the edges indicate reporting relationships and the department in which employees
work. In this graph, the arrows on the edges show the direction of the relationships.

Measure Throughput and Structure of Data Access 39

Employee

Name: Sarah

Reports to

Works in Employee

Works in
Reports to

Department

Name: Head Office

Employee

Department

Reports to

Employee

Works in Employee

Name: John

Works in

Works in Department

Name: Marketing

Department

Name: Sales

Graph stores in Azure include:

e Azure Cosmos DB

40 Module 3 Module Measure Throughput and Structure of Data Access

Online Lab - Implementing Azure Load Balanc-
er Standard

Lab Steps

Online Lab: Implementing Azure Load Balancer Standard

NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario

Adatum Corporation wants to implement Azure Load Balancer Standard to direct inbound and outbound
traffic of Azure VMs.

Objectives
After completing this lab, you will be able to:
e Implement inbound load balancing by using Azure Load Balancer Standard

e Configure outbound SNAT traffic by using Azure Load Balancer Standard

Lab Setup

Estimated Time: 45 minutes
User Name: Student

Password: Pa55w.rd

Exercise 1: Implement inbound load balancing and NAT by
using Azure Load Balancer Standard

The main tasks for this exercise are as follows:

1. Deploy Azure VMs in an availability set by using an Azure Resource Manager template

2. Create an instance of Azure Load Balancer Standard

3. Create a load balancing rule of Azure Load Balancer Standard

4. Create a NAT rule of Azure Load Balancer Standard
5

. Test functionality of Azure Load Balancer Standard

Online Lab - Implementing Azure Load Balancer Standard 41

Task 1: Deploy Azure VMs in an availability set by using an
Azure Resource Manager template

1.

From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.
azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure
subscription.

In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

If you are presented with the You have no storage mounted message, configure storage using the
following settings:

e Subsciption: the name of the target Azure subscription

e Cloud Shell region: the name of the Azure region that is available in your subscription and which is
closest to the lab location

e Resource group: the name of a new resource group az3000800-LabRG
e Storage account: a name of a new storage account
e File share: a name of a new file share

From the Cloud Shell pane, create a resource groups by running (replace the <Azure region>
placeholder with the name of the Azure region that is available in your subscription and which is
closest to the lab location)

az group create —--name az3000801-LabRG --location <Azure region>

From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_03\azuredeploy0801.json into the home directory.

From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_03\azurede-
ploy0801.parameters.json into the home directory.

From the Cloud Shell pane, deploy a pair of Azure VMs hosting Windows Server 2016 Datacenter by
running:

az group deployment create --resource-group az3000801-LabRG --template-file
azuredeploy0801.json --parameters (@azuredeploy0801l.parameters.json

Note: Wait for the deployment before you proceed to the next task. This might take about 10 min-
utes.

In the Azure portal, close the Cloud Shell pane.

Task 2: Create an instance of Azure Load Balancer Standard

1.

In the Azure portal, create a new Azure Load Balancer with the following settings:
e Subsciption: the name of the target Azure subscription

e Resource group: az3000801-LabRG

42 Module 3 Module Measure Throughput and Structure of Data Access

Name: az3000801-Ib

Region: the name of the Azure region in which you deployed Azure VMs in the previous task of
this exercise

Type: Public
SKU: Standard
Public IP address: Create new named az3000801-Ib-pip01

Availability zone: Zone-redundant

Task 3: Create a load balancing rule of Azure Load Balancer
Standard

1c

© ® N o wu

In the Azure portal, navigate to the blade displaying the properties of the newly deployed Azure Load
Balancer az3000801-1b.

On the az3000801-Ib blade, click Backend pools.
On the az3000801-Ib - Backend pools blade, click + Add.

On the Add backend pool blade, specify the following settings and click Add:

Name: az3000801-bepool

Virtual network: az3000801-vnet (2 VM)

VIRTUAL MACHINE: az3000801-vmO IP ADDRESS: ipconfig1 (10.0.0.4) or ipconfig1 (10.0.0.5)
VIRTUAL MACHINE: az3000801-vm1 IP ADDRESS: ipconfig1 (10.0.0.5) or ipconfig1 (10.0.0.4)

Note: It is possible that the IP addresses of virtual machines are asssigned in the reversed order.

Note: Wait for the operation to complete. This should not take more than 1 minute.

Back on the az3000801-Ib - Backend pools blade, click Health probes.
On the az3000801-Ib - Health probes blade, click + Add.

On the Add health probe blade, specify the following settings and click OK:

Name: az3000801-healthprobe
Protocol: TCP

Port: 80

Interval: 5

Unhealthy threshold: 2

10. Note: Wait for the operation to complete. This should not take more than 1 minute.

11. Back on the az3000801-Ib - Health probes blade, click Load balancing rules.
12.0n the az3000801-Ib - Load balancing rules blade, click + Add.

13. On the Add load balancing rule blade, specify the following settings and click OK:

Name: az3000801-Ibrule01
IP Version: IPv4

Online Lab - Implementing Azure Load Balancer Standard 43

Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the
drop-down list

Protocol: TCP

Port: 80

Backend port: 80

Backend pool: az3000801-bepool (2 virtual machines)
Health probe: az3000801-healthprobe (TCP:80)
Session persistence: None

Idle timeout (minutes): 4

Floating IP (direct server return): Disabled

14. Note: Wait for the operation to complete. This should not take more than 1 minute.

Task 4: Create a NAT rule of Azure Load Balancer Standard
1. In the Azure portal, on the az3000801-Ib blade, click Inbound NAT rules.
2. On the az3000801-Ib - Inbound NAT rules blade, click + Add.

3. On the Add inbound NAT rule blade, specify the following settings and click OK:

Name: az3000801-vmO0-RDP

Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the
drop-down list

IP Version: IPv4

Service: RDP

Protocol: TCP

Port: 33890

Target virtual machine: az3000801-vmO0

Network IP configuration: ipconfig1 (10.0.0.4) or ipconfig1 (10.0.0.5)
Port mapping: Custom

Floating IP (direct server return): Disabled

Target port: 3389

4. Note: Wait for the operation to complete. This should not take more than 1 minute.

5. Back on the az3000801-1lb - Inbound NAT rules blade, click + Add.

6. On the Add inbound NAT rule blade, specify the following settings and click OK:

Name: az3000801-vm1-RDP

Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the
drop-down list

IP Version: IPv4

44 Module 3 Module Measure Throughput and Structure of Data Access

e Service: RDP

e Protocol: TCP

e Port: 33891

e Target virtual machine: az3000801-vm1

e Network IP configuration: ipconfig1 (10.0.0.5) or ipconfig1 (10.0.0.4)
e Port mapping: Custom

e Floating IP (direct server return): Disabled

e Target port: 3389

Note: Wait for the operation to complete. This should not take more than 1 minute.

Task 5: Test functionality of Azure Load Balancer Standard

1

In the Azure portal, navigate to the az3000801-Ib blade and note the value of the Public IP address
entry.

On the lab computer, start Microsoft Edge and navigate to the IP address you identified in the
previous step.

Verify that you are presented with the default Internet Information Services Welcome page.

On the lab computer, right-click Start, click Run, and, from the Open text box, run the following
(replace the <IP address> placeholder with the public IP address you identified earlier in this task):

mstsc /v:<IP address>:33890

When prompted, authenticate by specifying the following values:
e User name: Student
e Password: Pa55w.rd1234

Within the Remote Desktop session, switch to the Local Server view in the Server Manager window
and verify that you are connected to az3000801-vm0 Azure VM.

Switch to the lab computer, right-click Start, click Run, and, from the Open text box, run the following
(replace the <1P address> placeholder with the IP address you identified earlier in this task):

mstsc /v:<IP address>:33891

When prompted, authenticate by specifying the following values:
e User name: Student
e Password: Pa55w.rd1234

Within the Remote Desktop session, switch to the Local Server view in the Server Manager window
and verify that you are connected to az3000801-vm1 Azure VM.

10. Within the Remote Desktop session, start a Windows PowerShell session and run the following to

determine your current public IP address:

Online Lab - Implementing Azure Load Balancer Standard 45

Invoke-RestMethod http://ipinfo.io/json

11. Review the output of the cmdlet and verify that the IP address entry matches the public IP address
you identified earlier in this task.

12. Leave the Remote Desktop sessions open. You will use them in the next exercise.

Result: After you completed this exercise, you have implemented and tested Azure Load Balancer
Standard inbound load balancing and NAT rules

Exercise 2: Configure outbound SNAT traffic by using Az-
ure Load Balancer Standard

The main tasks for this exercise are as follows:

1. Deploy Azure VMs into an existing virtual network by using an Azure Resource Manager template
2. Create an Azure Standard Load Balancer and configure outbound SNAT rules

3. Test outbound rules of Azure Standard Load Balancer

Task 1: Deploy Azure VMs into an existing virtual network by
using an Azure Resource Manager template

1. From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.
azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure
subscription.

2. In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

3. From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_03\azuredeploy0802.json into the home directory.

4. From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_03\azurede-
ploy0802.parameters.json into the home directory.

5. From the Cloud Shell pane, deploy a pair of Azure VMs hosting Windows Server 2016 Datacenter by
running:

az group deployment create —--resource-group az3000801-LabRG --template-file
azuredeploy0802.json —--parameters (@azuredeploy0802.parameters.json

6. Note: Wait for the deployment before you proceed to the next task. This might take about 5 minutes.

7. In the Azure portal, close the Cloud Shell pane.

46 Module 3 Module Measure Throughput and Structure of Data Access

Task 2: Create an Azure Standard Load Balancer and config-
ure outbound SNAT rules

1.
2.

8.
9.

In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

In the Azure portal, from the Cloud Shell pane, run the following to create an outbound public IP
address of the load balancer:

az network public-ip create --resource-group az3000801-LabRG --name
az3000802-1b-pip01 --sku standard

In the Azure portal, from the Cloud Shell pane, run the following to create an Azure Load Balancer
Standard:

LOCATION=S$ (az group show --name az3000801-LabRG --query location --out tsv)
az network 1lb create --resource-group az3000801-LabRG --name az3000802-1b
--sku standard --backend-pool-name az3000802-bepool --frontend-ip-name
loadBalancedFrontEndOutbound --location S$SLOCATION --public-ip-address
az3000802-1b-pip01

From the Cloud Shell pane, run the following to create an outbound rule:

az network 1lb outbound-rule create --resource-group az3000801-LabRG --1b-
name az3000802-1b --name outboundRuleaz30000802 --frontend-ip-configs load-
BalancedFrontEndOutbound --protocol All --idle-timeout 15 --outbound-ports
10000 --address-pool az3000802-bepool

Note: Wait for the operation to complete. This should not take more than 1 minute.
Close the Cloud Shell pane.

In the Azure portal, navigate to the blade displaying the properties of the Azure Load Balancer
az3000802-Ib.

On the az3000802-Ib blade, click Backend pools.
On the az3000802-Ib - Backend pools blade, click az3000802-bepool.

10. On the az3000802-bepool blade, specify the following settings and click Save:

e Virtual network: az3000801-vnet (4 VM)
e VIRTUAL MACHINE: az3000802-vmO IP ADDRESS: ipconfig1 (10.0.1.4) or ipconfig1 (10.0.1.5)
e VIRTUAL MACHINE: az3000802-vm1 IP ADDRESS: ipconfig1 (10.0.1.5) or ipconfig1 (10.0.1.4)

11. Note: Wait for the operation to complete. This should not take more than 1 minute.

Online Lab - Implementing Azure Load Balancer Standard 47

Task 3: Verify that the outbound rule took effect

1.

In the Azure portal, navigate to the az3000802-1b blade and note the value of the Public IP address
entry.

On the lab computer, from the Remote Desktop session to az3000801-vm0O, run the following to start
a Remote Desktop session to az3000802-vmO.

mstsc /v:az3000802-vm0

When prompted, authenticate by specifying the following values:
e User name: Student
e Password: Pa55w.rd1234

Within the Remote Desktop session to az3000802-vm0, start a Windows PowerShell session and run
the following to determine your current public IP address:

Invoke-RestMethod http://ipinfo.io/json

Review the output of the cmdlet and verify that the IP address entry matches the public IP address
you identified earlier in this task.

Result: After you completed this exercise, you have configured and tested Azure Load Balancer Standard
outbound rules

48 Module 3 Module Measure Throughput and Structure of Data Access

Review Question

Module 3 Review Question

Redis cache
A company has several applications in Azure that use Azure Cache.

You plan to migrate the applications to use Azure Redis Cache. You must prepare the environment for the
change

What options are available for preparing the environment? What should you do?

Suggested Answer |

Before you can migrate to Azure Redis Cache you need to register a resource provider for your subscrip-
tion. You can create a new Azure Redis Cache instance by using the Azure portal, Azure CLI, or Azure

PowerShell.

Module 4 Module Implementing Authentica-
tion

Implementing authentication in applications

Certificate-based authentication

Client certificate authentication enables each web-based client to establish its identity to a server by
using a digital certificate, which provides additional security for user authentication. In the context of
Microsoft Azure, certificate-based authentication enables you to be authenticated by Azure Active
Directory (Azure AD) with a client certificate on a Windows or mobile device when connecting to different
services, including (but not limited to):

e Custom services authored by your organization
e Microsoft SharePoint Online

e Microsoft Office 365 (or Microsoft Exchange)

e Skype for Business

e Azure APl Management

e Third-party services deployed in your organization

Helping to secure back-end services

Certificate-based authentication can be useful in scenarios where your organization has multiple front-
end applications communicating with back-end services. Traditionally, the certificates are installed on
each server, and the machines trust each other after validating certificates. This same traditional structure
can be used for infrastructure in Azure.

With cloud-native applications, you can use certificates to help secure connections in hybrid scenarios.
For example, you can restrict access to your Azure web app by enabling different types of authentication
for it. One way to do so is to authenticate using a client certificate when the request is over Transport
Layer Security (TLS) / Secure Sockets Layer (SSL). This mechanism is called TLS mutual authentication or

50 Module4 Module Implementing Authentication

client certificate authentication. As another example, APl Management allows more-secure access to the
back-end service of an APl using client certificates.

Azure Active Directory (Azure AD)

Azure AD is an identity and access management cloud solution that provides directory services, identity
governance, and application access management. Azure AD quickly enables single sign-on (SSO) to
thousands of pre-integrated commercial and custom apps in the Azure AD application gallery. A single
Azure AD directory is automatically associated with an Azure subscription when it is created. As the
identity service in Azure, Azure AD then provides all identity management and access control functions
for cloud-based resources. These resources can include users, apps, and groups for an individual tenant
(organization), as shown in the following diagram:

Azure Active
Directory

>

»

Azure subscription

User groups

Azure offers several ways to leverage identity as a service (IDaaS) with varying levels of complexity.

Understanding the difference between Active Directory
Domain Services and Azure Active Directory

Both Azure AD and Active Directory Domain Services (AD DS) are systems that store directory data and
manage communication between users and resources, including user logon processes, authentication,
and directory searches.

If you are already familiar with AD DS, first introduced with Windows 2000 Server, then you probably
understand the basic concept of an identity service. However, it's also important to understand that Azure
AD is not just a domain controller in the cloud. It is an entirely new way of providing IDaa$S in Azure that
requires an entirely new way of thinking to fully embrace cloud-based capabilities and help protect your
organization from modern threats.

AD DS is a server role in Windows Server, which means that it can be deployed on physical machines or
virtual machines (VMs). It has a hierarchical structure based on X.500. It uses DNS for locating objects, can
be interacted with using Lightweight Directory Access Protocol (LDAP), and primarily uses Kerberos for
authentication. Windows Server Active Directory enables organizational units (OUs) and Group Policy
Objects (GPOs) in addition to joining machines to the domain, and trusts are created between domains.

Implementing authentication in applications 51

IT has protected its security perimeter for years using AD DS, but modern, perimeter-less enterprises
supporting identity needs for employees, customers, and partners require a new control plane. Azure AD
is that identity control plane. Security has moved beyond the corporate firewall to the cloud, where Azure
AD help protect company resources and access by providing one common identity for users (either
on-premises or in the cloud). This gives your users the flexibility to more securely access the apps they
need to get their work done from almost any device. Seamless, risk-based data protection controls,
backed by machine-learning capabilities and in-depth reporting, which IT needs to help keep company
data secure, are also provided.

Azure AD is a multi-customer public directory service, which means that within Azure AD, you can create
a tenant for your cloud servers and applications, such as Office 365. Users and groups are created in a flat
structure without OUs or GPOs. Authentication is performed through protocols such as SAML, WS-Feder-
ation, and Open Authorization (OAuth). It's possible to query Azure AD, but instead of using LDAP, you
must use a REST API called Azure AD Graph API. These all work over HTTP and HTTPS.

Azure AD Connect

Azure AD Connect integrates on-premises directories with Azure AD. This allows you to provide a
common identity for enterprise users in Office 365, Azure, and software as a service (SaaS) applications.

Azure AD Connect is made up of three primary components: the synchronization services, the optional
Active Directory Federation Services (AD FS) component, and the monitoring component named Azure
AD Connect Health.

e Synchronization - This component is responsible for creating users, groups, and other objects. It is
also responsible for making sure identity information for your on-premises users and groups is
matching the cloud.

e Active Directory Federation Services - Federation is an optional part of Azure AD Connect and can
be used to configure a hybrid environment using an on-premises AD FS infrastructure. This can be
used by organizations to address complex deployments, such as domain-join SSO, the enforcement of
Azure AD sign-in policy, and smart card or third-party multi-factor authentication.

e Health monitoring - Azure AD Connect Health can provide robust monitoring and a central location
in the Azure portal to view this activity.

52 Module 4 Module Implementing Authentication

p

Azure AD Connect

DirSync

Azure AD Sync

Azure AD
Sync Services

FIM + Azure AD
Connector

Azure AD
Connect Health

AD FS

o

Azure AD Connect comes with several features you can optionally turn on or that are enabled by default.
Some features might sometimes require more configuration in certain scenarios and topologies.

Filtering is used when you want to limit which objects are synchronized to Azure AD. By default, all
users, contacts, groups, and Windows 10 computers are synchronized. You can change the filtering
based on domains, OUs, or attributes.

Password hash synchronization synchronizes the password hash in Active Directory to Azure AD.
The end user can use the same password on-premises and in the cloud but only manage it in one
location. Since it uses your on-premises Active Directory as the authority, you can also use your own
password policy.

Password writeback will allow your users to change and reset their passwords in the cloud and have
your on-premises password policy applied.

Device writeback will allow a device registered in Azure AD to be written back to on-premises Active
Directory so it can be used for conditional access.

The prevent accidental deletes feature is turned on by default and helps protect your cloud directory
from numerous delete operations at the same time. By default, it allows 500 delete operations per run.
You can change this setting depending on your organization size.

Automatic upgrade is enabled by default for express settings installations and helps ensure that your
Azure AD Connect is always up-to-date with the latest release.

Legacy authentication methods

Most cloud-native applications will use a token-based or certificate-based authentication scheme.
However, many applications are migrated to the cloud or connected to the cloud in a hybrid way. These
applications may already have significant developer investment that makes changing the authentication
scheme a significant resource challenge.

Implementing authentication in applications 53

Forms-based authentication

Forms authentication uses an HTML form to send the user's credentials to the server. It is not an internet
standard. Forms authentication is appropriate only for web APIs that are called from a web application so
that the user can interact with the HTML form. Forms authentication does have a few disadvantages,
including:

e It requires a browser client to use the HTML form.

e It requires measures to prevent cross-site request forgery (CSRF).

e User credentials are sent in plaintext as part of an HTTP request.

The most common workflow for forms-based authentication works like this:

1. The client requests a resource that requires authentication.

2. If the user is not authenticated, the server returns HTTP 302 (Found) and redirects to a login page.
3. The user enters credentials and submits the form.
4

. The server returns another HTTP 302 that redirects back to the original URI. This response includes an
authentication cookie.

5. The client requests the resource again. The request includes the authentication cookie, so the server
grants the request.

GET /home -
E 302 Found
€———————————__302Found
GET /Account/Login?ReturnUrl=%2home
200 OK
‘. ___________________
POST /Account/Login?ReturnUrl=%2home
302 Found
‘. ___________________
GET /home -
200 OK
‘. ___________________

6.

In the context of Azure, many applications using forms-based authentication are legacy applications that
were shifted to Azure without being refactored or rewritten. Using Microsoft ASP.NET forms authentica-
tion as an example, migration to the cloud would require only changing the connection string for the
database that is used to store the forms authentication data. Using Azure as an example, you can migrate
the identity database from Microsoft SQL Server to Azure SQL Database to continue to use forms-based
authentication in Azure.

54 Module 4 Module Implementing Authentication

Windows-based authentication

Integrated Windows authentication enables users to log in with their Windows credentials using Kerberos
or NTLM. The client sends credentials in the Authorization header. Windows authentication is best
suited for an intranet environment. Windows authentication does have a few disadvantages, including:

e It's difficult to use in internet applications without exposing the entire user directory.
e |t can't be used in Bring Your Own Device (BYOD) scenarios.

e It Requires Kerberos or Integrated Windows Authentication (NTLM) support in the client browser or
device.

e The client must be joined to the Active Directory Domain.

In a hybrid deployment, it is common to see the main responsibilities of identity moved from on-premis-
es Active Directory to Azure AD. The on-premises Active Directory servers remain as a way to manage
physical machines and to enable simple Windows-based authentication. Azure AD Connect is used to
synchronize identity from Azure AD to the on-premises Active Directory servers.

Token-based authentication

Claims-based authentication in .NET

Historically, ASP.NET applications used forms authentication to solve member requirements that were
common in the early 2000s. These requirements revolved mostly around authoring login forms and
managing a SQL Server database for user names, passwords, and profile data. Today, there is a much
broader array of data storage options for web applications, and most developers want to enable their
sites to use social identity providers for authentication and authorization functionality. While it's possible
to implement these new features in a database, it is unnecessarily difficult when many identity providers
implement storage, tokens, and claims already.

ASP.NET Identity is a unified identity platform for ASP.NET applications that can be used across all flavors
of ASP.NET and that can be used in web, phone, store, or hybrid applications. ASP.NET Identity imple-
ments two core features that makes it ideal for token-based authentication:

e ASP.NET Identity implements a provider model for logins. Today you may want to log in using a
local Active Directory server, but tomorrow you may want to migrate to Azure AD. In ASP.NET Identity,
you can simply add, remove, or replace providers. If your company decides to implement social
network logins, you can keep adding providers or write your own providers without changing any
other code in your application.

e ASP.NET Identity supports claims-based authentication, where the user's identity is represented as a
set of claims. Claims allow developers to be a lot more expressive in describing a user's identity than
roles allow. Whereas role membership is just a Boolean value (member or non-member), a claim can
include rich information about the user's identity and membership. Most social providers return
metadata about the logged-in user as a series of claims.

