
Microsoft 
Official
Course

AZ-300T03
Understanding Cloud 
Architect Technology 
Solutions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



AZ-300T03
Understanding Cloud Architect 
Technology Solutions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Contents

■■ Module 0   Start Here  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 1
Welcome to Understanding Cloud Architect Technology Solutions  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 1

■■ Module 1   Module Selecting Compute and Storage Solutions  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 5
Design and Connectivity Patterns  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 5
Online Lab - Implementing Azure Storage Access Controls  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 13
Review Question  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 18

■■ Module 2   Module Hybrid Networking  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 19
Hybrid Networking  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 19
Virtual Network-to-Network  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 24
Review Question  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 26

■■ Module 3   Module Measure Throughput and Structure of Data Access  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 27
Address Durability of Data and Caching  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 27
Measure Throughput and Structure of Data Access  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 33
Online Lab - Implementing Azure Load Balancer Standard  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 40
Review Question  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 48

■■ Module 4   Module Implementing Authentication  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 49
Implementing authentication in applications  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 49
Implement multi-factor authentication  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 56
Claims-based authorization  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 58
Role-based access control (RBAC) authorization  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 61
Implement OAuth2 authentication  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 66
Implement managed identities for Azure resources  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 99
Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 113
Review Questions  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 118

■■ Module 5   Module Implementing Secure Data  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 121
Encryption options  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 121
End-to-end encryption  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 124
Implement Azure confidential computing  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 125
Implement SSL and TLS communications  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 126
Manage cryptographic keys in Azure Key Vault  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 127
Review Questions  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 128

■■ Module 6   Module Business Continuity and Resiliency in Azure  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 131

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



Business Continuity and Resiliency  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 131
High Availability and Disaster Recovery  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 132
Resiliency  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 133
Application Design  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 135
Testing, Deployment, and Maintenance  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 140
Data Management  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 143
Monitoring and Disaster Recovery  . .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . � 145

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Module 0   Start Here

Welcome to Understanding Cloud Architect 
Technology Solutions
Welcome to Understanding Cloud Architect 
Technology Solutions

Course Overview: Understanding Cloud Architect Technol-
ogy Solutions
Welcome to Understanding Cloud Architect Technology Solutions. This course is part of a series of five 
courses to help students prepare for Microsoft’s Azure Solutions Architect technical certification exam 
AZ-300: Microsoft Azure Architect Technologies. These courses are designed for IT professionals and 
developers with experience and knowledge across various aspects of IT operations, including networking, 
virtualization, identity, security, business continuity, disaster recovery, data management, budgeting, and 
governance.

This course educates IT professionals on how operations are accomplished both in parallel and asynchro-
nously. By using the Azure Application Architecture Guide and Azure reference architectures as a basis, 
you will understand how monitoring and telemetry are critical for gaining insight into a system. You will 
explore the cloud design patterns that are important. For example, partitioning workloads of a modular 
application divided into functional units that can be integrated into a larger application. In such cases, 
each module handles a portion of the application's overall functionality and represents a set of related 
concerns.

Also, you will understand how load balancing the application traffic, or load, can be distributed among 
various endpoints using algorithms. For example, load balancers allowing multiple instances of your 
website to be created and thus allowing them to behave in a predictable manner. In Azure, it is possible 
to use virtual load balancers, which are hosted in virtual machines, allowing for very specific load balancer 
configurations.

Lastly, an overview of hybrid networking that includes site-to-site connectivity, point-to-site connectivity, 
and the combination of the two.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



2  Module 0   Start Here

The outline for this course is as follows:

Module 1 - Selecting Compute and Storage Solutions

This module includes the following topics:

●● Azure Architecture Center

●● Cloud design patterns

●● Competing consumers pattern

●● Cache-aside pattern

●● Sharding patterns to divide a data store into horizontal partitions, or shards

This module contains the online lab Implementing Azure Storage Access Controls.