App Service authentication and authorization

Azure App Service provides built-in authentication and authorization support, so you can sign in users
and access data by writing minimal or no code in your app instance. The authentication and authorization
module runs in the same sandbox as your application code. When it's enabled, every incoming HTTP
request passes through it before being handled by your application code.

Implementing authentication in applications 55

App Service web worker VM(s)

Sandbox

Environment

Client(s)

ITH_C|
ITH_C

App Service
front ends

ITH T

File server

Storage volume

App OAuth i
1S logs pp logs

All AuthN/AuthZ logic, including cryptography for token validation and session management, executes in
the worker sandbox and outside of the web app code. The module runs separately from your application
code and is configured using app settings. No software development kits (SDKs), specific languages, or
changes to your application code are required.

Identity information flows directly into the application code. For all language frameworks, App Service
makes the user's claims available to your code by injecting them into the request headers. For Microsoft .
NET applications, App Service populates ClaimsPrincipal.Current with the authenticated user's claims, so
you can follow the standard .NET code pattern, including the [Authorize] attribute. Similarly, for PHP
apps, App Service populates the _SERVER['REMOTE_USER’] variable.

App Service provides a built-in token store, which is a repository of tokens that are associated with the
users of your web apps, APIs, or native mobile apps. You typically must write code to collect, store, and
refresh these tokens in your application. With the token store, you just retrieve the tokens when you need
them and tell App Service to refresh them when they become invalid. When you enable authentication
with any provider, this token store is immediately available to your app. The token information can be
used in your application code to perform tasks such as:

e Posting to the authenticated user's Facebook timeline.

e Reading the user's corporate data from the Azure AD Graph API or even from the Microsoft Graph.

56 Module4 Module Implementing Authentication

Implement multi-factor authentication

Multi-factor authentication

When a user logs into an application, they typically provide a username and password. The password is
provided by the user as a piece of evidence to the authentication system that the user is who they claim
to be. The password is considered one factor proving the user’s identity. A user could have other factors
that proves their identity, such as:

e A physical badge from the company.
e Knowledge of the answers to security questions.

e A mobile device, registered with the company, that can receive notifications, phone calls, or SMS
messages.

e Their physical appearance that can be captured by a camera device.
e Their fingerprint that could be captured by a biometric scanner.

Unfortunately, a single factor can potentially be compromised either intentionally or unintentionally. A
badge can be stolen and used by an unauthorized party. During a robbery, someone could ask you to use
your fingerprint on a device. A mobile company could accidentally send SMS messages to another device.

In security best practices, it is recommended to use two or more factors when authenticating users. This
practice is referred to as multi-factor authentication. Using an enterprise as an example, the company
could require employees to scan their badges and then enter their passwords as two factors of authenti-
cation. In the world of security, it is often recommended to have two of the following factors:

e Knowledge — Something that only the user knows (security questions, password, or PIN).
e Possession — Something that only the user has (corporate badge, mobile device, or security token).
e Inherence — Something that only the user is (fingerprint, face, voice, or iris).

The security of two-step verification lies in its layered approach. Compromising multiple authentication
factors presents a significant challenge for attackers. Even if an attacker manages to learn the user's
password, it is useless without possession of the additional authentication method.

Multi-factor authentication with Azure AD

Azure Multi-Factor Authentication (MFA) is a two-step verification solution that is built in to Azure AD.
Administrators can configure approved authentication methods to ensure that at least two factors are
used while still keeping the sign-in process as streamlined as possible.

There are two ways to enable MFA:

e The first option is to enable each user for MFA. When users are enabled individually, they perform
two-step verification each time they sign in. There are a few exceptions, such as when they sign in
from trusted IP addresses or when the remembered devices feature is turned on.

e The second option is to set up a conditional access policy that requires two-step verification under
certain conditions. This method uses the Azure AD Identity Protection risk policy to require two-step
verification based only on the sign-in risk for all cloud applications.

Once MFA is enabled, administrators can choose which methods of authentication are available to users.
Once users enroll, they must choose at least one method from the list that the administrator has enabled.
These methods include:

Implement multi-factor authentication 57

Method Description

Call to phone Places an automated voice call. The user answers
the call and presses # on the phone keypad to
authenticate. The phone number is not synchro-
nized to on-premises Active Directory.

Text message to phone Sends a text message that contains a verification
code. The user is prompted to enter the verifica-
tion code into the sign-in interface. This process is
called one-way SMS. Two-way SMS means that the
user must text back a particular code.

Notification through mobile app Sends a push notification to your phone or
registered device. The user views the notification
and selects Verify to complete the verification.

Verification code from mobile app The Microsoft Authenticator app generates a new
OAuth verification code every 30 seconds. The
user enters the verification code into the sign-in
interface.

The Microsoft Authenticator app helps to prevent unauthorized access to accounts and to stop fraudu-
lent transactions by offering an additional level of security for Azure AD accounts or Microsoft accounts.
It can be used either as a second verification method or as a replacement for a password when using
phone sign-in. The Authenticator app fully supports both the Verification code and Notification
methods of verification in MFA. The Authenticator app is available for Windows phone, Android, and iOS.

Implementing custom multi-factor authentication using
.NET

The Multi-Factor Authentication SDK lets you build two-step verification directly into the sign-in or
transaction processes of applications in your Azure AD tenant.

The Multi-Factor Authentication SDK is available for C#, Visual Basic (.NET), Java, Perl, PHP, and Ruby. The
SDK provides a thin wrapper around two-step verification. It includes everything you need to write your
code, including commented source code files, example files, and a detailed ReadMe file. Each SDK also
includes a certificate and private key for encrypting transactions that are unique to your MFA provider. As
long as you have a provider, you can download the SDK in as many languages and formats as you need.

Because the APIs do not have access to users registered in Azure AD, you must provide user information
in a file or database. Also, the APIs do not provide enrollment or user management features, so you need
to build these processes into your application.

58 Module4 Module Implementing Authentication

Claims-based authorization

Claims

Authorization is the process of determining which entities have permission to change, view, or otherwise
access a computer resource. For example, in a business, only managers may be allowed to access the files
of their employees. In the past, this was simple to accomplish with identity databases using protocols like
Lightweight Directory Access Protocol (LDAP) or tools like Active Directory Domain Services. Whenever a
user attempted to access an application, the application would query the identity database.

In a world where identity is usually managed by third-party providers, like Microsoft Azure Active Directo-
ry, Facebook, Google, LinkedIn, and Twitter, this information needs to be shared in a standardized way to
applications. In the simplest workflow, the user needs to access an application, so they first log in using
their social identity. Once they are logged in, the identity provider is trusted by the organization’s
application and can share claims about that user with the application.

Application

'y

OCASH

User dentity providers

When an identity is created, it may be assigned one or more claims issued by a trusted party. A claim is a
name/value pair that represents what the subject is and not what the subject can do. For example, you
may have a driver's license issued by a local driving license authority. Your driver's license has your date
of birth on it. In this case, the claim name would be DateOfBirth, the claim value would be your date of
birth — for example, June 8, 1970 — and the issuer would be the driving license authority. An identity
can contain multiple claims with multiple values and can contain multiple claims of the same type.

Note: The terms authentication and authorization can be confusing. To keep it simple, authentication is
the act of verifying someone’s identity. When you authenticate someone, you are determining who they
are. Authorization is the act of verifying that someone has access to a certain subsystem or operation.
When you authorize someone, you are determining what they can do.

Claims-based authorization

Claims-based authorization is an approach where the authorization decision to grant or deny access is
based on arbitrary logic that uses data available in claims to make the decision. Claims-based authoriza-

Claims-based authorization 59

tion, at its simplest, checks the value of a claim and allows access to a resource based on that value. For
example, if you want access to a night club, the authorization process might be:

e The door security officer evaluates the value of your date of birth claim and whether they trust the
issuer (the driving license authority) before granting you access.

In a relying party application, authorization determines what resources an authenticated identity is
allowed to access and what operations it is allowed to perform on those resources. Improper or weak
authorization leads to information disclosure and data tampering.

Claim-based authorization checks are declarative—the developer embeds them within their code, against
a controller or an action within a controller, specifying claims that the current user must possess and
optionally the value the claim must hold to access the requested resource. Claims requirements are policy
based; the developer must build and register a policy expressing the claims requirements.

Claims-based authorization in Microsoft ASP.NET

The simplest type of claim policy looks for the presence of a claim and doesn't check the value. First, you
need to build and register the policy. This takes place as part of the authorization service configuration,
which normally takes place in ConfigureServices() in your Startup.cs file:

public void ConfigureServices (IServiceCollection services)

{

services.AddMvc () ;

services.AddAuthorization (options =>
{
options.AddPolicy ("EmployeeOnly", policy => policy.Require-
Claim ("EmployeeNumber")) ;
1) ;

In this case, the EmployeeOnly policy checks for the presence of an EmployeeNumber claim on the
current identity. You then apply the policy using the Policy property on the AuthorizeAttribute attribute
to specify the policy name:

[Authorize (Policy = "EmployeeOnly")]
public IActionResult VacationBalance ()
{

return View() ;

Alternatively, the AuthorizeAttribute attribute can be applied to an entire controller; in this instance,
only identities matching the policy will be allowed access to any action on the controller:

[Authorize (Policy = "EmployeeOnly")]
public class VacationController : Controller
{

public ActionResult VacationBalance ()

{

}

60 Module 4 Module Implementing Authentication

If you have a controller that's protected by the AuthorizeAttribute attribute but want to allow anony-
mous access to particular actions, you apply the AllowAnonymousAttribute attribute:

[Authorize (Policy = "EmployeeOnly")]
public class VacationController : Controller
{

public ActionResult VacationBalance ()

{

}

[AllowAnonymous]

public ActionResult VacationPolicy ()
{

}

Most claims come with a value. You can specify a list of allowed values when creating the policy. The
following example succeeds only for employees whose employee numberis 1, 2, 3, 4 or 5:

public void ConfigureServices (IServiceCollection services)

{

services.AddMvc () ;

services.AddAuthorization (options =>

{
options.AddPolicy ("Founders", policy =>

policy.RequireClaim ("EmployeeNumber", "1", "2",
"3", "4", "5"));

P

Role-based access control (RBAC) authorization 61

Role-based access control (RBAC) authoriza-
tion

Role-based authorization

Role-based authorization is an authorization approach in which user permissions are managed and
enforced by an application based on user roles. If a user has a role that is required to perform an action,
access is granted; otherwise, access is denied. When an identity is created, it may belong to one or more
roles. For example, Holly may belong to the Administrator and User roles, whereas Adam may belong
only to the User role. How these roles are created and managed depends on the backing store of the
authorization process.

Role-Based authorization in ASP.NET

Roles are exposed to the developer through the IsInRole method on the ClaimsPrincipal class.
Role-based authorization checks are declarative—the developer embeds them within their code, against
a controller or an action within a controller, specifying roles that the current user must be a member of to
access the requested resource.

For example, the following code limits access to any actions on the AdministrationController to
users who are members of the Administrator role:

[Authorize (Roles = "Administrator")]

public class AdministrationController : Controller
{

}

You can specify multiple roles as a comma separated list:

[Authorize (Roles = "HRManager,Finance")]
public class SalaryController : Controller
{

}

This controller would be accessible only by users who are members of the HRManager role or the
Finance role.

If you apply multiple attributes, an accessing user must be a member of all the roles specified. The
following sample requires that a user be a member of both the PowerUser and ControlPanelUser roles:

[Authorize (Roles = "PowerUser")]

[Authorize (Roles = "ControlPanelUser")]

public class ControlPanelController : Controller
{

}

You can further limit access by applying additional role authorization attributes at the action level:

[Authorize (Roles = "Administrator, PowerUser")]
public class ControlPanelController : Controller

62 Module 4 Module Implementing Authentication

public ActionResult SetTime ()
{
}

[Authorize (Roles = "Administrator")]
public ActionResult ShutDown ()

{

}

In the previous code snippet, members of either the Administrator role or the PowerUser role can

access the controller and the SetTime action, but only members of the Administrator role can access
the shutDown action.

You can also lock down a controller but allow anonymous, unauthenticated access to individual actions:

[Authorize]
public class ControlPanelController : Controller
{

public ActionResult SetTime ()

{

}

[AllowAnonymous]

public ActionResult Login ()
{

}

Role requirements can also be expressed using the Policy syntax, where a developer registers a policy
at startup as part of the authorization service configuration. This normally occurs in ConfigureServic-
es () inyour Startup.cs file:

public void ConfigureServices (IServiceCollection services)
{

services.AddMvc () ;

services.AddAuthorization (options =>
{
options.AddPolicy ("RequireAdministratorRole", policy => policy.
RequireRole ("Administrator"));

}) i

Policies are applied using the Policy property on the AuthorizeAttribute attribute:

[Authorize (Policy = "RequireAdministratorRole")]
public IActionResult Shutdown ()
{

return View() ;

Role-based access control (RBAC) authorization 63

If you want to specify multiple allowed roles in a requirement, you can specify them as parameters to the
RequireRole method:

options.AddPolicy ("ElevatedRights", policy =>
policy.RequireRole ("Administrator", "PowerUser", "Backu-

pPAdministrator"));

This example authorizes users who belong to the Administrator, PowerUser, or BackupAdministrator
roles.

Note: You can mix and match both claims-based authorization and role-based authorization. Is it typical
to see the role defined as a special claim. The role claim type is expressed using the following URI:
http://schemas.microsoft.com/ws/2008/06/identity/claims/role.

Role-based access control (RBAC)

Role-based access control (RBAC) is a system that provides fine-grained access management of resources
in Azure. Using RBAC, you can segregate duties within your team and grant only the amount of access to
users that they need to perform their jobs. RBAC in Azure is an authorization system built on Azure
Resource Manager that provides fine-grained access management to Azure resources, such as compute
and storage.

Using RBAC, you can segregate duties within your team and grant only the amount of access to users
that they need to perform their jobs. Instead of giving everybody unrestricted permissions in your Azure
subscription or resources, you can allow only certain actions at a particular scope.

When planning your access control strategy, it's a best practice to grant users the least privileges to get
their work done. The following diagram shows a suggested pattern for using RBAC.

Resource-specific
or custom role

&)
5
m
=

Contributor

Subscription

Y

Resource group
N
J

Resource

Observers Users managing resources Admins

Automated processes

Fe®

N

64 Module 4 Module Implementing Authentication

The way you control access to resources using RBAC is to create role assignments. This is a key concept
to understand — it's how permissions are enforced. A role assignment consists of three elements: a
security principal, a role definition, and the scope.

e A security principal is an object that represents a user, group, or service principal that is requesting
access to Azure resources.

e Auser is an individual who has a profile in Azure Active Directory. You can also assign roles to
users in other tenants.

e A group is a set of users created in Azure Active Directory. When you assign a role to a group, all
users within that group have that role.

e A service principal is a security identity used by applications or services to access specific Azure
resources. You can think of it as a user identity (username and password or certificate) for an
application.

e Arole definition is a collection of permissions. It's sometimes just called a role. A role definition lists
the operations that can be performed, such as read, write, and delete. Roles can be high level, like
owner, or specific, like virtual machine reader.

e The Scope is the boundary that the access applies to. When you assign a role, you can further limit
the actions allowed by defining a scope. This is helpful if you want to make someone a Website
Contributor but only for one resource group. In Azure, you can specify a scope at multiple levels:
management group, subscription, resource group, or resource. Scopes are structured in a parent-child
relationship.

A role assignment is the process of binding a role definition to a user, group, or service principal at a
particular scope for the purpose of granting access. Access is granted by creating a role assignment, and
access is revoked by removing a role assignment.

The following diagram shows an example of a role assignment. In this example, the Marketing group has
been assigned the Contributor role for the pharma-sales resource group. This means that users in the
Marketing group can create or manage any Azure resource in the pharma-sales resource group. Market-
ing users do not have access to resources outside the pharma-sales resource group, unless they are part
of another role assignment.

Role-based access control (RBAC) authorization 65

O
e

[
i}
2]
a
c
51

@
-
Marketing group

"actions": [

1,
"notactions™: [

/ Owner

Contributer
Reader

Backup Operator
Security Reader
User Access Administrator
virtual Machine

\ Contributor /

Reader Support Tickets
Virtual Machine Operator

.

Built-in roles

"
i
Inl
in
o
=
a
o

A /Delete”,
“auth/= furite”, pharma-sales
"Auth/elevate” res ip
1

Contributor

Role assignment

& Management group

RBAC in Azure includes over 70 built-in roles. There are four fundamental RBAC roles. The first three

apply to all resource types:

RBAC role in Azure

Owner

Contributor

Reader

User Access Administrator

Permissions

Has full access to all resources
and can delegate access to
others

Creates and manages all types of
Azure resources but cannot
grant access to others

Creates and manages all types of
Azure resources but cannot
grant access to others

Manages user access to Azure
resources

Notes

The Service Administrator and
Co-Administrators are assigned
the Owner role at the subscrip-
tion scope. This applies to all
resource types.

This applies to all resource types.

This applies to all resource types.

The rest of the built-in roles allow the management of specific Azure resources. For example, the Virtual
Machine Contributor role allows the user to create and manage virtual machines.

Note: Only the Azure portal and the Azure Resource Manager APIs support RBAC. Users, groups, and
applications that are assigned RBAC roles cannot use the Azure classic deployment model APlIs.

66 Module 4 Module Implementing Authentication

Implement OAuth2 authentication

Authorize access to web applications using
OpenlD Connect

OpenlID Connect is a simple identity layer built on top of the OAuth 2.0 protocol. OAuth 2.0 defines
mechanisms to obtain and use access tokens to access protected resources, but they do not define
standard methods to provide identity information. OpenID Connect implements authentication as an
extension to the OAuth 2.0 authorization process. It provides information about the end user in the form
of an id_token that verifies the identity of the user and provides basic profile information about the
user.

OpenlD Connect is our recommendation if you are building a web application that is hosted on a server
and accessed via a browser.

Register your application with your AD tenant

First, you need to register your application with your Azure Active Directory (Azure AD) tenant. This will
give you an Application ID for your application, as well as enable it to receive tokens.

e Sign in to the Azure portal.

e Choose your Azure AD tenant by clicking on your account in the top right corner of the page,
followed by clicking on the Switch Directory navigation and then select the appropriate tenant.

--Skip this step, if you've only one Azure AD tenant under your account or if you've already selected the
appropriate Azure AD tenant.

e In the left hand navigation pane, click on Azure Active Directory.
e Click on App Registrations and click on New application registration.

e Follow the prompts and create a new application. It doesn't matter if it is a web application or a native
application for this tutorial.

e --For Web Applications, provide the Sign-On URL, which is the base URL of your app, where users can
signineghttp://localhost:12345.

e --For Native Applications provide a Redirect URI, which Azure AD will use to return token responses.
Enter a value specific to your application, .e.g http://MyFirstAADApPpP.

e Once you've completed registration, Azure AD will assign your application a unique client identifier,
the Application ID. You need this value in the next sections, so copy it from the application page.

e To find your application in the Azure portal, click App registrations, and then click View all applica-
tions.

Authentication flow using OpenID Connect

The most basic sign-in flow contains the following steps - each of them is described in detail below.

Implement OAuth2 authentication 67

https://login.microsoftonline.com/{tenantid}
or
https://login/microsoftonline.com/common

Jfoauth2/ Joauth2/

Browser Web server . Web API
authorize token
[]]
—— user signs in, enters c ials and to ission —p 1 1
1 1
4} -~~~ retumns id_token and authorization_code to browser = =—=-- 1 1
1 1
)) 1]
- redirects to redirect URI 4»
| 1
]]
validates id_token,
sets session cookie 1]
]]
1]
—— requests OAuth bearer token providing authorization_code —» I
[]
1]
Y ———— returns a token and refresh_token = ======eee=- 1
L]
]]
calls Web Ame'm ftoken in Authorizati heal:fer |
] 1
1 1 validates token
-+
1 1
e ——————————— returns secure data to web server app----l --------------------
"

OpenlID Connect metadata document

OpenlID Connect describes a metadata document that contains most of the information required for an
app to perform sign-in. This includes information such as the URLs to use and the location of the service's
public signing keys. The OpenlD Connect metadata document can be found at:

https://login.microsoftonline.com/{tenant}/.well-known/openid-configuration

The metadata is a simple JavaScript Object Notation (JSON) document. See the following snippet for an
example. The snippet's contents are fully described in the OpenID Connect specification’. Note that
providing tenant rather than common in place of {tenant} above will result in tenant-specific URIs in the
JSON object returned.

{

"authorization endpoint": "https://login.microsoftonline.com/common/
oauth2/authorize",

"token endpoint": "https://login.microsoftonline.com/common/oauth2/
token",

"token endpoint auth methods supported":
[

"client secret post",

"private key jwt",

"client secret basic"

1 https://openid.net/

68 Module 4 Module Implementing Authentication

1,

"jwks uri": "https://login.microsoftonline.com/common/discovery/keys"

"userinfo endpoint":"https://login.microsoftonline.com/{tenant}/openid/
userinfo",

Send the sign-in request

When your web application needs to authenticate the user, it must direct the user to the /authorize
endpoint. This request is similar to the first leg of the OAuth 2.0 Authorization Code Flow?, with a few
important distinctions:

e The request must include the scope openid in the scope parameter.
e The response type parameter must include id token.

e The request must include the nonce parameter.

So a sample request would look like this:

// Line breaks for legibility only

GET https://login.microsoftonline.com/{tenant}/oauth2/authorize?
client i1d=6731de76-14a6-4%ae-97bc-6eba691439%1e

&response_ type=id token

&redirect uri=http%3A%2F%2Flocalhost%3al2345

&response mode=form post

&scope=openid

&state=12345

&nonce=7362CAEA-9CA5-4B43-9BA3-34D7C303EBA7

Parameter Description

tenant required The {tenant} value in the path
of the request can be used to
control who can sign into the
application. The allowed values
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4dal-
9baa-8bc8c9d6a490 or
contoso.onmicrosoft.com
or common for tenant-independ-
ent tokens

2 https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-oauth-code

Implement OAuth? authentication 69

Parameter

Description

client_id

required

The Application Id assigned to
your app when you registered it
with Azure AD. You can find this
in the Azure Portal. Click Azure
Active Directory, click App
Registrations, choose the
application and locate the
Application Id on the application

page.

response_type

required

Must include id_token for
OpenlID Connect sign-in. It may
also include other response_
types, such as code or token.

scope

required

A space-separated list of scopes.
For OpenID Connect, it must
include the scope openid, which
translates to the "Sign you in"
permission in the consent Ul. You
may also include other scopes in
this request for requesting
consent.

nonce

required

A value included in the request,
generated by the app, that is
included in the resulting id to-
ken as a claim. The app can then
verify this value to mitigate
token replay attacks. The value is
typically a randomized, unique
string or GUID that can be used
to identify the origin of the
request.

redirect_uri

recommended

The redirect_uri of your app,
where authentication responses
can be sent and received by your
app. It must exactly match one of
the redirect_uris you registered
in the portal, except it must be
url encoded.