Module 2 - Hybrid Networking

This module includes the following topics:

●● Site-to-site connectivity

●● Point-to-site connectivity

●● Combining site-to-site and point-to-site connectivity

●● Virtual network–to–virtual network connectivity

As well as connecting across cloud providers for failover, backup, or even migration between providers 
such as AWS.

Module 3 – Measuring Throughput and Structure of Data Access

This module includes the following topics:

●● DTUs – Azure SQL Database

●● RUs – Azure Cosmos DB

●● Structured and unstructured data

●● Using structured data stores

This module contains the online lab Implementing Azure Load Balancer Standard.

Module 4 - Implementing Authentication

Topics for this module include:

●● Implementing authentication in applications (certificates, Azure AD, Azure AD Connect, to-
ken-based)

●● Implementing multi-factor authentication

●● Claims-based authorization

●● Role-based access control (RBAC) authorization

This module contains the online lab Implementing Custom Role Based Access Control (RBAC) Roles.

Module 5 - Implementing Secure Data

Topics for this module include:

●● End-to-end encryption

●● Implementing Azure confidential computing

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Welcome to Understanding Cloud Architect Technology Solutions  3

●● Implementing SSL and TLS communications

●● Managing cryptographic keys in Azure Key Vault

Module 6 - Business Continuity and Resiliency in Azure

●● Business Continuity and Resiliency

●● High Availability and Disaster Recovery

●● Resiliency

●● Application Design

●● Testing, Deployment, and Maintenance

●● Data Management

●● Monitoring and Disaster Recovery

What You’ll Learn:
●● Design and Connectivity Patterns

●● Hybrid Networking

●● Address Durability of Data and Caching

●● Measure Throughput and Structure of Data Access

Prerequisites:
Successful Cloud Solutions Architects begin this role with practical experience with operating systems, 
virtualization, cloud infrastructure, storage structures, billing, and networking.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED





Module 1   Module Selecting Compute and 
Storage Solutions

Design and Connectivity Patterns
Azure Architecture Center
The cloud is changing the way applications are designed. Instead of being monoliths, applications are 
decomposed into smaller, decentralized services. These services communicate through APIs or by using 
asynchronous messaging or eventing. Applications scale horizontally, adding new instances as demand 
requires.

These trends bring new challenges. The application state is distributed. Operations are done in parallel 
and asynchronously. The system as a whole must be resilient when failures occur. Deployments must be 
automated and predictable. Monitoring and telemetry are critical for gaining insight into the system. The 
Azure Architecture Center is designed to help you navigate these changes.

Azure Application Architecture Guide
To view the guide, refer to https://docs.microsoft.com/azure/architecture/guide/

The Microsoft Azure Application Architecture Guide is intended for application architects, developers, and 
operations teams and describes how to design and implement common software architectures. It is not 
service specific and includes the following sections:

●● List of architecture styles

●● Technology choices for each component of a design

●● High-level design principles for applications

●● Software quality metrics

Azure reference architectures
To view the guide, refer to https://docs.microsoft.com/azure/architecture/reference-architectures/

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



6  Module 1   Module Selecting Compute and Storage Solutions

The Azure Reference Architectures landing page is a collection of architectural diagrams and explanations 
for the most-common cloud solution designs. These architectures range from data-centric applications to 
n-tier web applications to DevOps platforms and even to infrastructure-only deployments. Each reference 
architecture includes:

●● A description of the architectural diagram

●● Common recommendations

●● Considerations in the following categories:

--Scalability

--Security

--Availability

--Manageability

--Steps on how to deploy an example solution

Cloud design patterns
To view the guide, refer to https://docs.microsoft.com/azure/architecture/patterns/

The Azure Architecture Center contains a guide published by the Patterns & Practices team that provides 
not just guidance but also over 20 examples of the most-common design patterns used for cloud 
applications. These patterns are neither specific to Microsoft ASP.NET or to Microsoft. Each pattern 
describes the problem that the pattern addresses, considerations for applying the pattern, and an 
example based on Microsoft Azure. Most of the patterns include code samples or snippets that show how 
to implement the pattern in Azure. However, most of the patterns are relevant to any distributed system, 
whether hosted in Azure or in other cloud platforms.