70 Module 4 Module Implementing Authentication

Parameter

Description

response_mode

optional

Specifies the method that should
be used to send the resulting
authorization_code back to your
app. Supported values are

form post for HTTP form post
and fragment for URL frag-
ment. For web applications, we
recommend using response
mode=form post to ensure the
most secure transfer of tokens to
your application. The default for
any flow including an id_token is
fragment.

state

recommended

A value included in the request
that is returned in the token
response. It can be a string of
any content that you wish. A
randomly generated unique
value is typically used for
preventing cross-site request
forgery attacks. The state is also
used to encode information
about the user's state in the app
before the authentication
request occurred, such as the
page or view they were on.

prompt

optional

Indicates the type of user
interaction that is required.
Currently, the only valid values
are 'login’, 'none’, and 'consent’.
prompt=1login forces the user
to enter their credentials on that
request, negating single-sign on.
prompt=none is the opposite -
it ensures that the user is not
presented with any interactive
prompt whatsoever. If the
request cannot be completed
silently via single-sign on, the
endpoint returns an error.
prompt=consent triggers the
OAuth consent dialog after the
user signs in, asking the user to
grant permissions to the app.

Implement OAuth?2 authentication 71

Parameter

Description

login_hint

optional

Can be used to pre-fill the
username/email address field of
the sign-in page for the user, if
you know their username ahead
of time. Often apps use this
parameter during reauthentica-
tion, having already extracted
the username from a previous
sign-in using the preferred
username claim.

At this point, the user is asked to enter their credentials and complete the authentication.

Sample response

A sample response, after the user has authenticated, could look like this:

POST / HTTP/1.1
localhost:12345
application/x-www-form-urlencoded

Host:

Content-Type:

id token=eyJ0eXAiO0iJKV1QiLCJhbGci0iJSUzI1INiIsIngldCI6IkluQlow-

WmNB. .. &state=12345

Parameter Description

id_token The id_token that the app requested. You can
use the id token to verify the user's identity and
begin a session with the user.

state A value included in the request that is also

returned in the token response. A randomly
generated unique value is typically used for
preventing cross-site request forgery attacks. The
state is also used to encode information about the
user's state in the app before the authentication
request occurred, such as the page or view they
were on.

Error response

Error responses may also be sent to the redirect uri so the app can handle them appropriately:

POST / HTTP/1.1
localhost:12345

Host:

Content-Type: application/x-www-form-urlencoded

error=access_denied&error description=the+user+canceled+the+authentication

72 Module 4 Module Implementing Authentication

Parameter

Description

error

react to errors.

An error code string that can be used to classify
types of errors that occur, and can be used to

error_description

A specific error message that can help a developer
identify the root cause of an authentication error.

Error codes for authorization endpoint errors

The following table describes the various error codes that can be returned in the error parameter of the

error response.

Error Code

Description

Client Action

invalid_request

Protocol error, such as a missing
required parameter.

Fix and resubmit the request.
This is a development error, and
is typically caught during initial
testing.

unauthorized_client

The client application is not
permitted to request an authori-
zation code.

This usually occurs when the
client application is not regis-
tered in Azure AD or is not
added to the user's Azure AD
tenant. The application can
prompt the user with instruction
for installing the application and
adding it to Azure AD.

access_denied

Resource owner denied consent

The client application can notify
the user that it cannot proceed
unless the user consents.

unsupported_response_type

The authorization server does
not support the response type in
the request.

Fix and resubmit the request.
This is a development error, and
is typically caught during initial
testing.

server_error

The server encountered an
unexpected error.

Retry the request. These errors
can result from temporary
conditions. The client application
might explain to the user that its
response is delayed due to a
temporary error.

temporarily_unavailable

The server is temporarily too
busy to handle the request.

Retry the request. The client
application might explain to the
user that its response is delayed
due to a temporary condition.

invalid_resource

The target resource is invalid
because it does not exist, Azure
AD cannot find it, or it is not
correctly configured.

This indicates the resource, if it
exists, has not been configured
in the tenant. The application
can prompt the user with
instruction for installing the
application and adding it to
Azure AD.

Implement OAuth?2 authentication 73

Validate the id _token

Just receiving an id_token is not sufficient to authenticate the user; you must validate the signature and
verify the claims in the 1d_token per your app's requirements. The Azure AD endpoint uses JSON Web
Tokens (JWTs) and public key cryptography to sign tokens and verify that they are valid.

You can choose to validate the id_token in client code, but a common practice is to send the id to-
ken to a backend server and perform the validation there. Once you've validated the signature of the
id token, there are a few claims you are required to verify.

You may also wish to validate additional claims depending on your scenario. Some common validations
include:

e Ensuring the user/organization has signed up for the app.
e Ensuring the user has proper authorization/privileges
e Ensuring a certain strength of authentication has occurred, such as multi-factor authentication.

Once you have validated the id_token, you can begin a session with the user and use the claims in the
id_ token to obtain information about the user in your app. This information can be used for display,
records, personalization, etc.

Send a sign-out request

When you wish to sign the user out of the app, it is not sufficient to clear your app's cookies or otherwise
end the session with the user. You must also redirect the user to the end_session_endpoint for sign-out. If
you fail to do so, the user will be able to reauthenticate to your app without entering their credentials
again, because they will have a valid single sign-on session with the Azure AD endpoint.

You can simply redirect the user to the end_session_endpoint listed in the OpenlID Connect metadata
document:

GET https://login.microsoftonline.com/common/oauth2/logout?
post logout redirect uri=http%3A%2F%2Flocalhost%2Fmyapp%2F

Parameter Description

post_logout_redirect_uri recommended The URL that the user should be
redirected to after successful
logout. If not included, the user
is shown a generic message.

Single sign-out

When you redirect the user to the end _session endpoint, Azure AD clears the user's session from
the browser. However, the user may still be signed in to other applications that use Azure AD for authen-
tication. To enable those applications to sign the user out simultaneously, Azure AD sends an HTTP GET
request to the registered LogoutUr1l of all the applications that the user is currently signed in to.
Applications must respond to this request by clearing any session that identifies the user and returning a
200 response. If you wish to support single sign out in your application, you must implement such a
LogoutUrl in your application's code. You can set the LogoutUr1 from the Azure portal:

1. Navigate to the Azure Portal.

2. Choose your Active Directory by clicking on your account in the top right corner of the page.

74 Module 4 Module Implementing Authentication

3. From the left hand navigation panel, choose Azure Active Directory, then choose App registrations
and select your application.

4. Click on Settings, then Properties and find the Logout URL text box.

Token Acquisition

Many web apps need to not only sign the user in, but also access a web service on behalf of that user
using OAuth. This scenario combines OpenlD Connect for user authentication while simultaneously
acquiring an authorization code that can be used to get access_tokens using the OAuth Author-
ization Code Flow.

Get Access Tokens
To acquire access tokens, you need to modify the sign-in request from above:

// Line breaks for legibility only

GET https://login.microsoftonline.com/{tenant}/oauth2/authorize?

client 1d=6731de76-14a6-49%9ae-97bc-6eba6914391e // Your registered
Application Id

&response type=id token+code

&redirect uri=http%$3A%2F%2Flocalhost%3al2345 // Your registered
Redirect Uri, url encoded

&response mode=form post // “form post' or
'fragment'

&scope=openid

&resource=https%$3A%2F%2Fservice.contoso.com%2F // The identifier of
the protected resource (web API) that your application needs access to
&state=12345 // Any value, provid-
ed by your app

&nonce=678910 // Any value, provid-
ed by your app

By including permission scopes in the request and using response type=code+id token, the
authorize endpoint ensures that the user has consented to the permissions indicated in the scope
query parameter, and return your app an authorization code to exchange for an access token.

Successful response

A successful response using response mode=form post looks like:

POST /myapp/ HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded

id token=eyJ0eXAiOiJKV1QiLCJhbGci0iJSUzIINiIsIngldCI6IkluQlow-
WmNB. . .&code=AwABAAAAVPM1KaPlrEqgdFSBzjgfTGBCmMLAgfSTLEMPGYuUNHSUY -
Brg...&state=12345

Implement OAuth?2 authentication 75

Parameter Description

id_token The id_token that the app requested. You can
use the id token to verify the user's identity and
begin a session with the user.

code The authorization_code that the app requested.
The app can use the authorization code to request
an access token for the target resource. Authoriza-
tion_codes are short lived, and typically expire
after about 10 minutes.

state If a state parameter is included in the request, the
same value should appear in the response. The
app should verify that the state values in the
request and response are identical.

Error response

Error responses may also be sent to the redirect uri so the app can handle them appropriately:

POST /myapp/ HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded

error=access_denied&error description=the+user+canceled+the+authentication

Parameter Description

error An error code string that can be used to classify
types of errors that occur, and can be used to
react to errors.

error_description A specific error message that can help a developer
identify the root cause of an authentication error.

For a description of the possible error codes and their recommended client action, see Error codes for
authorization endpoint errors above.

Once you've gotten an authorization code and an 1d_token, you can sign the user in and get access
tokens on their behalf. To sign the user in, you must validate the 1d_token exactly as described above.

Understanding the OAuth2 implicit grant flow in
Azure Active Directory

The OAuth2 implicit grant is notorious for being the grant with the longest list of security concerns in the
OAuth2 specification. And yet, that is the approach implemented by ADAL JS and the one we recommend
when writing SPA applications. What gives? It's all a matter of tradeoffs: and as it turns out, the implicit
grant is the best approach you can pursue for applications that consume a Web API via JavaScript from a
browser.

What is the OAuth2 implicit grant?

The quintessential OAuth2 authorization code grant is the authorization grant that uses two separate
endpoints. The authorization endpoint is used for the user interaction phase, which results in an authori-

76 Module 4 Module Implementing Authentication

zation code. The token endpoint is then used by the client for exchanging the code for an access token,
and often a refresh token as well. Web applications are required to present their own application creden-
tials to the token endpoint, so that the authorization server can authenticate the client.

The OAuth2 implicit grant is a variant of other authorization grants. It allows a client to obtain an access
token (and id_token, when using Openld Connect) directly from the authorization endpoint, without
contacting the token endpoint nor authenticating the client. This variant was designed for JavaScript
based applications running in a Web browser: in the original OAuth2 specification, tokens are returned in
a URI fragment. That makes the token bits available to the JavaScript code in the client, but it guarantees
they won't be included in redirects toward the server. Returning tokens via browser redirects directly from
the authorization endpoint. It also has the advantage of eliminating any requirements for cross origin
calls, which are necessary if the JavaScript application is required to contact the token endpoint.

An important characteristic of the OAuth2 implicit grant is the fact that such flows never return refresh
tokens to the client. The next section shows how this isn't necessary and would in fact be a security issue.

Suitable scenarios for the OAuth2 implicit grant

The OAuth2 specification declares that the implicit grant has been devised to enable user-agent applica-
tions — that is to say, JavaScript applications executing within a browser. The defining characteristic of
such applications is that JavaScript code is used for accessing server resources (typically a Web API) and
for updating the application user experience accordingly. Think of applications like Gmail or Outlook Web
Access: when you select a message from your inbox, only the message visualization panel changes to
display the new selection, while the rest of the page remains unmodified. This characteristic is in contrast
with traditional redirect-based Web apps, where every user interaction results in a full page postback and
a full page rendering of the new server response.

Applications that take the JavaScript based approach to its extreme are called single-page applications,
or SPAs. The idea is that these applications only serve an initial HTML page and associated JavaScript,
with all subsequent interactions being driven by Web API calls performed via JavaScript. However, hybrid
approaches, where the application is mostly postback-driven but performs occasional JS calls, are not
uncommon — the discussion about implicit flow usage is relevant for those as well.

Redirect-based applications typically secure their requests via cookies, however, that approach does not
work as well for JavaScript applications. Cookies only work against the domain they have been generated
for, while JavaScript calls might be directed toward other domains. In fact, that will frequently be the case:
think of applications invoking Microsoft Graph API, Office API, Azure API - all residing outside the domain
from where the application is served. A growing trend for JavaScript applications is to have no backend at
all, relying 100% on third party Web APIs to implement their business function.

Currently, the preferred method of protecting calls to a Web APl is to use the OAuth2 bearer token
approach, where every call is accompanied by an OAuth2 access token. The Web API examines the
incoming access token and, if it finds in it the necessary scopes, it grants access to the requested opera-
tion. The implicit flow provides a convenient mechanism for JavaScript applications to obtain access
tokens for a Web API, offering numerous advantages in respect to cookies:

e Tokens can be reliably obtained without any need for cross origin calls — mandatory registration of the
redirect URI to which tokens are return guarantees that tokens are not displaced

e JavaScript applications can obtain as many access tokens as they need, for as many Web APIs they
target — with no restriction on domains

e HTMLS features like session or local storage grant full control over token caching and lifetime man-
agement, whereas cookies management is opaque to the app

e Access tokens aren't susceptible to Cross-site request forgery (CSRF) attacks

Implement OAuth?2 authentication 77

The implicit grant flow does not issue refresh tokens, mostly for security reasons. A refresh token isn't as
narrowly scoped as access tokens, granting far more power hence inflicting far more damage in case it is
leaked out. In the implicit flow, tokens are delivered in the URL, hence the risk of interception is higher
than in the authorization code grant.

However, a JavaScript application has another mechanism at its disposal for renewing access tokens
without repeatedly prompting the user for credentials. The application can use a hidden iframe to
perform new token requests against the authorization endpoint of Azure AD: as long as the browser still
has an active session (read: has a session cookie) against the Azure AD domain, the authentication
request can successfully occur without any need for user interaction.

This model grants the JavaScript application the ability to independently renew access tokens and even
acquire new ones for a new API (provided that the user previously consented for them). This avoids the
added burden of acquiring, maintaining, and protecting a high value artifact such as a refresh token. The
artifact that makes the silent renewal possible, the Azure AD session cookie, is managed outside of the
application. Another advantage of this approach is a user can sign out from Azure AD, using any of the
applications signed into Azure AD, running in any of the browser tabs. This results in the deletion of the
Azure AD session cookie, and the JavaScript application will automatically lose the ability to renew tokens
for the signed out user.

Is the implicit grant suitable for my app?

The implicit grant presents more risks than other grants. However, the higher risk profile is largely due to
the fact that it is meant to enable applications that execute active code, served by a remote resource to a
browser. If you are planning an SPA architecture, have no backend components or intend to invoke a
Web API via JavaScript, use of the implicit flow for token acquisition is recommended.

If your application is a native client, the implicit flow isn't a great fit. The absence of the Azure AD session
cookie in the context of a native client deprives your application from the means of maintaining a long
lived session. Which means your application will repeatedly prompt the user when obtaining access
tokens for new resources.

If you are developing a Web application that includes a backend, and consuming an API from its backend
code, the implicit flow is also not a good fit. Other grants give you far more power. For example, the
OAuth?2 client credentials grant provides the ability to obtain tokens that reflect the permissions assigned
to the application itself, as opposed to user delegations. This means the client has the ability to maintain
programmatic access to resources even when a user is not actively engaged in a session, and so on. Not
only that, but such grants give higher security guarantees. For instance, access tokens never transit
through the user browser, they don't risk being saved in the browser history, and so on. The client
application can also perform strong authentication when requesting a token.

Authorize access to Azure Active Directory web
applications using the OAuth 2.0 code grant
flow

Azure Active Directory (Azure AD) uses OAuth 2.0 to enable you to authorize access to web applications
and web APIs in your Azure AD tenant. This guide is language independent, and describes how to send
and receive HTTP messages without using any of our open-source libraries.

78 Module 4 Module Implementing Authentication

The OAuth 2.0 authorization code flow is described in section 4.1 of the OAuth 2.0 specification®. It is
used to perform authentication and authorization in most application types, including web apps and
natively installed apps.

Register your application with your AD tenant

First, you need to register your application with your Azure Active Directory (Azure AD) tenant. This will
give you an Application ID for your application, as well as enable it to receive tokens.

Sign in to the Azure portal.

Choose your Azure AD tenant by clicking on your account in the top right corner of the page, fol-
lowed by clicking on the Switch Directory navigation and then select the appropriate tenant.

--Skip this step, if you've only one Azure AD tenant under your account or if you've already selected
the appropriate Azure AD tenant.

In the left hand navigation pane, click on Azure Active Directory.
Click on App Registrations and click on New application registration.

Follow the prompts and create a new application. It doesn't matter if it is a web application or a native
application for this tutorial.

--For Web Applications, provide the Sign-On URL, which is the base URL of your app, where users can
signineghttp://localhost:12345.

--For Native Applications provide a Redirect URI, which Azure AD will use to return token responses.
Enter a value specific to your application, .e.g http://MyFirstAADApPpP.

Once you've completed registration, Azure AD will assign your application a unique client identifier,
the Application ID. You need this value in the next sections, so copy it from the application page.

To find your application in the Azure portal, click App registrations, and then click View all applica-
tions.

Request an authorization code

The authorization code flow begins with the client directing the user to the /authorize endpoint. In this
request, the client indicates the permissions it needs to acquire from the user. You can get the OAuth 2.0
authorization endpoint for your tenant by selecting App registrations > Endpoints in the Azure portal.

// Line breaks for legibility only

https://login.microsoftonline.com/{tenant}/oauth2/authorize?
client 1d=6731de76-14a6-4%ae-97bc-6eba6914391e

&response type=code

&redirect uri=http%3A%2F%2Flocalhost%3A12345

&response mode=query
&resource=https%$3A%2F%2Fservice.contoso.com%2F

&state=12345

https://tools.ietf.org/html/rfc6749#section-4.1

Implement OAuth?2 authentication 79

Parameter

Need

Description

tenant

required

The {tenant} value in the path
of the request can be used to
control who can sign into the
application. The allowed values
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4dal-
9baa-8bc8c9d6a4d 90 or
contoso.onmicrosoft.com
or common for tenant-independ-
ent tokens

client_id

required

The Application ID assigned to
your app when you registered it
with Azure AD. You can find this
in the Azure Portal. Click Azure
Active Directory in the services
sidebar, click App registrations,
and choose the application.

response_type

required

Must include code for the
authorization code flow.

redirect_uri

recommended

The redirect_uri of your app,
where authentication responses
can be sent and received by your
app. It must exactly match one of
the redirect_uris you registered
in the portal, except it must be
url encoded. For native & mobile
apps, you should use the default
value of urn:ietf:wg:oau-
th:2.0:00b.

response_mode

optional

Specifies the method that should
be used to send the resulting
token back to your app. Can be
query, fragment, or form
post. query provides the code
as a query string parameter on
your redirect URI. If you're
requesting an ID token using the
implicit flow, you cannot use
query as specified in the
OpenlD spec. If you're request-
ing just the code, you can use
query, fragment, or form
post. form post executes a
POST containing the code to
your redirect URI. The default is
query for a code flow.

80 Module 4 Module Implementing Authentication

Parameter

Need

Description

state

recommended

A value included in the request
that is also returned in the token
response. A randomly generated
unique value is typically used for
preventing cross-site request
forgery attacks. The state is also
used to encode information
about the user's state in the app
before the authentication
request occurred, such as the
page or view they were on.

resource

recommended

The App ID URI of the target web
API (secured resource). To find
the App ID URI, in the Azure
Portal, click Azure Active
Directory, click Application
registrations, open the applica-
tion's Settings page, then click
Properties. It may also be an
external resource like https://
graph.microsoft.com. Thisis
required in one of either the
authorization or token requests.
To ensure fewer authentication
prompts place it in the authori-
zation request to ensure consent
is received from the user.

scope

ignored

For v1 Azure AD apps, scopes
must be statically configured in
the Azure Portal under the
applications Settings, Required
Permissions.

Implement OAuth? authentication 81

Parameter

Need

Description

prompt

optional

Indicate the type of user interac-
tion that is required.

Valid values are:

login: The user should be
prompted to reauthenticate.

select_account: The user is
prompted to select an account,
interrupting single sign on. The
user may select an existing
signed-in account, enter their
credentials for a remembered
account, or choose to use a
different account altogether.

consent: User consent has been
granted, but needs to be
updated. The user should be
prompted to consent.

admin_consent: An administrator
should be prompted to consent
on behalf of all users in their
organization

login_hint

optional

Can be used to pre-fill the
username/email address field of
the sign-in page for the user, if
you know their username ahead
of time. Often apps use this
parameter during reauthentica-
tion, having already extracted
the username from a previous
sign-in using the preferred
username claim.

domain_hint

optional

Provides a hint about the tenant
or domain that the user should
use to sign in. The value of the
domain_hint is a registered
domain for the tenant. If the
tenant is federated to an
on-premises directory, AAD
redirects to the specified tenant
federation server.

82 Module 4 Module Implementing Authentication

Parameter Need Description

code_challenge_method recommended The method used to encode the
code verifier for the code
challenge parameter. Can be
one of plain or s256. If
excluded, code challengeis
assumed to be plaintext if code
challenge is included. Azure
AAD v1.0 supports both plain
and s256.

code_challenge recommended Used to secure authorization
code grants via Proof Key for
Code Exchange (PKCE) from a
native or public client. Required
if code challenge method is
included.

Note: If the user is part of an organization, an administrator of the organization can consent or decline
on the user's behalf, or permit the user to consent. The user is given the option to consent only when the
administrator permits it.

At this point, the user is asked to enter their credentials and consent to the permissions requested by the
app in the Azure Portal. Once the user authenticates and grants consent, Azure AD sends a response to
your app at the redirect uri address in your request with the code.

Successful response

A successful response could look like this:

GET HTTP/1.1 302 Found

Location: http://localhost:12345/?code= AwABAAAAVPM1KaPlrEqdFSBzjgfTGBCm—
LAgfSTLEMPGYuNHSUYBrqgf ZT pS5uEAEJJ nZ3UmphWygRNy2C33J239gV_DBnZ2syeg-
95K1i-374WHUP-13yIhv5i-7KU2CE0PXWURQP6IVYMw-DJjAOzn7C3JCuSwpngXmbZKtJdWmiBzH-
pc02aICJPulKvJrDLDP20chIBXzVYJtkfjviLNNW717Y3ydcHDsBRKZc3GuMQanmcghXPyoDg—
41g8XbwPudVh7uCmUponBQpIhbuffFP tbV8SNzsPoFz9CLpBCZagJVXeqWoYMPe2dSsPi-
LO9Alf YIe5zpi-zY4C3alw5g9at35eZTEfNAOgBRpR50jkMIcZZ6IgAA&session
state=7B29111D-C220-4263-99AB-6F6E135D75EF&state=D79E5777-702E-4260-9A62~

37F75FF22CCE

Parameter Description

admin_consent The value is True if an administrator consented to
a consent request prompt.

code The authorization code that the application
requested. The application can use the authoriza-
tion code to request an access token for the target
resource.

session_state A unique value that identifies the current user
session. This value is a GUID, but should be treated
as an opaque value that is passed without exami-
nation.

Implement OAuth? authentication 83

Parameter

Description

state

If a state parameter is included in the request, the
same value should appear in the response. It's a
good practice for the application to verify that the
state values in the request and response are
identical before using the response. This helps to
detect Cross-Site Request Forgery (CSRF) attacks
against the client.

Error response

Error responses may also be sent to the redirect uri so that the application can handle them appro-

priately.

GET http://localhost:12345/7

error=access_denied

&error description=thetuser+canceled+thetauthentication

Parameter

Description

error

returns.

An error code value defined in Section 5.2 of the
OAuth 2.0 Authorization Framework. The next
table describes the error codes that Azure AD

error_description

A more detailed description of the error. This
message is not intended to be end-user friendly.

state

The state value is a randomly generated non-re-
used value that is sent in the request and returned
in the response to prevent cross-site request
forgery (CSRF) attacks.

Error codes for authorization endpoint errors

The following table describes the various error codes that can be returned in the error parameter of the

error response.

Error Code

Description

Client Action

invalid_request

Protocol error, such as a missing
required parameter.

Fix and resubmit the request.
This is a development error, and
is typically caught during initial
testing.

unauthorized_client

The client application is not
permitted to request an authori-
zation code.

This usually occurs when the
client application is not regis-
tered in Azure AD or is not
added to the user's Azure AD
tenant. The application can
prompt the user with instruction
for installing the application and
adding it to Azure AD.

84 Module 4 Module Implementing Authentication

Error Code

Description

Client Action

access_denied

Resource owner denied consent

The client application can notify
the user that it cannot proceed
unless the user consents.

unsupported_response_type

The authorization server does
not support the response type in
the request.

Fix and resubmit the request.
This is a development error, and
is typically caught during initial
testing.

server_error

The server encountered an
unexpected error.

Retry the request. These errors
can result from temporary
conditions. The client application
might explain to the user that its
response is delayed due to a
temporary error.

temporarily_unavailable

The server is temporarily too
busy to handle the request.

Retry the request. The client
application might explain to the
user that its response is delayed
due to a temporary condition.

invalid_resource

The target resource is invalid
because it does not exist, Azure
AD cannot find it, or it is not
correctly configured.

This indicates the resource, if it
exists, has not been configured
in the tenant. The application
can prompt the user with
instruction for installing the
application and adding it to
Azure AD.

Use the authorization code to request an access token

Now that you've acquired an authorization code and have been granted permission by the user, you can
redeem the code for an access token to the desired resource, by sending a POST request to the /token

endpoint:

// Line breaks for legibility only

POST /{tenant}/oauth2/token HTTP/1.1
Host: https://login.microsoftonline.com

Content-Type: application/x-www-form-urlencoded

grant type=authorization code

&client id=2d4dlla2-£814-46a7-890a-274a72a7309%e
&code=AwABAAAAVPM1KaPlrEqdFSBzjgfTGBCmLAgfSTLEMPGYuUNHSUYBrggf ZT pSuEAEJJ
nZ3UmphWygRNy2C33J239gV_DBnZ2syeg95Ki-374WHUP-13yThv5i-7KU2CE0PXwWURQPOIVY -
Mw-D3jA0zn7C3JCuSwpngXmbZKt JAWmiBzHpc02aICJIJPulKvJIrDLDP20chIBXzVYJtkfjviLNN-
W717Y3ydcHDsBRKZc3GuMQanmcghXPyoDg41lg8XbwPudVh7uCmUponBOpIhbuffFP tbV8SN-
zsPoFz9CLpBCZagJVXeqWoYMPe2dSsPiLO9ALEf YIeb5zpi-zY4C3aLw5g9at35eZTENdOg-
BRpR50JkMICZZ6IgAA

&redirect uri=https%3A%2F%2Flocalhost%3A12345
&resource=https%$3A%2F%2Fservice.contoso.com%2F

&client secret=p@sswOrd

Implement OAuth? authentication 85

/ /NOTE :

client secret only required for web apps

Parameter

Description

tenant

required

The {tenant} value in the path
of the request can be used to
control who can sign into the
application. The allowed values
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4dal-
9baa-8bc8c9d6as 90 or
contoso.onmicrosoft.com
or common for tenant-independ-
ent tokens

client_id

required

The Application Id assigned to
your app when you registered it
with Azure AD. You can find this
in the Azure portal. The Applica-
tion Id is displayed in the
settings of the app registration.

grant_type

required

Must be authorization code
for the authorization code flow.

code

required

The authorization code
that you acquired in the previous
section

redirect_uri

required

The same redirect uri value
that was used to acquire the
authorization code.

client_secret

required for web apps, not
allowed for public clients

The application secret that you
created in the Azure Portal for
your app under Keys. It cannot
be used in a native app (public
client), because client_secrets
cannot be reliably stored on
devices. It is required for web
apps and web APIs (all confiden-
tial clients), which have the
ability to store the client se-
cret securely on the server side.
The client_secret should be
URL-encoded before being sent.

86 Module 4 Module Implementing Authentication

Parameter Description

resource recommended The App ID URI of the target web
API (secured resource). To find
the App ID URI, in the Azure
Portal, click Azure Active
Directory, click Application
registrations, open the applica-
tion's Settings page, then click
Properties. It may also be an
external resource like https://
graph.microsoft.com. Thisis
required in one of either the
authorization or token requests.
To ensure fewer authentication
prompts place it in the authori-
zation request to ensure consent
is received from the user. If in
both the authorization request
and the token request, the
resource’ parameters must
match.

code_verifier optional The same code_verifier that was
used to obtain the authoriza-
tion_code. Required if PKCE was
used in the authorization code
grant request.

To find the App ID URI, in the Azure Portal, click Azure Active Directory, click Application registrations,
open the application's Settings page, then click Properties.

Successful response

Azure AD returns an access token upon a successful response. To minimize network calls from the client
application and their associated latency, the client application should cache access tokens for the token
lifetime that is specified in the OAuth 2.0 response. To determine the token lifetime, use either the
expires_in or expires_on parameter values.

If a web API resource returns an invalid_token error code, this might indicate that the resource has
determined that the token is expired. If the client and resource clock times are different (known as a “time
skew"), the resource might consider the token to be expired before the token is cleared from the client
cache. If this occurs, clear the token from the cache, even if it is still within its calculated lifetime.

A successful response could look like this:

{
"access token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzIINiIsIngldCI6Ik5HVEZ-

27ZEstZnl0aEV1ITHAgcHdBSkINOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9z-
by5jb20vIiwiaXNzIjoiaHROCcHM6Ly9zdHMud21uZG93cy5uZXQvN2Z10DEONDCtZGE~
INyOOMzglLWJ1lY2ItNmRINTAmMIEONzd1LyIsImlhdCI6MTM40DQOMDg2My—
wibmJImIjoxMzg4NDQwODYzLCJ1leHA1OjEzODgONDQ3NjMsInZ1lciI6IJEUMCIsInRpZCI6Ijd-
mZTgxNDQ3LWRhNTctNDM4ANS11iZWNiLTZkZTU3Z 5 IxNDc3ZSIsIm9pZCI6IY4Mzg5YWUYLTYyZ—
mEtNGIxXOCO5SMWZ1LTUZzZGOxXxMD1kNzZRmMNSTIsInVwbiI6ImZyYW5rbUBjb250b3NvLmNvbSIsIn-
VuaXF1ZVouYW1l1lIjoiZnJdhbmttQOGNvbnRvc28uY29tIiwic3ViIjoiZGVOcUlgOULPRT1IQVOpX-

Implement OAuth? authentication 87

YkhzZnRYADIFYWIQVMwwQ204UUFtZWZSTFY50CIsImZhbWlseVOuYW1l1IjoiTWlsbGVyIiwi—
2212ZW5fbmFtZSI6IkZyYWS5rIiwiYXBwaWQiOiIyZDRkMTFhMi1mODEOLTQ2YTctODkwYSOyNz—
RhNzJhNzMwOWUiLCJThcHBpZGFjciI6IJAILCIzY3A101J1c2VyX21tcGVyc29uYXRpb241iL-
CJhY3Ii0iIxIn0.

Jzw83C0gptZxVC-715sFkdnJgP3 tRjeQEPgUNn28XctVe3QgmheLZw7QVZDPCyGycDWBaqy—
TFLpSekET BftDkewRhyHkOFW KeEzOch2c3i08NGNDbroXYGVayNuSesYk5Aw p3ICR1U-
V1bgEwk-Jkzs9EEkQg4hbefqIS6yS1HoV 2EsEhpd wCQpxK89WPs3hLYZETRItG5kvCCEO-
vSHXmDE 6eTHGTnEgsIk--UlPe275DvoudgEAwWLofhLDQbMSJnl1V5VLsjimNBVcSRFShoxmQwB—
JR b2011Y5IuD6St5zPnzruBbZYkGNurQK63TIJPWMRA3mbJIsGMOmE3CUQ",

"token type": "Bearer",

"expires in": "3600",

"expires on": "1388444763",

"resource": "https://service.contoso.com/",

"refresh token": "AwABAAAAVPM1KaPlrEqdFSBzjqfTGAMxZGUTAMOt4B4rTfgV29gh-

DOHRc2B-C hHeJaJICqjz3mY2b YNgmf9SoAylD1PycGCB90xzZeEDg6oBzOIPLYSsbDWNL621p—
Ko2Q3GGTHY1mNfwoc-0lrxK69hkha2CFl12azM NYhgO668yfcUl4VBbiSHZydINVZG5QTIOC—
bObu3gnLutbpadZGAxgj IbMkQ2bQS09fTrjMBtDE3D6kSMIodpCecoANon9b0LATkpitim—
VCrl-NyfN30oyG4ZCWul8M9-vEoud4Sg-1oMDzExgAf6lnoxzkNiaTecM-Veb5cqgowHgYQj£VIDO-
z41bceuYCAA",

"scope": "https$3A%2F%2Fgraph.microsoft.com%2Fmail.read",
"id token": "eyJ0eXAiOiJKV1QiLCJhbGciO0iJub251In0.eyJhdWQiOiIyZDRkMTFhMi-

ImODEOLTQ2YTctODkwYSOyNzRhNzJhNzMwOWU1LCJpc3MiOiJodHRwczovL3NOcy53aWs5kb3d-
zLm51dC83ZmU4AMTQONyY1kYTU3LTQzODUtYmMVjYi02ZGUIN2YyMTQ3N2U~
vIiwiaWF0IjoxMzg4NDQwODYzLCJuYmYi0jEzODgONDA4NIMsImV4cCI6MTM40DQONDC2Mywid—
mvVyIjoiMS4wIiwidGlkIjoiN2Z10DEONDctZGEINy00MzglLWI1Y2ItNmRINTAmMEONZzd1 T~
Wib21kIjoiNjgzOD1hZTItN]JImYSO00YJE4LTkxZmUtNTNkZDEWOWQ3NGY1IiwidXBuljoiZnJTh—
bmttOGNvbnRvc28uY29tIiwidWSpcXV1X25hbWUiOidmemFua2lAY29udG9zby5jb20iLCJzd~
WIiOiJKV3ZZZENXUGhobHBTMVpzZjd5oWVV4U2hVd3RVbTV5elBtdl8talgzZkhZIiwiZm-
FtaWx5X25hbWUi0iJNaWxsZXI1iLCInaXZ1bl9uYWl1lIjoiRnJhbmsifQ."

}

Parameter Description

access_token The requested access token as a signed JSON Web
Token (JWT). The app can use this token to
authenticate to the secured resource, such as a

web API.
token_type Indicates the token type value. The only type that
Azure AD supports is Bearer.
expires_in How long the access token is valid (in seconds).
expires_on The time when the access token expires. The date

is represented as the number of seconds from
1970-01-01T0:0:0Z UTC until the expiration time.
This value is used to determine the lifetime of
cached tokens.

resource The App ID URI of the web API (secured resource).

scope Impersonation permissions granted to the client
application. The default permission is user im-
personation. The owner of the secured resource
can register additional values in Azure AD.

88 Module 4 Module Implementing Authentication

Parameter Description

refresh_token An OAuth 2.0 refresh token. The app can use this
token to acquire additional access tokens after the
current access token expires. Refresh tokens are
long-lived, and can be used to retain access to
resources for extended periods of time.

id_token An unsigned JSON Web Token (JWT) representing
an ID token. The app can base64Url decode the
segments of this token to request information
about the user who signed in. The app can cache
the values and display them, but it should not rely
on them for any authorization or security bounda-
ries.

Error response

The token issuance endpoint errors are HTTP error codes, because the client calls the token issuance
endpoint directly. In addition to the HTTP status code, the Azure AD token issuance endpoint also returns
a JSON document with objects that describe the error.

A sample error response could look like this:

{

"error": "invalid grant",

"error description": "AADSTS70002: Error validating credentials.
AADSTS70008: The provided authorization code or refresh token is expired.
Send a new interactive authorization request for this user and resource.\r\
nTrace ID: 3939d04c-d7ba-42bf-9cb7-1e5854cdce9e\r\nCorrelation ID:
a8125194-2dc8-4078-90ba-7b6592a7£231\r\nTimestamp: 2016-04-11 18:00:12z2",

"error codes": [
70002,
70008
1,
"timestamp": "2016-04-11 18:00:122",

"trace_ id": "3939d04c-d7ba-42bf-9cb7-1e5854cdce9e",
"correlation id": "a8125194-2dc8-4078-90ba-7b6592a7£231"

Parameter Description

error An error code string that can be used to classify
types of errors that occur, and can be used to
react to errors.

error_description A specific error message that can help a developer
identify the root cause of an authentication error.

error codes A list of STS-specific error codes that can help in
diagnostics.

timestamp The time at which the error occurred.

trace_ id A unique identifier for the request that can help in

diagnostics.

Implement OAuth?2 authentication 89

Parameter

Description

correlation id

A unique identifier for the request that can help in
diagnostics across components.

Error codes for token endpoint errors

Error Code

Description

Client Action

invalid_request

Protocol error, such as a missing
required parameter.

Fix and resubmit the request

invalid_grant

The authorization code is invalid
or has expired.

Try a new request to the /
authorize endpoint

unauthorized_client

The authenticated client is not
authorized to use this authoriza-
tion grant type.

This usually occurs when the
client application is not regis-
tered in Azure AD or is not
added to the user's Azure AD
tenant. The application can
prompt the user with instruction
for installing the application and
adding it to Azure AD.

invalid_client

Client authentication failed.

The client credentials are not
valid. To fix, the application
administrator updates the
credentials.

unsupported_grant_type

The authorization server does
not support the authorization
grant type.

Change the grant type in the
request. This type of error should
occur only during development
and be detected during initial
testing.

invalid_resource

The target resource is invalid
because it does not exist, Azure
AD cannot find it, or it is not
correctly configured.

This indicates the resource, if it
exists, has not been configured
in the tenant. The application
can prompt the user with
instruction for installing the
application and adding it to
Azure AD.

interaction_required

The request requires user
interaction. For example, an
additional authentication step is
required.

Instead of a non-interactive
request, retry with an interactive
authorization request for the
same resource.

temporarily_unavailable

The server is temporarily too
busy to handle the request.

Retry the request. The client
application might explain to the
user that its response is delayed
due to a temporary condition.

Use the access token to access the resource

Now that you've successfully acquired an access_token, you can use the token in requests to Web
APIs, by including it in the Authorization header.

90 Module 4 Module Implementing Authentication

Sample request

GET /data HTTP/1.1

Host: service.contoso.com

Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1INiIsIngldCI6Ik5HVEZ-
2ZEstZnl0aEV1THAgcHABSkIONOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udGoz -
by5jb20vIiwiaXNzIjoiaHROCHM6Ly9zdHMud21uZG93cy5uZXQvN2Z10DEONDCctZGE~
1INy00MzglLWJ1Y2 ItNmRINTAmMiEONzd1LyIsImlhdCI6MTM40DQOMDG2My—~
wibmJmIjoxMzg4dNDQwODYzLCJleHA10JEZzODgONDQ3NjMsInZz1lciI6IFJEUMCISInRpZCI6Ijd-
mZTgxNDQ3LWRhNTctNDM4ANS11iZWNiLTZkZTU3Z37IxNDc3Z2SIsIm9pZCI6IjY4MzgoYWUyLTYyZ -
mEtNGIxXOCOSMWZ1LTUZzZGOxXxMD1kNZRmMNSIsInVwbiI6ImZyYW5rbUBjb250b3NvLmMNvbSIsIn-
VuaXF1zZVOuYWl1lIjoiZnJhbmttQGNvbnRvc28uY29tIiwic3ViIjoiZGVOcULlgqOULPRT1IQVOpX—
YkhzZnRYADIFYWIQVmMwwQ204UUFtZWZSTEYS50CIsImZhbWlseVIuYWl1lIjoiTWlsbGVyIiwi-
Z212ZW5fbmFtZ2SI6IkZyYWS5rTiwiYXBwaWQi0iIyZDRkMTFhMi1mODEOLTQ2YTctODkwYSOyNz—
RhNzJhNzMwOWU1LCJhcHBPZGFjciI6IJALILCIZzY3A101iJ1c2VyX21tcGVyc29uYXRpb241iL-
CJhY3Ii0iIxInO0.

JzZw8jC0gptZxVC-715sFkdnJgP3 tRJjeQEPgUn28XctVe3QgmheLZw7QVZDPCyGycDWBaqgy-
TFLpSekET BftDkewRhyHkOFW KeEzOch2c31i08NGNDbr6XYGVayNuSesYk5Aw p3ICR1U-
VlbgEwk-Jkzs9EEkQg4hbefqJS6yS1HoV 2EsEhpd wCQpxK89WPs3hLYZETRJtG5kvCCEO-
VSHXmDE6eTHGTnEgsIk--UlPe275Dvoud4gEAwLofhLDQbMSjnlV5VLsjimNBVcSRFShoxmQwB—
JR b2011Y5TuD6St5zPnzruBbZYkGNurQK63TIJPWmMRA3mbJIsGMOmE3CUQ

Error Response

Secured resources that implement RFC 6750 issue HTTP status codes. If the request does not include
authentication credentials or is missing the token, the response includes an WWW-Authenticate header.
When a request fails, the resource server responds with the HTTP status code and an error code.

The following is an example of an unsuccessful response when the client request does not include the
bearer token:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer authorization uri="https://login.microsoftonline.
com/contoso.com/oauth2/authorize"”, error="invalid token", error descrip-

tion="The access token is missing.",

Parameter Description

authorization_ uri The URI (physical endpoint) of the authorization
server. This value is also used as a lookup key to
get more information about the server from a
discovery endpoint.

The client must validate that the authorization
server is trusted. When the resource is protected
by Azure AD, it is sufficient to verify that the URL
begins with https://login.microsofton-
line.com or another hostname that Azure AD
supports. A tenant-specific resource should always
return a tenant-specific authorization URI.

Implement OAuth?2 authentication 91

Parameter Description

error An error code value defined in Section 5.2 of the
OAuth 2.0 Authorization Framework.

error description A more detailed description of the error. This

message is not intended to be end-user friendly.

resource id Returns the unique identifier of the resource. The
client application can use this identifier as the
value of the resource parameter when it re-
quests a token for the resource.

It is important for the client application to verify
this value, otherwise a malicious service might be
able to induce an elevation-of-privileges attack.

The recommended strategy for preventing an
attack is to verify that the resource id matches
the base of the web API URL that being accessed.
For example, if https://service.contoso.
com/data is being accessed, the resource id
can be htttps://service.contoso.com/.
The client application must reject a resource_id
that does not begin with the base URL unless
there is a reliable alternate way to verify the id.

Refreshing the access tokens

Access Tokens are short-lived and must be refreshed after they expire to continue accessing resources.
You can refresh the access_token by submitting another POST request to the /token endpoint, but this
time providing the refresh_token instead of the code. Refresh tokens are valid for all resources that your
client has already been given consent to access - thus, a refresh token issued on a request for re-
source=https://graph.microsoft.com can be used to request a new access token for re-
source=https://contoso.com/api.

Refresh tokens do not have specified lifetimes. Typically, the lifetimes of refresh tokens are relatively long.
However, in some cases, refresh tokens expire, are revoked, or lack sufficient privileges for the desired
action. Your application needs to expect and handle errors returned by the token issuance endpoint
correctly.

When you receive a response with a refresh token error, discard the current refresh token and request a
new authorization code or access token. In particular, when using a refresh token in the Authorization
Code Grant flow, if you receive a response with the interaction_required or invalid_grant error codes,
discard the refresh token and request a new authorization code.

A sample request to the tenant-specific endpoint (you can also use the common endpoint) to get a new
access token using a refresh token looks like this:

// Line breaks for legibility only
POST /{tenant}/ocauth2/token HTTP/1.1

Host: https://login.microsoftonline.com
Content-Type: application/x-www-form-urlencoded

92 Module 4 Module Implementing Authentication

client 1d=6731de76-14a6-4%ae-97bc-6ebat6914391e

&refresh token=0AAABAAAAILIKN2Z27UubvWEPbmOgLWQJIVzZCTE9UkP3pSxlaXxUjqg. ..
&grant type=refresh token

&resource=https%$3A%2F%2Fservice.contoso.com%2F

&client secret=JgQX2PNo9bpMOuEihUPzyrh // NOTE: Only required for web
apps

Successful response

A successful token response will look like:

{

"token type": "Bearer",

"expires_ in": "3600",

"expires on": "1460404526",

"resource": "https://service.contoso.com/",

"access token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzIINiIsIngldCI6IkK5HVEZ-

27ZEstZnl0aEV1THdAgcHdBSkINOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9z-
by5jb20vIiwiaXNzIjoiaHROCcHM6Ly9zdHMud21uZG93cy5uZXQvN2Z10DEONDCtZGE~
1INy0OMzglLWJ1Y2TtNmRINTAMMIEONzd1LyIsIml1hdCI6MTM40DQOMDG2My —
wibmJmIjoxMzg4dNDQwODYzLCJ1leHA10JEZzODgONDQ3NjMsInZz1lciI6IFJEUMCISInRpZCI6Ijd-
mZTgxNDQ3LWRhNTCctNDM4ANS11iZWNiLTZkZTU3%IxNDc32SIsIm9pZCI6IjY4Mzg5YWUYLTYyZ -
mEtNGIxXxOCO5MWZ1LTUZzZGOxMD1kNZRmMNSTIsInVwbiI6ImZyYW5rbUBjb250b3NvLmNvbSIsIn-
VuaXF1ZVouYWl1lIjoiZnJdhbmttQGNvbnRvc28uY29tIiwic3ViIjoiZGVOcULlgqOULPRT1IQVOpX—
YkhzZnRYADIFYWIQVmwwQ204UUFtZWZSTFY50CIsImZhbWlseVOuYWl11IjoiTWlsbGVyIiwi-
2212ZW5fbmFtZSI6IkZyYWSrIiwiYXBwaWQiOiIyZDRKMTFhMi1lmODEOLTQ2YTctODkwYSOyNz~
RhNzJhNzMwOWU1LCJhcHBPZGFjciI6IJALILCIZzY3A101J1c2VyX21tcGVyc29uYXRpb241iL-
CJhY3TIi0iIxIn0.

Jzw83jC0gptZxVC-715sFkdnJgP3 tRJjeQEPgUn28XctVe3QgmheLZw7QVZDPCyGycDWBaqy-
TFLpSekET BftDkewRhyHkOFW KeEzOch2c31i08NGNDbr6XYGVayNuSesYk5Aw p3ICR1U-
V1bgEwk-Jkzs9EEkQg4hbefqJS6yS1HoV 2EsEhpd wCQpxK89WPs3hLYZETRJtG5kvCCEO-
VSHXmDE6eTHGTnEgsIk--UlPe275Dvoud4gEAwWLofhLDQbMSjnlV5VLs]jimNBVcSREFShoxmQwB—
JR b2011Y5IuD6St5zPnzruBbZYkKGNurQK63TIPWmRA3mbJIsGMOmE3CUQ",

"refresh token": "AwABAAAAvV YNgmf9SoAylD1PycGCB90xzZeEDg60oBzOIPfYsbDWNE-
621pKo2Q3GGTHY ImNfwoc-0lrxK69hkha2CF12azM NYhgO668yfcUl4VBbiSHZydINVZG5QTI-
OcbObu3gnLutbpadZGAxq]jIbMkQ2bQS09fTrjMBtDE3D6kSMIodpCecoANon9bOLATkpitim—
VCrl
PM1KaPlrEqdFSBzjgfTCGAMxZGUTAM0t4B4rTfgV29ghDOHRc2B-C_ hHeJaJICqjZ3mY2b YNgm-
f9S0Ay1D1PycGCB90xzZ2eEDg60BzOIPfYsSbDWNEf621pKo2Q3GGTHY ImNfwoc-0lrxK69hkha2C-
Fl2azM NYhgO668yfmVCrl-NyfN3oyG4ZCWul8M9-vEoudSg-1oMDzExgAf6lnoxz—
kNiaTecM-Ve5cqgbowHgYQjfv9oDOz41lbceuYCAA"

}

Parameter Description

token type The token type. The only supported value is
bearer.

expires in The remaining lifetime of the token in seconds. A
typical value is 3600 (one hour).

Implement OAuth?2 authentication 93

Parameter

Description

expires_on

The date and time on which the token expires. The
date is represented as the number of seconds
from 1970-01-01T0:0:0Z UTC until the expiration
time.

resource Identifies the secured resource that the access
token can be used to access.
scope Impersonation permissions granted to the native

client application. The default permission is user_
impersonation. The owner of the target resource
can register alternate values in Azure AD.

access_token

The new access token that was requested.

refresh token

A new OAuth 2.0 refresh_token that can be used
to request new access tokens when the one in this
response expires.

Error response

A sample error response could look like this:

{

"error": "invalid resource",

"error description": "AADSTS50001:

The application named https://foo.

microsoft.com/mail.read was not found in the tenant named 295e01fc-0c56-

4ac3-acb57-5d0ed568£872.

This can happen if the application has not been

installed by the administrator of the tenant or consented to by any user in

the tenant. You might have sent your authentication request to the wrong

tenant.\r\nTrace ID:

efl1f89f6-ald4f-49de-9868-61bd4072f0a9\r\nCorrelation

ID: b6908274-2c58-4e91-aea9-1f6b9c99347c\r\nTimestamp: 2016-04-11

18:59:01z",

"error codes":

50001
1y

"timestamp":

"2016-04-11 18:59:01z",

"trace id": "eflf89f6-al4f-49de-9868-61bd4072£0a9",

"correlation id":

"b6908274-2c58-4e91-aea9-1£6b9%c99347c"

Parameter

Description

error

An error code string that can be used to classify
types of errors that occur, and can be used to
react to errors.

error_description

A specific error message that can help a developer
identify the root cause of an authentication error.

error_codes

A list of STS-specific error codes that can help in
diagnostics.

timestamp

The time at which the error occurred.

trace id

A unique identifier for the request that can help in
diagnostics.

94 Module 4 Module Implementing Authentication

Parameter Description

correlation id A unique identifier for the request that can help in
diagnostics across components.

For a description of the error codes and the recommended client action, see “Error codes for token
endpoint errors” list in the “Use the authorization code to request an access token" section above.

Service to service calls using client credentials

The OAuth 2.0 Client Credentials Grant Flow permits a web service (confidential client) to use its own
credentials instead of impersonating a user, to authenticate when calling another web service. In this
scenario, the client is typically a middle-tier web service, a daemon service, or web site. For a higher level
of assurance, Azure AD also allows the calling service to use a certificate (instead of a shared secret) as a
credential.

Client credentials grant flow diagram

The following diagram explains how the client credentials grant flow works in Azure Active Directory
(Azure AD).

Client Application Azure AD Resource Web API

um
B Token

N.. 3

-

1. The client application authenticates to the Azure AD token issuance endpoint and requests an access
token.

2. The Azure AD token issuance endpoint issues the access token.
3. The access token is used to authenticate to the secured resource.

4. Data from the secured resource is returned to the client application.

Register the Services in Azure AD

Register both the calling service and the receiving service in Azure Active Directory (Azure AD). For
detailed instructions, see Integrating applications with Azure Active Directory*.

Request an Access Token
To request an access token, use an HTTP POST to the tenant-specific Azure AD endpoint.

https://login.microsoftonline.com/<tenant id>/oauth2/token

4 https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v1-integrate-apps-with-azure-ad

Implement OAuth?2 authentication 95

Service-to-service access token request

There are two cases depending on whether the client application chooses to be secured by a shared

secret, or a certificate.

First case: Access token request with a shared secret

When using a shared secret, a service-to-service access token request contains the following parameters:

Parameter

Description

grant_type

required

Specifies the requested grant
type. In a Client Credentials
Grant flow, the value must be
client_credentials.

client_id

required

Specifies the Azure AD client id
of the calling web service. To find
the calling application's client ID,
in the Azure portal, click Azure
Active Directory, click App
registrations, click the applica-
tion. The client idis the
Application ID.

client_secret

required

Enter a key registered for the
calling web service or daemon
application in Azure AD. To
create a key, in the Azure portal,
click Azure Active Directory,
click App registrations, click the
application, click Settings, click
Keys, and add a Key. URL-en-
code this secret when providing
it.

resource

required

Enter the App ID URI of the
receiving web service. To find the
App ID URI, in the Azure portal,
click Azure Active Directory,
click App registrations, click the
service application, and then
click Settings and Properties.

Example

The following HTTP POST requests an access token for the https://service.contoso.com/ web
service. The client id identifies the web service that requests the access token.

POST /contoso.com/oauth2/token HTTP/1.1
Host: login.microsoftonline.com

Content-Type:

application/x-www-form-urlencoded

grant type=client credentials&client 1d=625bc9f6-3bf6-4b6d-94ba-e97c-
f07a22de&client secret=gkDwDJ1Dfig2IpeuUZYKHIWb8glV0jubsILxQQghJ+s=6&re-

96 Module 4 Module Implementing Authentication

source=https%$3A%2F%2Fservice.contoso.com%2F

Second case: Access token request with a certificate

A service-to-service access token request with a certificate contains the following parameters:

Parameter

Description

grant_type

required

Specifies the requested response
type. In a Client Credentials
Grant flow, the value must be
client_credentials.

client_id

required

Specifies the Azure AD client id
of the calling web service. To find
the calling application's client ID,
in the Azure portal, click Azure
Active Directory, click App
registrations, click the applica-
tion. The client idisthe
Application ID.

client_assertion_type

required

The value must be urn:iet-
f:params:oauth:cli-
ent-assertion-type:-
jwt-bearer

client_assertion

required

An assertion (a JSON Web Token)
that you need to create and sign
with the certificate you regis-
tered as credentials for your
application. Read about certifi-
cate credentials (https.//docs.
microsoft.com/en-us/azure/
active-directory/develop/ac-
tive-directory-certificate-creden-
tials) to learn how to register
your certificate and the format of
the assertion.

resource

required

Enter the App ID URI of the
receiving web service. To find the
App ID URI, in the Azure portal,
click Azure Active Directory,
click App registrations, click the
service application, and then
click Settings and Properties.

Notice that the parameters are almost the same as in the case of the request by shared secret except that
the client secret parameter is replaced by two parameters: a client assertion type and

client assertion

Implement OAuth2 authentication 97

Example

The following HTTP POST requests an access token for the https://service.contoso.com/ web
service with a certificate. The client id identifies the web service that requests the access token.

POST /<tenant id>/ocauth2/token HTTP/1.1
Host: login.microsoftonline.com
Content-Type: application/x-www-form-urlencoded

resource=https$3A%2F%contoso.onmicrosoft.com%2Ff-
c7664b4-cdd6-43el1-9365-c2elcdelb3bfsclient id=97e-
0a5b7-d745-40b6-94fe-5f77d35c6e05&client assertion type=urn%3Aietf%3Apar-—
ams%3Acauth%3Aclient-assertion-types3Ajwt-bearer&client assertion=eyJhbGci-
0i1iJSUzI1INiIsIngldCI6Imd40HRHeXNS5amNScUtgR1BuZDASRnd2d1lpJIMCJI9.eyJ{a lot of
characters here}M8U3bSUKKJDEg&grant type=client credentials

Service-to-Service Access Token Response

A success response contains a JSON OAuth 2.0 response with the following parameters:

Parameter Description

access_token The requested access token. The calling web
service can use this token to authenticate to the
receiving web service.

token_type Indicates the token type value. The only type that
Azure AD supports is Bearer. For more informa-
tion about bearer tokens, see The OAuth 2.0
Authorization Framework: Bearer Token Usage
(RFC 6750) (https.//www.rfc-editor.org/rfc/rfc6750.

txt).
expires_in How long the access token is valid (in seconds).
expires_on The time when the access token expires. The date

is represented as the number of seconds from
1970-01-01T0:0:0Z UTC until the expiration time.
This value is used to determine the lifetime of
cached tokens.

not_before The time from which the access token becomes
usable. The date is represented as the number of
seconds from 1970-01-01T0:0:0Z UTC until time of
validity for the token.

resource The App ID URI of the receiving web service.

Example of response

The following example shows a success response to a request for an access token to a web service.

{
"access_token":"eyJhbGciOiJSUzIINiIsIngldCI6IjdkRCINZWNOZ1gxWmY3ROxXrT3Zw—

TOIyZGNWQSIsInNR5cCI6IkpXVCJI9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9zby5jb—
20vIiwiaXNzIjoiaHROcHM6Ly9zdHMud21uzZG93cy5uZXQvN2Z10DEONDCctZGEINy00MzglLIW-

98 Module 4 Module Implementing Authentication

J1Y2TtNmRINTAmMjEONzd1LyIsImlhdCI6MTM40DQOODI2NywibmdImIjoxMzg4NDQ4MJY3L—
CJ1eHAi10JEzODgONTIxNjcsInZ1lciI6IJEUMCISINRpZCI6I JdmZTgxXxNDQ3LWRhNTctNDM4N~
S1iZWNiLTZkZTU3ZjIxNDc3ZSIsIm9pZCI6ImESOTESMTYyLTkyMTctND1kYSIhZTIyLWYxMT ~
M3YzI1Y2R1YSIsInN1YiI6ImESOTESMTYYLTkyMTCctND1kYS1IhZTIyLWYxMTM3YZzI1Y2R1YSI~
sImlkcCI6Imh0dHBz018vc3RzLndpbmRvd3MubmVOLzdmZTgxNDQ3LWRhNTCctNDM4ANS1i~
ZWNiLTZkZTU3ZjIxNDc3ZS81iLCIhcHBPpZCI6ImMOxN2QxNWJIJLWMINZYtNDFINSO5MjdmLWRiN~-
WY zMGRKNThmMSIsImFwcGlkYWNyIjoiMSJ9.
aqtfJ7G37CpKVI01Vm9sGiQhdeO0WMg6luYJRAwuNR2ffaQsVPPpKirM5rbc6o5CmW10tmaATIdwD—
cL619Z2T900ITIicSRrjCYMYWHX08ip-tj-uWUihGztI02xKdWiycItpWiHxapQmOa8T~
11CWRjJghORC1B1-fah yWx6Cjuf4QE8xJcu-ZHX0pVZNPX22PHYV5Km-vPTq2Ht Igd-
boKyZy3Y4y3geOrRIFE1ZY0oqjqgSv5g9JgtjSERsSNQIjefpyxW3EwPtFqMcDmd4ebi AEpoEWRN~-
4QYOMxnC90UBeG90LAO1TfmhgHLAtvJogJcYFzwngTsVo6HznsvPWy7UP3MINA",

"token type":"Bearer",

"expires in":"3599",

"expires on":"1388452167",

"resource":"https://service.contoso.com/"

}

Qo
o
-
a
"
®)
e
o
o
V)
=
-
<
o
Qo
E
-
)
2
<
O
o
V)
=
-
U
=

Implement managed identities for Azure resources 99

Implement managed identities for Azure re-
sources

Managed identities for Azure resources over-
view

Note: Managed identities for Azure resources is a feature of Azure Active Directory. Each of the Azure
services that support managed identities for Azure resources are subject to their own timeline. Make sure

you review the availability® status of managed identities for your resource and known issues® before
you begin.

A common challenge when building cloud applications is how to manage the credentials in your code for
authenticating to cloud services. Keeping the credentials secure is an important task. Ideally, the creden-
tials never appear on developer workstations and aren't checked into source control. Azure Key Vault pro-
vides a way to securely store credentials, secrets, and other keys, but your code has to authenticate to
Key Vault to retrieve them.

The managed identities for Azure resources feature in Azure Active Directory (Azure AD) solves this
problem. The feature provides Azure services with an automatically managed identity in Azure AD. You
can use the identity to authenticate to any service that supports Azure AD authentication, including Key
Vault, without any credentials in your code.

The managed identities for Azure resources feature is free with Azure AD for Azure subscriptions. There's
no additional cost.

Note: Managed identities for Azure resources is the new name for the service formerly known as Man-
aged Service Identity (MSI).

Terminology
The following terms are used throughout the managed identities for Azure resources documentation set:

e Client id - a unique identifier generated by Azure AD that is tied to an application and service
principal during its initial provisioning.
e Principal id - the object id of the service principal object for your managed identity that is used to

grant role based access to an Azure resource.

e Azure Instance Metadata Service (IMDS) - a REST Endpoint accessible to all [aaS VMs created via
the Azure Resource Manager. The endpoint is available at a well-known non-routable IP address
(169.254.169.254) that can be accessed only from within the VM.

How the managed identities for Azure resources works
There are two types of managed identities:

e A system-assigned managed identity is enabled directly on an Azure service instance. When the
identity is enabled, Azure creates an identity for the instance in the Azure AD tenant that's trusted by
the subscription of the instance. After the identity is created, the credentials are provisioned onto the
instance. The lifecycle of a system-assigned identity is directly tied to the Azure service instance that

5 https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-msi
6 https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/known-issues

100 Module 4 Module Implementing Authentication

it's enabled on. If the instance is deleted, Azure automatically cleans up the credentials and the
identity in Azure AD.

A user-assigned managed identity is created as a standalone Azure resource. Through a create
process, Azure creates an identity in the Azure AD tenant that's trusted by the subscription in use.
After the identity is created, the identity can be assigned to one or more Azure service instances. The
lifecycle of a user-assigned identity is managed separately from the lifecycle of the Azure service
instances to which it's assigned.

Your code can use a managed identity to request access tokens for services that support Azure AD
authentication. Azure takes care of rolling the credentials that are used by the service instance.

The following diagram shows how managed service identities work with Azure virtual machines (VMs):

Service
Principal

Service that
Supports Azure AD
Authentication

Azure Resource
Manager

MSI VM Ex to be deprecated)
‘oquth2/token

Azure Instance Metadata Service [IMDS]
http://169.254. 169, 254/metadata/identity/ oauth2/token

How a system-assigned managed identity works with an
Azure VM

1

Azure Resource Manager receives a request to enable the system-assigned managed identity on a
VM.

. Azure Resource Manager creates a service principal in Azure AD for the identity of the VM. The service

principal is created in the Azure AD tenant that's trusted by the subscription.

. Azure Resource Manager configures the identity on the VM:

e Updates the Azure Instance Metadata Service identity endpoint with the service principal client ID
and certificate.

Implement managed identities for Azure resources 101

e Provisions the VM extension (planned for deprecation in January 2019), and adds the service
principal client ID and certificate. (This step is planned for deprecation.)

4. After the VM has an identity, use the service principal information to grant the VM access to Azure
resources. To call Azure Resource Manager, use role-based access control (RBAC) in Azure AD to
assign the appropriate role to the VM service principal. To call Key Vault, grant your code access to the
specific secret or key in Key Vault.

5. Your code that's running on the VM can request a token from two endpoints that are accessible only
from within the VM:

e Azure Instance Metadata Service identity endpoint (recommended):
http://169.254.169.254/metadata/identity/ocauth2/token

e The resource parameter specifies the service to which the token is sent. To authenticate to
Azure Resource Manager, use resource=https://management.azure.com/.

e APl version parameter specifies the IMDS version, use api-version=2018-02-01 or greater.

e VM extension endpoint (planned for deprecation in January 2019): http://localhost:50342/
oauth2/token

e The resource parameter specifies the service to which the token is sent. To authenticate to
Azure Resource Manager, use resource=https://management.azure.com/.

6. A call is made to Azure AD to request an access token (as specified in step 5) by using the client ID
and certificate configured in step 3. Azure AD returns a JSON Web Token (JWT) access token.

7. Your code sends the access token on a call to a service that supports Azure AD authentication.

How a user-assigned managed identity works with an Azure
VM
1. Azure Resource Manager receives a request to create a user-assigned managed identity.

2. Azure Resource Manager creates a service principal in Azure AD for the user-assigned managed
identity. The service principal is created in the Azure AD tenant that's trusted by the subscription.

3. Azure Resource Manager receives a request to configure the user-assigned managed identity on a
VM:

e Updates the Azure Instance Metadata Service identity endpoint with the user-assigned managed
identity service principal client ID and certificate.

e Provisions the VM extension, and adds the user-assigned managed identity service principal client
ID and certificate. (This step is planned for deprecation.)

4. After the user-assigned managed identity is created, use the service principal information to grant the
identity access to Azure resources. To call Azure Resource Manager, use RBAC in Azure AD to assign
the appropriate role to the service principal of the user-assigned identity. To call Key Vault, grant your
code access to the specific secret or key in Key Vault.

5. Note: You can also do this step before step 3.

102 Module 4 Module Implementing Authentication

6. Your code that's running on the VM can request a token from two endpoints that are accessible only
from within the VM:

e Azure Instance Metadata Service identity endpoint (recommended):
http://169.254.169.254/metadata/identity/ocauth2/token

e The resource parameter specifies the service to which the token is sent. To authenticate to
Azure Resource Manager, use resource=https://management.azure.com/.

e The client ID parameter specifies the identity for which the token is requested. This value is
required for disambiguation when more than one user-assigned identity is on a single VM.

e The API version parameter specifies the Azure Instance Metadata Service version. Use
api-version=2018-02-01 or higher.

e VM extension endpoint (planned for deprecation in January 2019): http://localhost:50342/
oauth2/token

e The resource parameter specifies the service to which the token is sent. To authenticate to
Azure Resource Manager, use resource=https://management.azure.com/.

e The client ID parameter specifies the identity for which the token is requested. This value is
required for disambiguation when more than one user-assigned identity is on a single VM.

7. A call is made to Azure AD to request an access token (as specified in step 5) by using the client ID
and certificate configured in step 3. Azure AD returns a JSON Web Token (JWT) access token.

8. Your code sends the access token on a call to a service that supports Azure AD authentication.

Configure managed identities for Azure resourc-
es on an Azure VM using Azure CLI

In this article, you learn how to enable and disable system and user-assigned managed identities for an
Azure Virtual Machine (VM), using the Azure CLI.

System-assigned managed identity

In this section, you learn how to enable and disable the system-assigned managed identity on an Azure
VM using Azure CLI.

To create an Azure VM with the system-assigned managed identity enabled,your account needs the
Virtual Machine Contributor role assignment. No additional Azure AD directory role assignments are
required.

Enable system-assigned managed identity during creation of
an Azure VM

1. If you're using the Azure CLI in a local console, first sign in to Azure using az login. Use an account
that is associated with the Azure subscription under which you would like to deploy the VM:

az login

2. Create a resource group for containment and deployment of your VM and its related resources, using
az group create. You can skip this step if you already have resource group you would like to use
instead:

Implement managed identities for Azure resources 103

az group create —--name myResourceGroup --location westus

3. Create a VM using az vm create. The following example creates a VM named myVM with a
system-assigned managed identity, as requested by the -—assign-identity parameter. The
--admin-username and --admin-password parameters specify the administrative user name and
password account for virtual machine sign-in. Update these values as appropriate for your environ-

ment:

az vm create —--resource-group myResourceGroup --name myVM --image win-
20l6datacenter --generate-ssh-keys --assign-identity --admin-username
azureuser --admin-password myPasswordl?2

Enable system-assigned managed identity on an existing
Azure VM

Sign in to Azure using an account that is associated with the Azure subscription that contains the VM.
Use az vm with the identity assign command to enable to the system-assigned identity to an
existing VM.

az vm identity assign -g myResourceGroup -n myVm

Disable system-assigned identity from an Azure VM

To disable system-assigned managed identity on a VM, your account needs the Virtual Machine Contrib-
utor role assignment. No additional Azure AD directory role assignments are required.

If you have a Virtual Machine that no longer needs the system-assigned identity, but still needs user-as-
signed identities, use the following command:

az vm update -n myVM -g myResourceGroup --set identity.type='UserAssigned'

If you have a virtual machine that no longer needs system-assigned identity and it has no user-assigned
identities, use the following command:

Note: The value none is case sensitive. It must be lowercase.

az vm update -n myVM -g myResourceGroup --set identity.type="none"

To remove the managed identity for Azure resources VM extension (planned for deprecation in January
2019), user -n ManagedIdentityExtensionForWindows or -n ManagedIdentityExtension-
ForLinux switch (depending on the type of VM):

az vm identity --resource-group myResourceGroup —--vm-name myvVm -n Manage-
dIdentityExtensionForWindows

User-assigned managed identity

In this section, you will learn how to add and remove a user-assigned managed identity from an Azure
VM using Azure CLI.

104 Module 4 Module Implementing Authentication

To assign a user-assigned identity to a VM during its creation, your account needs the Virtual Machine
Contributor and Managed Identity Operator role assignments. No additional Azure AD directory role
assignments are required.

Important: When creating user assigned identities, only alphanumeric characters (0-9, a-z, A-Z) and the
hyphen (-) are supported. Additionally, the name should be limited to 24 characters in length for the
assignment to VM/VMSS to work properly. Check back for updates. For more information, see FAQs and
known issues’.

Assign a user-assigned managed identity during the creation
of an Azure VM

1

7

You can skip this step if you already have a resource group you would like to use. Create a resource
group for containment and deployment of your user-assigned managed identity, using az group
create. Be sure to replace the <RESOURCE GROUP> and <LOCATION> parameter values with your
own values. :

az group create —--name <RESOURCE GROUP> --location <LOCATION>

Create a user-assigned managed identity using az identity create. The -g parameter specifies
the resource group where the user-assigned managed identity is created, and the -n parameter
specifies its name.

az identity create -g myResourceGroup -n myUserAssignedIdentity

The response contains details for the user-assigned managed identity created, similar to the following.
The resource id value assigned to the user-assigned managed identity is used in the following step.

{

"clientId": "73444643-8088-4d70-9532-c3a0fdc190fz",

"clientSecretUrl": "https://control-westcentralus.identity.azure.net/
subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/providers/
Microsoft.ManagedIdentity/userAssignedIdentities/<myUserAssignedIdentity>/
credentials?tid=5678&01d=90126aid=73444643-8088-4d70-9532-c3a0fdc190fz",

"id": "/subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/
providers/Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED
IDENTITY NAME>",

"location": "westcentralus",

"name": "<USER ASSIGNED IDENTITY NAME>",

"principallId": "e5fdfdcl-ed84-4d48-8551-fe9fb9dedfll",

"resourceGroup": "<RESOURCE GROUP>",

"tags": {(},

"tenantId": "733a8f0e-ec41-4e69-8ad8-971fc4b533b1",

"type": "Microsoft.ManagedIdentity/userAssignedIdentities"

Create a VM using az vm create. The following example creates a VM associated with the new
user-assigned identity, as specified by the -—assign-identity parameter. Be sure to replace the
<RESOURCE GROUP>, <VM NAME>, <USER NAME>, <PASSWORD>, and <USER ASSIGNED IDENTI-
TY NAME> parameter values with your own values.

https://docs.microsoft.com/en-us/azure/active-directory/managed-service-identity/known-issues

Implement managed identities for Azure resources 105

az vm create —--resource-group <RESOURCE GROUP> --name <VM NAME> --image
UbuntulTS --admin-username <USER NAME> --admin-password <PASSWORD> --as-—
sign-identity <USER ASSIGNED IDENTITY NAME>

Assign a user-assigned managed identity to an existing Az-
ure VM

1.

Create a user-assigned identity using az identity create. The —-g parameter specifies the
resource group where the user-assigned identity is created, and the -n parameter specifies its name.
Be sure to replace the <RESOURCE GROUP> and <USER ASSIGNED IDENTITY NAME> parameter
values with your own values:

az identity create -g <RESOURCE GROUP> -n <USER ASSIGNED IDENTITY NAME>

The response contains details for the user-assigned managed identity created, similar to the following.

{

"clientId": "73444643-8088-4d70-9532-c3a0fdc190fz",

"clientSecretUrl": "https://control-westcentralus.identity.azure.net/
subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/providers/
Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED IDENTITY
NAME>/credentials?tid=5678&01d=9012&a1d=73444643-8088-4d70-9532~-c3a0fd-
clo0fz",

"id": "/subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/
providers/Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED
IDENTITY NAME>",

"location": "westcentralus",

"name": "<USER ASSIGNED IDENTITY NAME>",

"principalId": "eS5fdfdcl-ed84-4d48-8551-fe9fb9dedfll",

"resourceGroup": "<RESOURCE GROUP>",

"tags": {},

"tenantId": "733a8f0e-ec41-4e69-8ad8-971fc4b533b1",

"type": "Microsoft.ManagedIdentity/userAssignedIdentities"

Assign the user-assigned identity to your VM using az vm identity assign. Be sure to replace
the <RESOURCE GROUP> and <VM NAME> parameter values with your own values. The <USER
ASSIGNED IDENTITY NAME> is the user-assigned managed identity's resource name property, as
created in the previous step:

az vm identity assign -g <RESOURCE GROUP> -n <VM NAME> --identities <USER
ASSIGNED IDENTITY>

Remove a user-assigned managed identity from an Azure
VM

To remove a user-assigned identity to a VM, your account needs the Virtual Machine Contributor role
assignment.

106 Module 4 Module Implementing Authentication

If this is the only user-assigned managed identity assigned to the virtual machine, UseraAssigned will be
removed from the identity type value. Be sure to replace the <RESOURCE GROUP> and <VM NAME>
parameter values with your own values. The <USER ASSIGNED IDENTITY> will be the user-assigned
identity's name property, which can be found in the identity section of the virtual machine using az vm
identity show

az vm identity remove -g <RESOURCE GROUP> -n <VM NAME> --identities <USER
ASSIGNED IDENTITY>

If your VM does not have a system-assigned managed identity and you want to remove all user-assigned
identities from it, use the following command:

Note: The value none is case sensitive. It must be lowercase.

az vm update -n myVM -g myResourceGroup --set identity.type="none" identi-
ty.userAssignedIdentities=null

If your VM has both system-assigned and user-assigned identities, you can remove all the user-assigned
identities by switching to use only system-assigned by using the following command:

az vm update -n myVM -g myResourceGroup --set identity.type='SystemAs-
signed' identity.userAssignedIdentities=null

How to use managed identities for Azure re-
sources on an Azure VM to acquire an access
token

A client application can request managed identities for Azure resources app-only access token for
accessing a given resource. The token is based on the managed identities for Azure resources service
principal. As such, there is no need for the client to register itself to obtain an access token under its own
service principal. The token is suitable for use as a bearer token in service-to-service calls requiring client
credentials.

Get a token using HTTP

The fundamental interface for acquiring an access token is based on REST, making it accessible to any
client application running on the VM that can make HTTP REST calls. This is similar to the Azure AD
programming model, except the client uses an endpoint on the virtual machine (vs an Azure AD end-
point).

Sample request using the Azure Instance Metadata Service
(IMDS) endpoint:
GET 'http://169.254.169.254/metadata/identity/ocauth2/token?api-ver-

sion=2018-02-01&resource=https://management.azure.com/' HTTP/1.1 Metadata:
true

Implement managed identities for Azure resources 107

Element

Description

GET

The HTTP verb, indicating you want to retrieve
data from the endpoint. In this case, an OAuth
access token.

http://169.254.169.254/metadata/
identity/ocauth2/token

The managed identities for Azure resources
endpoint for the Instance Metadata Service.

api-version

A query string parameter, indicating the API
version for the IMDS endpoint. Please use API
version 2018-02-01 or greater.

resource

A query string parameter, indicating the App ID
URI of the target resource. It also appears in the
aud (audience) claim of the issued token. This
example requests a token to access Azure Re-
source Manager, which has an App ID URI of
https://management.azure.com/.

Metadata

An HTTP request header field, required by man-
aged identities for Azure resources as a mitigation
against Server Side Request Forgery (SSRF) attack.
This value must be set to "true", in all lower case.

object id

(Optional) A query string parameter, indicating the
object_id of the managed identity you would like
the token for. Required, if your VM has multiple
user-assigned managed identities.

client id

(Optional) A query string parameter, indicating the
client_id of the managed identity you would like
the token for. Required, if your VM has multiple
user-assigned managed identities.

Sample response:

HTTP/1.1 200 OK
Content-Type: application/json
{

"access token": "eyJ0eXAi...
"refresh token": "",
"expires in": "3599",
"expires on": "1506484173",
"not before": "1506480273",
"resource": "https://management.azure.com/",
"token type": "Bearer"
}
Element Description

access_token

The requested access token. When calling a
secured REST API, the token is embedded in the
Authorization request header field as a
“bearer” token, allowing the API to authenticate
the caller.

108 Module 4 Module Implementing Authentication

Element

Description

refresh token

Not used by managed identities for Azure resourc-
es.

expires in

The number of seconds the access token contin-

ues to be valid, before expiring, from time of
issuance. Time of issuance can be found in the
token's iat claim.

expires on The timespan when the access token expires. The
date is represented as the number of seconds
from "1970-01-01T0:0:0Z UTC" (corresponds to the
token's exp claim).

not_before The timespan when the access token takes effect,
and can be accepted. The date is represented as
the number of seconds from “1970-01-01T0:0:0Z
UTC" (corresponds to the token's nbf claim).

resource The resource the access token was requested for,
which matches the resource query string
parameter of the request.

token type The type of token, which is a "Bearer" access
token, which means the resource can give access
to the bearer of this token.

Token caching

While the managed identities for Azure resources subsystem being used (IMDS/managed identities for
Azure resources VM Extension) does cache tokens, we also recommend to implement token caching in
your code. As a result, you should prepare for scenarios where the resource indicates that the token is
expired.

On-the-wire calls to Azure AD result only when:
e cache miss occurs due to no token in the managed identities for Azure resources subsystem cache

e the cached token is expired

Error handling

The managed identities for Azure resources endpoint signals errors via the status code field of the HTTP
response message header, as either 4xx or 5xx errors:

Status Code Error Reason How To Handle
404 Not found. IMDS endpoint is updating. Retry with Expontential Backoff.
See guidance below.
429 Too many requests. IMDS Throttle limit reached. Retry with Exponential Backoff.
See guidance below.
4xx Error in request. One or more of the request Do not retry. Examine the error
parameters was incorrect. details for more information. 4xx

errors are design-time errors.

Implement managed identities for Azure resources 109

Status Code

Error Reason

How To Handle

5xx Transient error from service.

The managed identities for Azure
resources sub-system or Azure
Active Directory returned a
transient error.

It is safe to retry after waiting for
at least 1 second. If you retry too
quickly or too often, IMDS and/
or Azure AD may return a rate
limit error (429).

timeout

IMDS endpoint is updating.

Retry with Expontential Backoff.

See guidance below.

If an error occurs, the corresponding HTTP response body contains JSON with the error details:

Element

Description

error

Error identifier.

error_description

Verbose description of error. Error descriptions can
change at any time. Do not write code that
branches based on values in the error description.

HTTP response reference

This section documents the possible error responses. A “200 OK" status is a successful response, and the
access token is contained in the response body JSON, in the access token element.

Status code

Error

Error Description

Solution

400 Bad Request

invalid_resource

AADSTS50001: The
application named
<URI> was not found in
the tenant named
<TENANT-ID>. This can
happen if the applica-
tion has not been
installed by the admin-
istrator of the tenant or
consented to by any
user in the tenant. You
might have sent your
authentication request
to the wrong tenant.\

(Linux only)

400 Bad Request

bad_request_102

Required metadata
header not specified

Either the Metadata
request header field is
missing from your
request, or is formatted
incorrectly. The value
must be specified as
true, in all lower case.
See the "Sample
request” in the preced-
ing REST section for an
example.

110 Module 4 Module Implementing Authentication

Status code

Error

Error Description

Solution

401 Unauthorized

unknown_source

Unknown Source <URI>

Verify that your HTTP
GET request URI is
formatted correctly. The
scheme:host/
resource-path
portion must be
specified as http://
localhost:50342/
oauth2/token.

invalid_request

The request is missing a
required parameter,
includes an invalid
parameter value,
includes a parameter
more than once, or is
otherwise malformed.

unauthorized_client

The client is not author-
ized to request an
access token using this
method.

Caused by a request
that didn't use local
loopback to call the
extension, or on a VM
that doesn’t have
managed identities for
Azure resources
configured correctly.

access_denied

The resource owner or
authorization server
denied the request.

unsupported_response_
type

The authorization server
does not support
obtaining an access
token using this
method.

invalid_scope The requested scope is
invalid, unknown, or
malformed.
500 Internal server error | unknown Failed to retrieve token | Verify that managed

from the Active directo-
ry. For details see logs
in <file path>

identities for Azure
resources has been
enabled on the VM.

Also verify that your
HTTP GET request URI is
formatted correctly,
particularly the resource
URI specified in the
query string.

Implement managed identities for Azure resources 111

Retry guidance
It is recommended to retry if you receive a 404, 429, or 5xx error code.

Throttling limits apply to the number of calls made to the IMDS endpoint. When the throttling threshold
is exceeded, IMDS endpoint limits any further requests while the throttle is in effect. During this period,
the IMDS endpoint will return the HTTP status code 429 (“Too many requests”), and the requests fail.

For retry, we recommend the following strategy:

Retry strategy Settings Values How it works
ExponentialBackoff Retry count 5 Attempt 1 - delay O sec
Min back-off 0 sec Attempt 2 - delay ~2
Max back-off 60 sec sec
Delta back-off 2 sec Attempt 3 - delay ~6
First fast retry false sec
Attempt 4 - delay ~14
sec
Attempt 5 - delay ~30
sec

Assign a managed identity access to a resource
using Azure CLI

Once you've configured an Azure resource with a managed identity, you can give the managed identity
access to another resource, just like any security principal. This example shows you how to give an Azure
virtual machine or virtual machine scale set's managed identity access to an Azure storage account using
Azure CLI.

Use RBAC to assign a managed identity access to another
resource

After you've enabled managed identity on an Azure resource, such as an Azure virtual machine:

1. If you're using the Azure CLI in a local console, first sign in to Azure using az login. Use an account
that is associated with the Azure subscription under which you would like to deploy the VM:

az login

2. In this example, we are giving an Azure virtual machine access to a storage account. First we use az
resource list to get the service principal for the virtual machine named myvM:

spID=$ (az resource list -n myVM --query [*].identity.principalld --out tsv)

3. For an Azure virtual machine scale set, the command is the same except here, you get the service
principal for the virtual machine scale set named DevTestVMSS:

spID=$ (az resource list -n DevTestVMSS --query [*].identity.principalld
--out tsv)

4. Once you have the service principal ID, use az role assignment create to give the virtual
machine Reader access to a storage account called myStorageAcct:

2 Module4 Module Implementing Authentication

az role assignment create --assignee $spID --role 'Reader' --scope /sub-
scriptions/<mySubscriptionID>/resourceGroups/<myResourceGroup>/providers/
Microsoft.Storage/storageAccounts/myStorageAcct

MCT USE ONLY. STUDENT USE PROHIBITED

Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles 113

Online Lab - Implementing Custom Role Based
Access Control (RBAC) Roles

Lab Steps

Online Lab: Implementing Custom Role Based Access Con-
trol (RBAC) Roles

NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario

Adatum Corporation wants to implement custom RBAC roles to delegate permissions to start and stop
(deallocate) Azure VMs.

Objectives
After completing this lab, you will be able to:
e Define a custom RBAC role

e Assign a custom RBAC role

Lab Setup

Estimated Time: 30 minutes
User Name: Student

Password: Pa55w.rd

Exercise 1: Define a custom RBAC role
The main tasks for this exercise are as follows:

1. Deploy an Azure VM by using an Azure Resource Manager template
2. ldentify actions to delegate via RBAC

3. Create a custom RBAC role in an Azure AD tenant

114 Module 4 Module Implementing Authentication

Task 1: Deploy an Azure VM by using an Azure Resource
Manager template

e

From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.
azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure
subscription.

In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

If you are presented with the You have no storage mounted message, configure storage using the
following settings:

e Subsciption: the name of the target Azure subscription

e Cloud Shell region: the name of the Azure region that is available in your subscription and which is
closest to the lab location

e Resource group: the name of a new resource group az3000900-LabRG
e Storage account: a name of a new storage account
e File share: a name of a new file share

From the Cloud Shell pane, create a resource groups by running (replace the <Azure region>
placeholder with the name of the Azure region that is available in your subscription and which is
closest to the lab location)

New-AzResourceGroup -Name az3000901-LabRG -Location <Azure region>

From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_04\azuredeploy09.json into the home directory.

From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_04\azurede-
ploy09.parameters.json into the home directory.

From the Cloud Shell pane, deploy an Azure VM hosting Ubuntu by running:

New-AzResourceGroupDeployment -ResourceGroupName az3000901-LabRG -Template-
File azuredeploy09.json -TemplateParameterFile azuredeployO9.parameters.
json

Note: Do not wait for the deployment to complete but instead proceed to the next task.

In the Azure portal, close the Cloud Shell pane.

Task 2: Identify actions to delegate via RBAC

e

In the Azure portal, navigate to the az3000901-LabRG blade.

2. On the az3000901-LabRG blade, click Access Control (IAM).
3.
4

On the az3000901-LabRG - Access Control (IAM) blade, click Roles.

. On the Roles blade, click Owner.

Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles 115

G N o U

On the Owner blade, click Permissions.
On the Permissions (preview) blade, click Microsoft Compute.
On the Microsoft Compute blade, click Virtual machines.

On the Virtual Machines blade, review the list of management actions that can be delegated through
RBAC. Note that they include the Deallocate Virtual Machine and Start Virtual Machine actions.

Task 3: Create a custom RBAC role in an Azure AD tenant

1.

On the lab computer, open the file \allfiles\AZ-300T03\Module_04\customRoleDefinition09.json
and review its content:

{

"Name": "Virtual Machine Operator (Custom)",

"Id": null,

"IsCustom": true,

"Description": "Allows to start and stop (deallocate) Azure VMs",
"Actions": [

"Microsoft.Compute/*/read",
"Microsoft.Compute/virtualMachines/deallocate/action",
"Microsoft.Compute/virtualMachines/start/action"

1,

"NotActions": [

I

"AssignableScopes": [
"/subscriptions/SUBSCRIPTION ID"

In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_04\customRoleDefinition09.json into the home directory.

From the Cloud Shell pane, run the following to replace the $SUBSCRIPTION_ID placeholder with the
ID value of the Azure subscription:

Ssubscription id = (Get-AzSubscription).Id
(Get-Content -Path $HOME/customRoleDefinition09.7json) -Replace 'SUBSCRIP-
TION ID', "$subscription id" | Set-Content -Path S$SHOME/customRoleDefini-

tion09.json

From the Cloud Shell pane, run the following to create the custom role definition:

New-AzRoleDefinition -InputFile $HOME/customRoleDefinition09.json

From the Cloud Shell pane, run the following to verify that the role was created successfully:

Get-AzRoleDefinition -Name 'Virtual Machine Operator (Custom)'

116 Module 4 Module Implementing Authentication

7.

Close the Cloud Shell pane.

Result: After you completed this exercise, you have defined a custom RBAC role

Exercise 2: Assign and test a custom RBAC role

The main tasks for this exercise are as follows:

1
2
sk

Create an Azure AD user
Create an RBAC role assignment

Test the RBAC role assignment

Task 1: Create an Azure AD user

1
2.

In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.
From the Cloud Shell pane, run the following to identify the Azure AD DNS domain name:

SdomainName = ((Get-AzureAdTenantDetail) .VerifiedDomains) [0] .Name

From the Cloud Shell pane, run the following to create a new Azure AD user:

SpasswordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.Pass-

wordProfile
SpasswordProfile.Password = 'Pab55w.rdl1234"'
SpasswordProfile.ForceChangePasswordNextLogin = $false

New-AzureADUser -AccountEnabled $true -DisplayName 'lab user0901' -Pass-
wordProfile $passwordProfile -MailNickName 'labuser0901' -UserPrincipalName
"labuser0901@SdomainName"

From the Cloud Shell pane, run the following to identify the user principal name of the newly created
Azure AD user:

(Get-AzureADUser -Filter "MailNickName eqg 'labuser0901'") .UserPrincipalName

Close the Cloud Shell pane.

Task 2: Create an RBAC role assignment

1
2
3.

In the Azure portal, navigate to the az3000901-LabRG blade.
On the az3000901-LabRG blade, click Access Control (IAM).

On the az3000901-LabRG - Access Control (IAM) blade, click + Add and select the Add role
assignment option.

Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles 117

4. On the Add role assignment blade, specify the following settings and click Save:

e Role: Virtual Machine Operator (Custom)
e Assign access to: Azure AD user, group, or application

e Select: lab user0901

Task 3: Test the RBAC role assignment

1.

5.

Start a new in-private Microsoft Edge window, browse to the Azure portal at http://portal.azure.com
and sign in by using the newly created user account:

e Username: the user principal name you identified in the first task of this exercise
e Password: Pa55w.rd1234

In the Azure portal, navigate to the Resource groups blade. Note that you are not able to see any
resource groups.

In the Azure portal, navigate to the All resources blade. Note that you are able to see only the
az3000901-vm and its managed disk.

In the Azure portal, navigate to the az3000901-vm blade. Try restarting the virtual machine. Review
the error message in the notification area and note that this action failed because the current user is
not authorized to carry it out.

Stop the virtual machine and verify that the action completed successfully.

Result: After you completed this exercise, you have assigned and tested a custom RBAC role

118 Module 4 Module Implementing Authentication

Review Questions

Module 1 Review Questions

Token-based authentication
You develop a message board for students to collaborate on courses they take at a college.

The message board should allow students to use their existing social media accounts to register and
authenticate.

You decide to implement ASP.NET Identity to allow social media accounts to be used in the application.

What are the benefits of using ASP.NET Identity for the application? What functionality can be added to
the application in the future by using ASP.NET Identity?

Suggested Answer |

ASP.NET Identity is a unified identity platform for ASP.NET applications that can be used across all flavors
of ASP.NET and that can be used in web, phone, store, or hybrid applications. ASP.NET Identity imple-
ments two core features that makes it ideal for token-based authentication:

ASP.NET Identity implements a provider model for logins. Today you may want to log in using a local
Active Directory server, but tomorrow you may want to migrate to Azure AD. In ASP.NET Identity, you can
simply add, remove, or replace providers. If your company decides to implement social network logins,
you can keep adding providers or write your own providers without changing any other code in your
application.

App Service Authentication

You develop a game that will use the players social media account for authentication and access to the
app.

You decide to implement ASP.NET Identity to allow social media accounts to be used in your application.

You need to ensure that users can post high scores from the application to timelines on social media
platforms.

How can you use Azure App Service to enable this functionality? How does it work?

Suggested Answer |

Azure App Service provides built-in authentication and authorization support, so you can sign in users
and access data by writing minimal or no code in your app instance. The authentication and authorization
module runs in the same sandbox as your application code.

Identity information flows directly into the application code. For all language frameworks, App Service
makes the user's claims available to your code by injecting them into the request headers.

App Service provides a built-in token store, which is a repository of tokens that are associated with the
users of your web apps, APIs, or native mobile apps. When you enable authentication with any provider,
this token store is immediately available to your app. The token information can be used in your applica-
tion code to perform tasks such as posting to the authenticated user's social media timeline.

Review Questions 119

Security Best Practices

Your company has experienced several instances of data loss. The losses are a combination of weak
passwords, loss of hardware, and brute force attacks.

You decide to implement multi-factor authentication (MFA).

What tenets of secure authentication should you consider before you deploy MFA?

Suggested Answer |

In security best practices, it is recommended to use two or more factors when authenticating users. This
practice is referred to as multi-factor authentication. Using an enterprise as an example, the company
could require employees to scan their badges and then enter their passwords as two factors of authenti-
cation. In the world of security, it is often recommended to have two of the following factors:

» Knowledge — Something that only the user knows (security questions, password, or PIN).
« Possession — Something that only the user has (corporate badge, mobile device, or security token).
* Inherence — Something that only the user is (fingerprint, face, voice, or iris).

The security of two-step verification lies in its layered approach. Compromising multiple authentication
factors presents a significant challenge for attackers. Even if an attacker manages to learn the user's
password, it is useless without possession of the additional authentication method.

Module 5 Module Implementing Secure Data

Encryption options

Encryption

Encryption is the process of translating plain text data (plaintext) into something that appears to be
random and meaningless (ciphertext). Decryption is the process of converting ciphertext back to plain-
text. To encrypt more than a small amount of data, symmetric encryption is used. A symmetric key is
used during both the encryption and the decryption process. To decrypt a particular piece of ciphertext,
the key that was used to encrypt the data must be used.

The goal of every encryption algorithm is to make it as difficult as possible to decrypt the generated
ciphertext without using the key. If a really good encryption algorithm is used, there is no technique
significantly better than methodically trying every possible key. For such an algorithm, the longer the key,
the more difficult it is to decrypt a piece of ciphertext without possessing the key. It is difficult to deter-
mine the quality of an encryption algorithm. Algorithms that look promising sometimes turn out to be
very easy to break, given the proper attack. When selecting an encryption algorithm, it is a good idea to
choose one that has been in use for several years and has successfully resisted all attacks.

Encryption at rest

Encryption at rest is the encoding (encryption) of data when it is persisted. It is a common security
requirement that data that is persisted on disk be encrypted with a secret encryption key. Encryption at
rest helps provide data protection for stored data (at rest). Attacks against data at rest include attempts
to obtain physical access to the hardware on which the data is stored and to then compromise the
contained data. In such an attack, a server’s hard drive may have been mishandled during maintenance,
allowing an attacker to remove the hard drive. Later, the attacker puts the hard drive into a computer
under their control to attempt to access the data.

Encryption at rest is designed to prevent the attacker from accessing the unencrypted data by ensuring
that the data is encrypted when on disk. If an attacker were to obtain a hard drive with such encrypted
data but no access to the encryption keys, the attacker would not compromise the data without great
difficulty. In such a scenario, an attacker would have to attempt attacks against encrypted data, which are
much more complex and resource consuming than accessing unencrypted data on a hard drive. For this

122 Module 5 Module Implementing Secure Data

reason, encryption at rest is highly recommended and is a high-priority requirement for many organiza-
tions.

Encryption at rest may also be required by an organization’s need for data governance and compliance
efforts. Industry and government regulations, such as the Health Insurance Portability and Accountability
Act (HIPAA), PCI DSS, and Federal Risk and Authorization Management Program (FedRAMP), lay out
specific safeguards regarding data protection and encryption requirements. Encryption at rest is a
mandatory measure required for compliance with some of those regulations. In addition to meeting
compliance and regulatory requirements, encryption at rest should be perceived as a defense-in-depth
platform capability.

In Microsoft Azure, organizations can achieve encryption at rest without having the cost of implementa-
tion and management and the risk of a custom key management solution. While Microsoft provides a
compliant platform for services, applications, data, comprehensive facility and physical security enhance-
ment, data access control, and auditing, it is important to provide additional, overlapping security
measures in case one of the other security measures fails. Encryption at rest provides such an additional
defense mechanism.

The encryption at rest designs in Azure use symmetric encryption to encrypt and decrypt large amounts
of data quickly according to a simple conceptual model:

e A symmetric encryption key is used to encrypt data as it is written to storage.

e The same encryption key is used to decrypt that data as it is readied for use in memory.

Data may be partitioned, and different keys may be used for each partition.

e Keys must be stored in a security-enhanced location with access control policies limiting access to
certain identities and logging key usage. Data encryption keys are often encrypted with asymmetric
encryption to further limit access.

— T

Azure Key Vault ‘ ’ Azure Active Directory

Key encryption keys (KEKs)

f

Data encryption keys (DEKs) K

H

Resource providers

N

Azure Storage encryption

All Azure Storage services (Blob storage, Queue storage, Table storage, and Azure Files) support serv-
er-side encryption at rest, with some services supporting customer-managed keys and client-side

Encryption options 123

encryption. All Azure Storage services enable server-side encryption by default using service-managed
keys, which is transparent to the application.

Storage Service Encryption is enabled for all new and existing storage accounts and cannot be disabled.
Because your data is security enhanced by default, you don't need to modify your code or applications to
take advantage of Storage Service Encryption.

Azure SQL Database encryption

Azure SQL Database supports encryption at rest for Microsoft-managed server-side and client-side
encryption scenarios. Support for server encryption is currently provided through the unified SQL feature
called Transparent Data Encryption (TDE). Once an Azure SQL Database customer enables TDE, keys are
automatically created and managed for them. Encryption at rest can be enabled at the database and
server levels. TDE is enabled by default on newly created databases. Azure SQL Database also supports
RSA 2048-bit customer-managed keys in Azure Key Vault.

Azure Cosmos DB encryption

Cosmos DB stores its primary databases on solid-state drives (SSDs). Its media attachments and backups
are stored in Azure Blob storage, which is generally backed up by hard disk drives (HDDs). Cosmos DB
automatically encrypts all databases, media attachments and backups.

124 Module 5 Module Implementing Secure Data

End-to-end encryption

Encrypt data with Transparent Data Encryption
(TDE)

You can take several precautions to help secure the database, such as designing a security-enhanced
system, encrypting confidential assets, and building a firewall around the database servers. However, in a
scenario where the physical media (such as drives or backup tapes) are stolen, a malicious party can just
restore or attach the database and browse the data. One solution is to encrypt the sensitive data in the
database and help to protect the keys that are used to encrypt the data with a certificate. This helps
prevent anyone without the keys from using the data, but this kind of protection must be planned in
advance.

TDE encrypts SQL Server, Azure SQL Database, and Azure SQL Data Warehouse data files. TDE performs
real-time 1/O encryption and decryption of the data and log files. The encryption of the database file is
performed at the page level. The pages in an encrypted database are encrypted before they are written
to disk and decrypted when read into memory. TDE does not increase the size of the encrypted database.

The encryption uses a database encryption key (DEK), which is stored in the database boot record for
availability during recovery. The DEK is either a symmetric key secured by using a certificate stored in the
master database of the server or an asymmetric key protected by an Extensible Key Management (EKM)
module. TDE protects data at rest, meaning the data and log files. It provides the ability to comply with
many laws, regulations, and guidelines established in various industries. This enables software developers
to encrypt data by using the AES and 3DES encryption algorithms without changing existing applications.

Encrypt data with Always Encrypted

Always Encrypted is a new data encryption technology in Azure SQL Database and SQL Server that helps
protect sensitive data at rest on the server, during movement between client and server, and while the
data is in use, helping to ensure that sensitive data never appears as plaintext inside the database system.

Always Encrypted is a feature designed to protect sensitive data, such as credit card numbers or national
identification numbers (for example, United States social security numbers), stored in Azure SQL Database
or SQL Server databases. Always Encrypted allows clients to encrypt sensitive data inside client applica-
tions and never reveal the encryption keys to the database engine (SQL Database or SQL Server). As a
result, Always Encrypted provides a separation between those who own the data (and can view it) and
those who manage the data (but should have no access). After you encrypt the data, only client applica-
tions or app servers that have access to the keys can access the plaintext data.

By helping ensure that on-premises database administrators, cloud database operators, or other highly
privileged but unauthorized users cannot access the encrypted data, Always Encrypted allows organiza-
tions to encrypt data at rest and in use for storage in Azure, to enable the delegation of on-premises
database administration to third parties, or to reduce security clearance requirements for database
administrators.

Note: Always Encrypted requires a specialized driver installed on the client computer to automatically
encrypt and decrypt sensitive data in the client application. For many applications, this does require some
code changes. This is in contrast to TDE, which only requires a change to the application’s connection
string.

Implement Azure confidential computing 125

Implement Azure confidential computing

Azure confidential computing

Azure confidential computing refers to features available in many Azure services that encrypt data in use.
Confidential computing is designed for scenarios where data needs to be processed in the cloud while
still maintaining a level of encryption that helps protect the data from being viewed in a plaintext man-
ner. Confidential computing is a collaborative project between hardware vendors like Intel and software
vendors like Microsoft.

Confidential computing helps to ensure that when data is “in the clear,” which is required for efficient
processing, the data is protected inside a Trusted Execution Environment (TEE). TEEs help to ensure that
there is no way to view data or operations inside from the outside, even with a debugger. They also help
to ensure that only authorized code is permitted to access data. If the code is altered or tampered with,
the operations are denied and the environment disabled. The TEE enforces these protections throughout
the execution of the code within it.

’
-

App Code

Operating Data
system O

Hypervisor

r-------------------

Hardware

Note: In some online articles, TEEs are commonly referred to as enclaves.

The goal of confidential computing is to build a platform where developers can take advantage of both
hardware and software TEEs without being required to change their code. TEEs are exposed in multiple
ways:

e Hardware - Intel Xeon processors with Intel SGX technology are available for Azure Virtual Machines.

e Software — The Intel SGX software development kit (SDK) and third-party enclave APIs can be used
with compute instances and Virtual Machines in Azure.

e Services — Many Azure services, such as Azure SQL Database, already execute code in TEEs.

e Frameworks — The Microsoft Research team has developer frameworks, such as the Confidential
Consortium Blockchain Framework, to help jumpstart new projects that need to run in TEEs.

126 Module 5 Module Implementing Secure Data

Implement SSL and TLS communications

SSL and TLS overview

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are cryptographic protocols that help
provide communications security over a computer network. SSL encryption is the most commonly used
method of helping secure data sent across the internet. Many Azure services, including (but not limited
to) the following, support SSL encryption:

e Azure SQL Database

e Azure Database for MySQL
e Azure Storage

e Azure Application Gateway

e Azure App Service

TLS in Azure Storage

SSL 1.0, 2.0 and 3.0 have been found to be vulnerable, and they have been prohibited by an Internet
Engineering Task Force (IETF) Request For Comments (RFC). Many services and clients have moved
forward to TLS 1.0. Unfortunately, TLS 1.0 became insecure for using insecure block ciphers (Data Encryp-
tion Standard [DES] CBC and RC2 CBC) and an insecure stream cipher (RC4). The Payment Card Industry’s
(PCl) Standards Council has recommended moving on to newer versions of TLS.

For these reasons, the Azure Storage team has determined that TLS 1.2 is the best protocol to use when
connecting to Azure Storage accounts. To help ensure a secure and compliant connection to Azure
Storage, you need to enable TLS 1.2 or newer on the client side before sending requests to operate the
Azure Storage service.

To enable TLS 1.2 in Microsoft .NET, you should use the ServicePointManager class in the System.
Net namespace:

System.Net.ServicePointManager.SecurityProtocol = System.Net.SecurityProto-
colType.Tlsl2;

To enable TLS 1.2 in PowerShell, you can use the same class:

[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.Securi-
tyProtocolType] : : Tlsl2;

Note: While not recommend, TLS 1.0 and 1.1 are still supported by Azure Storage for older client applica-
tions.

Manage cryptographic keys in Azure Key Vault 127

Manage cryptographic keys in Azure Key Vault
Azure Key Vault

You have passwords, connection strings, and other pieces of information that are needed to keep your
applications working. You want to make sure that this information is available but that it is security
enhanced. Azure Key Vault is a cloud service that works as a security-enhanced secrets store.

Key Vault allows you to create multiple security-enhanced containers, called vaults. These vaults are
backed by hardware security modules (HSMs). Vaults help to reduce the chance of accidentally losing
security information by centralizing the storage of application secrets. Vaults also control and log the
access to anything stored in them. Azure Key Vault is designed to support any type of secret, such as a
password, database credential, API key, or certificate. Software or HSMs can help to protect these secrets.
Azure Key Vault can handle requesting and renewing TLS certificates, providing the features required for
a robust certificate lifecycle management solution.

Key Vault streamlines the key management process and enables you to maintain control of keys that
access and encrypt your data. Developers can create keys for development and testing in minutes and
then seamlessly migrate them to production keys. Security administrators can grant (and revoke) permis-
sion to keys as needed.

Accessing Key Vault in Azure CLI

To create a vault using the Azure Command-Line Interface, you need to provide some information:
e A unigue name. For this example, we will use contosovault.

e A resource group. Here, we are using SecurityGroup.

e Alocation. We will use Wwest US.

az keyvault create --name contosovault --resource-group SecurityGroup
--location westus

The output of this cmdlet shows properties of the newly created vault. Take note of the two properties
listed below:

e Vault Name: In the example, this is contosovault. You will use this name for other Key Vault
commands.

o Vault URI: In the example, thisis https://contosovault.vault.azure.net/. Applications that
use your vault through its REST API must use this URI.

At this point, your Azure account is the only one authorized to perform any operations on this new vault.

To add a secret to the vault, you just need to take a couple of additional steps. This password could be
used by an application. The password will be called DatabasePassword and will store the value of Pa5w.rd
init:
az keyvault secret set --vault-name contosovault --name DatabasePassword
--value 'Pabw.rd'

To view the value contained in the secret as plain text:

az keyvault secret show --vault-name contosovault --name DatabasePassword

128 Module 5 Module Implementing Secure Data

Review Questions

Module 5 Review Questions

Azure SQL Database encryption
You manage several SQL Server instance for your organization.
You must encrypt all data at rest.

What should you implement? How does encryption of SQL databases affect the amount of storage space
that is used?

Suggested Answer |

TDE encrypts SQL Server, Azure SQL Database, and Azure SQL Data Warehouse data files. TDE performs
real-time 1/O encryption and decryption of the data and log files.

Always Encrypted is a new data encryption technology in Azure SQL Database and SQL Server that helps
protect sensitive data at rest on the server, during movement between client and server, and while the
data is in use, helping to ensure that sensitive data never appears as plaintext inside the database system.

SSL and TLS overview
You manage an application in Azure.
The application must communicate securely with users inside the corporate network.

You have hired an outside security consultant to perform a vulnerability analysis of your application, and
the results show a concern regarding secure communications.

What should you do Which cryptographic protocols should be enabled?

Suggested Answer |

SSL 1.0, 2.0 and 3.0 have been found to be vulnerable, and they have been prohibited by an Internet
Engineering Task Force (IETF) Request For Comments (RFC).

For these reasons, the Azure Storage team has determined that TLS 1.2 is the best protocol to use when
connecting to Azure Storage accounts.

Azure Key Vault

You manage several applications in Azure. Each application has unique credentials to access content and
enable communication with internal resources.

You need to ensure that all authentication information is securely stored.

What should you use to secure the information?

Suggested Answer |

Azure Key Vault is a cloud service that works as a security-enhanced secrets store.
Key Vault allows you to create multiple security-enhanced containers, called vaults. These vaults are

Review Questions

backed by hardware security modules (HSMs). Vaults help to reduce the chance of accidentally losing
security information by centralizing the storage of application secrets. Vaults also control and log the
access to anything stored in them. Azure Key Vault is designed to support any type of secret, such as a
password, database credential, APl key, or certificate.

=
@)
-]
=
2
m
O
z
<
Ty
-]
=
O
m
<
-]
=
2
m
U
7
O
E
E
-]
m
O

Module 6 Module Business Continuity and Re-
siliency in Azure

Business Continuity and Resiliency

Business Continuity and Resilience in Azure

NOTE: The content in this module serves as an informal checklist of considerations for sustaining busi-
ness continuity and resilience in Azure and is the result of real-world implementations.

Business continuity represents the ability to perform essential business functions during and after adverse
conditions such as a natural disaster or a failure of a service. It covers the entire operation of the business
including physical facilities, people, communications, transportation, and technology.

This module covers technical aspects of business continuity and it's important to remember that technol-
ogy must be considered in the context of overall business continuity strategy.

A technical strategy for business continuity helps you ensure that your internal and external applications,
workloads, and services are resilient by remaining operational during planned downtime and unplanned
outages. Such resiliency must also ensure that business-critical data is backed up and stored in a secure
location, and that the data can be recovered within a reasonable amount of time when an unexpected
incident or a disaster occurs.

Architecting for resiliency in a cloud environment focuses on failure recovery, rather than on avoiding fail-
ures. Its goal is to respond to failures in a way that avoids downtime or data loss and returns applications
to a fully functioning state following a failure.

132 Module 6 Module Business Continuity and Resiliency in Azure

High Availability and Disaster Recovery
High Availability and Disaster Recovery

Two essential aspects of resiliency are high availability and disaster recovery:

e High availability (HA) is the ability of the application to continue running in a healthy state despite
localized or transient failures. Typically, high availability relies on redundancy of application compo-
nents and automatic failover.

e Disaster recovery (DR) is the ability to recover from major incidents, such as service disruption that
affects an entire region. Disaster recovery provisions include data backup and archiving, and may
require manual intervention, such as restoring a database from backup.

When designing for resiliency, you must understand the availability requirements. This is partially a
function of cost incurred due to potential downtime, which, in turn, impacts the budget allocated to
implementing HA and DR provisions. You also have to identify what constitutes application availability.
For example, an order processing application might be considered operational if a customer is able to
submit an order, even if such order cannot be immediately processed. In addition, you should consider
the frequency with which a particular type of failure might occur.

Data Backup

Data backup is a critical part of DR. If the stateless components of an application fail, you can always
redeploy them. But if data is lost, the system can't return to a previous stable state. Data must be backed
up and, whenever possible, stored in a remote location in order to protect against regional disasters.

Backup is distinct from data replication. Data replication involves copying data in near-real-time (either
synchronously or asynchronously), so that the system can fail over quickly to a replica. Data replication
can reduce the time it takes to recover from an outage, by ensuring that a replica of the data is readily
available. However, data replication should not be considered as a substitute to backups. For example,
any data corruption will be automatically copied to the replicas, rendering their content unusable.
Effectively, even with data replication in place, you still need to include backup in your DR strategy

Resiliency 133

Resiliency

Identifying Requirements

Resiliency Checklist

Use the following checklist to incorporate resiliency requirements into your application throughout its
lifecycle.

Identifying Requirements
Identify the expected recovery time objective and recovery point objective:

e Recovery time objective (RTO) is the maximum acceptable time that an application can be unavaila-
ble after an incident. If your RTO is 90 minutes, you must be able to restore the application to a
running state within 90 minutes from the start of a disaster. If you have a very low RTO, you might
keep a second deployment running in the standby mode.

e Recovery point objective (RPO) is the maximum duration of data loss that is acceptable during a
disaster. For example, if you store data in a single database, with no replication to other databases,
and perform hourly backups, you could lose up to an hour worth of data.

RTO and RPO are business requirements. Conducting a risk assessment can help you define the applica-
tion's RTO and RPO. Another common metric is mean time to recover (MTTR), which is the average time
that it takes to restore the application after a failure. MTTR represents an empirical fact about a system. If
MTTR exceeds the RTO, then a failure of the system represents an unacceptable business disruption,
because the system restore time exceeds the defined RTO.

Identify the expected and the actual Service Level Agreements. In Azure, a Service Level Agreement (SLA)
describes Microsoft's commitments to maintain uptime and connectivity. If the SLA for a particular service
is 99.9%, it means you should expect the service to be available 99.9% of the time. The Azure SLAs also
include provisions for obtaining a service credit if the SLA is not met, along with specific definitions of
"availability" for each service. That aspect of the SLA acts as an enforcement policy.

You should identify the expected target SLAs for each workload in your solution. An SLA makes it possi-
ble to evaluate whether the architecture meets the business requirements. For example, if a workload
requires 99.99% uptime, but depends on a service with a 99.9% SLA, that service cannot be a single-point
of failure in the system. One remedy is to have a fallback path in case the service fails, or take other
measures to recover from a failure of that service.

See the next topic for estimating SLA downtime.

Estimating SLA Downtime

The following table shows the maximum cumulative downtime for various SLA levels.

SLA Downtime per week Downtime per month Downtime per year
99% 1.68 hours 7.2 hours 3.65 days

99.9% 10.1 minutes 43.2 minutes 8.76 hours

99.95% 5 minutes 21.6 minutes 4.38 hours

99.99% 1.01 minutes 4.32 minutes 52.56 minutes
99.999% 6 seconds 25.9 seconds 5.26 minutes

134 Module 6 Module Business Continuity and Resiliency in Azure

Whenever applicable, implement composite SLAs. For example, consider an App Service web app that
writes to Azure SQL Database. As of December 2018, these Azure services have the following SLAs:

e App Service Web Apps = 99.95%
e SQL Database = 99.99%

If either service fails, the whole application fails. In general, the probability of each service failing is
independent, so the composite SLA for this application is 99.95% x 99.99% = 99.94%. That's lower than
the individual SLAs, which isn't surprising, because an application that relies on multiple services has
more potential failure points.

Alternatively, you can improve the composite SLA by creating independent fallback paths. For example, if
SQL Database is unavailable, you can store transactions into a queue, to be processed later. As of Decem-
ber 2018, Azure Service Bus Queues have the 99.9% availability SLA.

With this design, the application is still available even if it can't connect to the database. However, it fails
if the database and the queue both fail at the same time. The expected percentage of time for a simulta-
neous failure is 0.0001 x 0.001, so the composite SLA for this combined path is:

e Database OR queue = 1.0 — (0.0001 x 0.001) = 99.99999%
Effectively, the total composite SLA is:
e Web app AND (database OR queue) = 99.95% x 99.99999% = ~99.95%

NOTE: There are tradeoffs to this approach. The application logic is more complex, you are paying for the
queue, and there may be data consistency issues to consider.

Take into account SLAs for multi-region deployments. Another HA technique is to deploy the application
in more than one region, and use Azure Traffic Manager to fail over if the application fails in one region.

For a two-region deployment, the composite SLA is calculated as follows:

e Let N be the composite SLA for the application deployed in one region. The expected chance that
the application will fail in both regions at the same time is (1 = N) x (1 = N).

e Combined SLA for both regions =1 - (1 = N)(1 = N) =N + (1 - N)N

e To calculate the composite SLA, you must factor in the SLA for Traffic Manager. As of December
2018, the SLA for Traffic Manager SLA is 99.99%:

e Composite SLA = 99.99% x (combined SLA for both regions)

It is important to remember that Traffic Manager-based failover is not instantaneous and can result in
some additional downtime.

NOTE: The calculated SLA number is a useful baseline, but it doesn't tell the whole story about availabili-
ty. Often, an application can degrade gracefully when a non-critical path fails. Consider an application
that shows a catalog of books. If the application can't retrieve the thumbnail image for the cover, it might
show a placeholder image. In that case, failing to get the image does not reduce the application's uptime,
although it affects the user experience.

Identify the intended usage patterns. For example, a tax-filing service needs to be available before the
filing deadline and a video streaming service must stay up during major sports events. During these
critical periods, you might have redundant deployments across several regions, so the application could
fail over following a failure in the primary location. However, a multi-region deployment is more expen-
sive, so during less critical times, you might run the application in a single region.

Application Design 135

Application Design
Failure Mode Analysis (FMA)

Perform a failure mode analysis (FMA) for your application. FMA is a process for building resiliency into
an application early in the design stage. The goals of an FMA include:

e |dentify what types of failures an application might experience.
e Capture the potential effects and impact of each type of failure on the application.
e |dentify recovery strategies.

For example, for calls to an external web service / API, you could consider the following points of failure:

Failure mode Detection strategy

Service is unavailable HTTP 5xx

Throttling HTTP 429 (Too Many Requests)
Authentication HTTP 401 (Unauthorized)

Slow response Request times out

Avoiding a Single Point of Failure

Avoiding a Single Point of Failure for Applications

Avoid any single point of failure. All components, services, resources, and compute instances should be
deployed as multiple instances to prevent a single point of failure from affecting availability. This includes
authentication mechanisms. Design the application to be configurable to use multiple instances, and to
automatically detect failures and redirect requests to non-failed instances where the platform does not
do this automatically.

Azure has a number of features to make an application redundant at every level of failure, from an
individual VM to an entire region.

e Single VM. Azure provides an uptime SLA for individual VMs, as long as all disks of these VMs are
configured to use Premium Storage. Although you can get a higher SLA by running two or more
VMs, a single VM may be reliable enough for some workloads. For production workloads, we
recommend using two or more VMs for redundancy.

e Availability sets. To protect against localized hardware failures, such as a power unit or a network
switch failing, deploy two or more VMs in an availability set. An availability set consists of two or
more fault domains, each of which uses a separate power source and network switch. VMs in an
availability set are distributed across the fault domains, so localized a hardware failure affects only
one fault domain.

e Availability zones. An Availability Zone is a separate physical datacenter within an Azure region.
Each Availability Zone has a distinct power source, network, and cooling. Deploying VMs across
availability zones helps to protect an application against datacenter-wide failures.

136 Module 6 Module Business Continuity and Resiliency in Azure

e Azure Site Recovery. Replicate Azure virtual machines to another Azure region for business
continuity and disaster recovery needs. You can conduct periodic DR drills to ensure you meet the
compliance needs. The VM will be replicated with the specified settings to the selected region so
that you can recover your applications in the event of outages in the source region.

e Paired regions. Each Azure region is paired with another region. With the exception of Brazil
South, regional pairs are located within the same geography in order to meet data residency
requirements for tax and law enforcement jurisdiction purposes.

Auto Scaling and Load Balancing

Azure Autoscaling and Load Balancing

Use autoscaling to respond to increases in load. If your application is not configured to scale out auto-
matically as load increases, it's possible that your application's services will fail if they become saturated
with user requests. When implementing Azure App Service, use the Standard, Premium, or Isolated tier.

Load balance across instances. For scalability, a cloud application should be able to scale out by adding
more instances. This approach also improves resiliency, because unhealthy instances can be removed
from rotation. Some of the more common examples of this approach include:

e Placing two or more VMs behind a load balancer. The load balancer distributes traffic to all the
VMs. If you choose Azure Application Gateway, remember that you need to provision two or more
Application Gateway instances to qualify for the availability SLA.

e Scaling out an Azure App Service app to multiple instances. App Service automatically balances
load across instances.

e Using Azure Traffic Manager to distribute traffic across a set of endpoints.

Multi-Region Deployment

Consider deploying your application across multiple regions. A multi-region deployment can use an
active-active pattern (distributing requests across multiple active instances) or an active-passive pattern
(keeping a "warm" instance in reserve, in case the primary instance fails).

Use Azure Traffic Manager to route your application's traffic to different regions. Azure Traffic Manager
performs load balancing at the DNS level and will route traffic to different regions based on the traffic
routing method you specify and the health of your application's endpoints.

Configure and test health probes for your load balancers and traffic managers. Ensure that your health
logic checks the critical parts of the system and responds appropriately to health probes. The health
probes for Azure Traffic Manager and Azure Load Balancer serve a specific function. For Traffic Manager,
the health probe determines whether to fail over to another region. For a load balancer, it determines
whether to remove a VM from rotation.

Availability Set Availability Zone Azure Site Recovery/
Paired region
Scope of failure Rack Datacenter Region
Request routing Load Balancer Cross-zone Load Traffic Manager, Azure
Balancer Front Door
Network latency Very low Low Mid to high
Virtual network VNet VNet Cross-region VNet

peering

Application Design 137

Workload Service-Level Objectives

Configure workloads by service-level objectives. If a service is composed of critical and less-critical
workloads, manage them differently and specify the service features and number of instances to meet
their availability requirements. The term "workload" means a discrete capability or computing task, which
can be logically separated from other tasks, in terms of business logic and data storage requirements.

For example, an e-commerce app might include the following workloads:
e Browse and search a product catalog.
e Create and track orders.
e View recommendations.

These workloads might have different requirements for availability, scalability, data consistency, and
disaster recovery. These requirements should be driven based on their business relevance.

For Azure App Service, separate web apps from web APIs. If your solution has both a web front-end and a
web API, consider decomposing them into separate App Service apps. This way you can run the web app
and the APl in separate App Service plans, so they can be scaled independently.

Minimize and understand service dependencies. Minimize the number of different services used where
possible, and ensure you understand all of the feature and service dependencies that exist in the system.
This includes the nature of these dependencies, and the impact of failure or reduced performance in each
one on the overall application.

Design tasks and messages to be idempotent where possible. An operation is idempotent if it can be
repeated multiple times and produce the same result. For example, in messaging scenarios, consumers
and the operations they carry out should be idempotent so that repeating a previously executed opera-
tion does not render the results invalid. This may mean detecting duplicated messages, or ensuring
consistency by using an optimistic approach to handling conflicts.

Enhancing Security

Enhancing security

Ensure application-level protection against distributed denial of service (DDoS) attacks. Azure
services are protected against DDoS attacks at the network layer. However, Azure cannot protect against
application-layer attacks, because it is difficult to distinguish between true user requests from malicious
user requests.

Adhere to the principle of least privilege for access to the application's resources. The default for
access to the application's resources should be as restrictive as possible. Grant higher level permissions
on an approval basis. Granting overly permissive access to your application's resources by default can
result in someone purposely or accidentally deleting resources. Azure provides role-based access control
to manage user privileges, but it's important to verify least privilege permissions for other resources that
have their own permissions systems such as SQL Server.

Additional Resiliency Tips

Use a message broker that implements high availability for critical transactions. Many cloud
applications use messaging to initiate tasks that are performed asynchronously. To guarantee delivery of
messages, the messaging system should provide high availability. Azure Service Bus Messaging imple-
ments at least once semantics. This means that a message posted to a queue will not be lost, although

138 Module 6 Module Business Continuity and Resiliency in Azure

duplicate copies may be delivered under certain circumstances. To account for duplicates, ensure that
message processing is idempotent.

Design applications to gracefully degrade. The load on an application may exceed the capacity of one
or more of its parts, causing reduced availability and failed connections. Scaling can help to alleviate this,
but it may reach a limit imposed by other factors, such as resource availability or cost. When an applica-
tion reaches a resource limit, it should take appropriate action to minimize the impact for the user. For
example, in an ecommerce system, if the order-processing subsystem is under strain or fails, it can be
temporarily disabled while allowing other functionality, such as browsing the product catalog. It might be
appropriate to postpone requests to a failing subsystem, for example still enabling customers to submit
orders but saving them for later processing, when the orders subsystem is available again.

Throttle high-volume users. Sometimes a small number of users create excessive load. That can have an
impact on other users, reducing the overall availability of your application. When a single client makes an
excessive number of requests, the application might throttle the client for a certain period of time. During
the throttling period, the application refuses some or all of the requests from that client (depending on
the exact throttling strategy). The threshold for throttling might depend on the customer's service tier.
Throttling does not necessarily imply that the client was acting maliciously, only that it exceeded its
service quota. If consumers consistently exceed their quota or otherwise behave badly, you might
consider blocking access by applying an API key-based protection or IP address range filtering.

Use load leveling to smooth spikes in traffic. Applications may experience sudden spikes in traffic,
which can overwhelm services on the backend. If a backend service cannot respond to requests quickly
enough, it may cause requests to queue or cause the service to throttle the application. To avoid this, you
can use a queue as a buffer that smooths out peaks in the load. When there is a new work item, instead
of calling the backend service immediately, the application queues a work item to run asynchronously.

Monitor third-party services. If your application has dependencies on third-party services, identify
where and how these third-party services can fail and what effect those failures will have on your applica-
tion. A third-party service may not include monitoring and diagnostics, so it's important to log your
invocations of them and correlate them with your application's health and diagnostic logging using a
unique identifier.

Implement resiliency patterns for remote operations where appropriate. If your application depends
on communication between remote services, follow design patterns for dealing with transient failures,
such as the Retry pattern and the Circuit Breaker pattern.

e Retry pattern. Transient failures can be caused by momentary loss of network connectivity, a
dropped database connection, or a timeout when a service is busy. Often, a transient failure can be
resolved simply by retrying the request. For many Azure services, the client SDK implements
automatic retries, in a way that is transparent to the caller. Each retry attempt increases the total
latency. Additionally, too many failed requests can cause a bottleneck, as pending requests
accumulate in the queue. These blocked requests might hold critical system resources such as
memory, threads, database connections, and so on, which can cause cascading failures. To avoid
this, increase the delay between each retry attempt, and limit the total number of failed requests.

e Circuit Breaker pattern. The Circuit Breaker pattern can prevent an application from repeatedly
trying an operation that is likely to fail. The circuit breaker wraps calls to a service and tracks the
number of recent failures. If the failure count exceeds a threshold, the circuit breaker starts
returning an error code without calling the service. This gives the service time to recover.

Implement asynchronous operations whenever possible. Synchronous operations can monopolize
resources and block other operations while the caller waits for the process to complete. Design each part
of your application to allow for asynchronous operations whenever possible.

Application Design 139

Apply compensating transactions. A compensating transaction is a transaction that undoes the effects
of another completed transaction. In a distributed system, it can be very difficult to achieve strong
transactional consistency. Compensating transactions are a way to achieve consistency by using a series
of smaller, individual transactions that can be undone at each step. For example, to book a trip, a custom-
er might reserve a car, a hotel room, and a flight. If any of these steps fails, the entire operation fails.
Instead of trying to use a single distributed transaction for the entire operation, you can define a com-
pensating transaction for each step. For example, to undo a car reservation, you cancel the reservation. In
order to complete the whole operation, a coordinator executes each step. If any step fails, the coordina-
tor applies compensating transactions to undo any steps that were completed.

140 Module 6 Module Business Continuity and Resiliency in Azure

Testing, Deployment, and Maintenance

Deployment and Maintenance Tasks

Automate and test deployment and maintenance tasks. Distributed applications consist of multiple
parts that must work together. The deployment process should be predictable and repeatable. In Azure,
this process might include provisioning Azure resources, deploying application code, and applying
configuration settings:

e Use Azure Resource Manager templates to automate provisioning of Azure resources.
e Use Azure Automation Desired State Configuration (DSC) to configure VMs.
e Use an automated deployment process for application code.

For App Service deployments, store configuration as app settings. Define the settings in your
Resource Manager templates, or by using PowerShell, so that you can apply them as part of an automat-
ed deployment / update process, which is more reliable.

Give resources meaningful names. Giving resources meaningful names makes it easier to locate a
specific resource and understand its role.

Organize resource groups by function and lifecycle. In general, a resource group should contain
resources that share the same lifecycle. This makes it easier to manage deployments, delete test deploy-
ments, and assign access rights, reducing the chance that a production deployment is accidentally
deleted or modified. Create separate resource groups for production, development, and test environ-
ments. In a multi-region deployment, put resources for each region into separate resource groups. This
makes it easier to redeploy one region without affecting the other region(s).

Infrastructure as Code and Immutable Infra-
structure

Below are summaries forthe principles of infrastructure as code and immutable infrastructure:

e Infrastructure as code is the practice of using code to provision and configure infrastructure.
Infrastructure as code may use a declarative approach or an imperative approach (or a combina-
tion of both). Resource Manager templates constitute an example of a declarative approach.
PowerShell scripts constitute an example of an imperative approach.

e Immutable infrastructure is the principle that you shouldn’t modify infrastructure after it’s
deployed to production. Otherwise, you can get into a state where ad hoc changes have been
applied, so it's hard to know exactly what changed, and hard to reason about the system.

Use staging and production features of the platform. For example, Standard, Premium, and Isolated tiers
of Azure App Service support deployment slots, which you can use to stage a deployment before swap-
ping it to production. Azure Service Fabric supports rolling upgrades to application services.

Maximize Application Availability

Design your release process to maximize application availability. If your release process requires services
to go offline during deployment, your application will be unavailable until they come back online. Use the
blue/green or canary release deployment technique to deploy your application to production. Both of

Testing, Deployment, and Maintenance 141

these techniques involve deploying your release code alongside production code so users of release code
can be redirected to production code in the event of a failure:

o Blue-green deployment is a technique where an update is deployed into a production environ-
ment separate from the live application. After you validate the deployment, switch the traffic
routing to the updated version. For example, Azure App Service Web Apps enables this with
staging slots.

e Canary releases are similar to blue-green deployments. Instead of switching all traffic to the
updated version, you roll out the update to a small percentage of users, by routing a portion of
the traffic to the new deployment. If there is a problem, back off and revert to the old deployment.
Otherwise, route more of the traffic to the new version, until it gets 100% of the traffic.

Additional Considerations for Testing, Deployment, and
Maintenance

Have a rollback plan for deployment. It's possible that your application deployment could fail and
cause your application to become unavailable. Design a rollback process to go back to a last known good
version and minimize downtime.

Ensure that your application does not run up against Azure subscription limits. Azure subscriptions
have limits on certain resource types, such as number of resource groups, number of cores, and number
of storage accounts. If your application requirements exceed Azure subscription limits, create another
Azure subscription and provision sufficient resources there.

Ensure that your application does not run up against per-service limits. Individual Azure services
have consumption limits — for example, limits on storage, throughput, number of connections, requests
per second, and other metrics. Your application will fail if it attempts to use resources beyond these limits.
This will result in service throttling and possible downtime for affected users. Depending on the specific
service and your application requirements, you can often avoid these limits by scaling up (for example,
choosing another pricing tier) or scaling out (adding new instances).

Perform fault injection testing of your applications. Test the resiliency of the system during failures,
either by triggering actual failures or by simulating them. Your application can fail for many different
reasons, such as certificate expiration, exhaustion of system resources in a VM, or storage failures. Test
your application in an environment as close as possible to production, by simulating or triggering real
failures. For example, delete certificates, artificially consume system resources, or delete a storage source.
Verify your application's ability to recover from all types of faults, alone and in combination. Check that
failures are not propagating or cascading through your system.

Perform load testing of your applications. Load testing is crucial for identifying failures that only
happen under load, such as the backend database being overwhelmed or service throttling. Test for peak
load, using production data or synthetic data that is as close to production data as possible. The goal is
to see how the application behaves under real-world conditions.

Run tests in production using both synthetic and real user data. Test and production are rarely
identical, so it's important to use blue/green or a canary deployment and test your application in produc-
tion. This allows you to test your application in production under real load and ensure it will function as
expected when fully deployed.

Establish a process for interacting with Azure support. If the process for contacting Azure support is
not set before the need to contact support arises, downtime will be prolonged as the support process is
navigated for the first time. Include the process for contacting support and escalating issues as part of
your application's resiliency from the outset.

42 Module 6 Module Business Continuity and Resiliency in Azure

Use resource locks for critical resources, such as VMs. Resource locks prevent an operator from
accidentally deleting a resource.

MCT USE ONLY. STUDENT USE PROHIBITED

Data Management 143

Data Management
Replicating Data

Data Management

Replicating data is a general strategy for handling non-transient failures in a data store. Many storage
technologies provide built-in replication. It's important to consider both the read and write paths.
Depending on the storage technology, you might have multiple writable replicas, or a single writable
replica and multiple read-only replicas. To maximize availability, replicas can be placed in multiple
regions. However, this increases the latency when replicating the data. Typically, replicating across regions
is done asynchronously, which implies an eventual consistency model and potential data loss if a replica
fails.

e Geo-replicate databases. Azure SQL Database and Azure Cosmos DB both support geo-replica-
tion, which enables you to configure secondary database replicas in other regions. Secondary
databases are available for querying and for failover in the case of a data center outage or the
inability to connect to the primary database. With Azure SQL Database, you can create au-
to-failover groups, which facilitate automatic failover. Azure Cosmos DB additionally supports
multi-master configuration, with multiple write regions and customizable conflict resolution
mechanism.

e Geo-replicate data in Azure Storage. Data in Azure Storage is automatically replicated within a
datacenter. For higher availability, use Read-access geo-redundant storage (RA-GRS), which
replicates your data to a secondary region and provides read-only access to the data in that
region. The data is durable even in the case of a complete regional outage or a disaster.

e For VMs, do not rely on RA-GRS replication to restore the VM disks (VHD files). Instead, use
Azure Backup. In addition, consider using managed disks. Managed disks provide enhanced
resiliency for VMs in an availability set, because the disks are sufficiently isolated from each other
to avoid single points of failure. In addition, managed disks eliminate the need to account for the
storage account-level IOPS limits.

Additional Data Management Considerations

Below are additional considerations for managing data.

e Sharding. Consider using sharding to partition a database horizontally. Sharding can provide fault
isolation and eliminate constraints imposed by database size limits.

e Optimistic concurrency and eventual consistency. Transactions that block access to resources
through locking (pessimistic concurrency) can cause poor performance and considerably reduce
availability. These problems can become especially acute in distributed systems. In many cases,
careful design and techniques such as partitioning can minimize the chances of conflicting up-
dates. Where data is replicated, or is read from a separately updated store, the data will only be
eventually consistent. But the advantages usually far outweigh the impact on availability of using
transactions to ensure immediate consistency.

e Document data source fail over and fail back processes, and then test it. In the case where
your data source fails catastrophically, a human operator will have to follow a set of documented
instructions to fail over to a new data source. Regularly test the instruction steps to verify that an
operator following them is able to successfully fail over and fail back the data source.

144 Module 6 Module Business Continuity and Resiliency in Azure

e Periodic backup and point-in-time restore. Regularly and automatically back up data and verify
you can reliably restore both the data and the application. Ensure that backups meet your Recov-
ery Point Objective (RPO). The backup process must be secure to protect the data in transit and at
rest.

e Ensure that no single user account has access to both production and backup data. Your data
backups are compromised if one single user account has permission to write to both production
and backup sources. A malicious user could purposely delete all your data, while a regular user
could accidentally delete it. Design your application to limit the permissions of each user account
so that only the users that require write access have write access and it's only to either production
or backup, but not both.

e Validate your data backups. Regularly verify that your backup data is what you expect by running
a script to validate data integrity, schema, and queries. There's no point having a backup if it's not
useful to restore your data sources. Log and report any inconsistencies so the backup service can
be repaired.

Monitoring and Disaster Recovery 145

Monitoring and Disaster Recovery

Best Practices for Monitoring and Alerting Ap-
plications

Without proper monitoring, diagnostics, and alerting, there is no way to detect a failure in your applica-
tion or alert an operator to resolve the failure. Below is a list best practices for monitoring and alerting
applications:

Implement best practices for monitoring and alerting in your application. Without proper monitor-
ing, diagnostics, and alerting, there is no way to detect failures in your application and alert an operator
to fix them.

Measure remote call statistics and make the information available to the application team. If you
don't track and report remote call statistics in real time and provide an easy way to review this informa-
tion, the operations team will not have an instantaneous view into the health of your application. And if
you only measure average remote call time, you will not have enough information to reveal issues in the
services. Summarize remote call metrics such as latency, throughput, and errors in the 99 and 95 percen-
tiles. Perform statistical analysis on the metrics to uncover errors that occur within each percentile.

Track the number of transient exceptions and retries over an appropriate timeframe. If you don't
track and monitor transient exceptions and retry attempts over time, it's possible that an issue or failure
could be hidden by your application's retry logic.

Track the progress of long-running workflows and retry on failure. Long-running workflows are often
composed of multiple steps. Ensure that each step is independent and can be retried to minimize the
chance that the entire workflow will need to be rolled back, or that multiple compensating transactions
need to be executed. Monitor and manage the progress of long-running workflows by implementing a
pattern such as Scheduler Agent Supervisor pattern.

Implement an early warning system that alerts an operator. Identify the key performance indicators
of your application's health, such as transient exceptions and remote call latency, and set appropriate
threshold values for each of them. Send an alert to operations when the threshold value is reached. Set
these thresholds at levels that identify issues before they become critical and require a recovery response.

Implement application logging. Application logs are an important source of diagnostics data. The
recommended practices for application logging include:

e Log in production.

e |og events at service boundaries. Include a correlation ID that flows across service boundaries. If a
transaction flows through multiple services and one of them fails, the correlation ID will help you
pinpoint why the transaction failed.

e Use semantic logging, also known as structured logging. Unstructured logs make it hard to
automate the consumption and analysis of the log data, which is needed at cloud scale.

e Use asynchronous logging. With synchronous logging, the logging system might cause the
application to fail, as incoming requests are blocked while waiting for log writes.

Implement logging using an asynchronous pattern. If logging operations are synchronous, they might
block your application code. Ensure that your logging operations are implemented as asynchronous
operations.

146 Module 6 Module Business Continuity and Resiliency in Azure

Test the Monitoring Systems

Automated failover and fallback systems, and manual visualization of system health and performance by
using dashboards, all depend on monitoring and instrumentation functioning correctly. If these elements
fail, miss critical information, or report inaccurate data, an operator might not realize that the system is
unhealthy or failing.

Plan for and test disaster recovery. Create an accepted, fully-tested plan for recovery from any type of
failure that may affect system availability. Choose a multi-site disaster recovery architecture for any
mission-critical applications. Identify a specific owner of the disaster recovery plan, including automation
and testing. Ensure the plan is well-documented, and automate the process as much as possible. Estab-
lish a backup strategy for all reference and transactional data, and test the restoration of these backups
regularly. Train operations staff to execute the plan, and perform regular disaster simulations to validate
and improve the plan. If you are using Azure Site Recovery to replicate VMs, create a fully automated
recovery plan to failover the entire application within minutes.

Implement operational readiness testing. If your application fails over to a secondary region, you
should perform an operational readiness test before you fail back to the primary region. The test should
verify that the primary region is healthy and ready to receive traffic again.

Perform data consistency checks. If a failure happens in a data store, there may be data inconsistencies
when the store becomes available again, especially if the data was replicated.