Application design concepts
Before you dive into the cloud design patterns, it is important to understand a few key design concepts.

Partitioning workloads
A modular application is divided into functional units, also referred to as modules, which can be integrat-
ed into a larger application. Each module handles a portion of the application's overall functionality and 
represents a set of related concerns. Modular applications make it easier to design both current and 
future iterations of your application. Existing modules can be extended, revised, or replaced to iterate 
changes to your full application. Modules can also be tested, distributed, and otherwise verified in 
isolation. Modular design benefits are well understood by many developers and architects in the software 
industry.

Load balancing
Load balancing is a computing concept where the application traffic, or load, is distributed among 
various endpoints by using algorithms. When you use a load balancer, multiple instances of your website 
can be created, and they can behave in a predictable manner. This provides the flexibility to grow or 
shrink the number of instances in your application without changing the expected behavior.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Design and Connectivity Patterns  7

Load balancing strategy
There are a couple of things to consider when choosing a load balancer. First, you must decide whether 
you want to use a physical or a virtual load balancer. In Azure, it is possible to use virtual load balancers, 
which are hosted in virtual machines, if a company requires a very specific load balancer configuration.

After you select a specific load balancer, you need to select a load balancing algorithm. You can use 
various algorithms, such as round robin or random choice. For example, round robin selects the next 
instance for each request based on a predetermined order that includes all of the instances.

Other configuration options, such as affinity or stickiness, exist for load balancers. For example, stickiness 
allows you to determine whether a subsequent request from the same client machine should be routed 
to the same service instance. This might be required in scenarios where your application servers have a 
concept of state.

Transient fault handling
One of the primary differences between developing applications on-premises and in the cloud is the way 
you design your application to handle transient errors. Transient errors are as errors that occur due to 
temporary interruptions in the service or to excess latency. Many of these temporary issues are self-heal-
ing and can be resolved by exercising a retry policy.

Retry policies define when and how often a connection attempt should be retried when a temporary 
failure occurs. Simply retrying in an infinite loop can be just as dangerous as infinite recursion. A break in 
the circuit must eventually be defined so that the retries are aborted if the error is determined to be of a 
serious nature and not just a temporary issue.

Transient fault handling is a pattern that makes your application more resilient by handling temporary 
issues in a robust manner. This is done by managing connections and implementing a retry policy. This 
pattern is already implemented in many common Microsoft .NET libraries, such as Entity Framework, and 
in the Azure software development kit (SDK). This pattern is also implemented in the Microsoft Enterprise 
Library in such a generic manner that it can be brought into a wide variety of application scenarios.

Queues
Queueing is both a mathematical theory and a messaging concept in computer science. In cloud applica-
tions, queues are critical for managing requests between application modules in a manner such that they 
provide a degree of consistency regardless of the behavior of the modules.

An application might already have a direct connection to other application modules using direct method 
invocation, a two-way service, or any other streaming mechanism. If one of the application modules 
experiences a transient issue, this connection is severed and causes an immediate application failure. You 
can use a third-party queue to persist the requests beyond a temporary failure. Requests can also be 
audited independently of the primary application, because they are stored in the queue mechanism.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



8  Module 1   Module Selecting Compute and Storage Solutions

Retry Pattern

Problem: intermittent errors with cloud services
An application that communicates with elements running in the cloud must be sensitive to the transient 
faults that can occur in this environment. Such faults include the momentary loss of network connectivity 
to components and services, the temporary unavailability of a service, or timeouts that arise when a 
service is busy.

These faults are typically self-correcting, and if the action that triggered a fault is repeated after a suitable 
delay, it is likely to be successful. For example, a database service that is processing a large number of 
concurrent requests may implement a throttling strategy that temporarily rejects any further requests 
until its workload has eased. An application attempting to access the database may fail to connect, but if 
it tries again after a suitable delay, it may succeed.

Solution: application logic to retry requests that have tem-
porarily failed
In the cloud, transient faults are not uncommon, and an application should be designed to handle them 
elegantly and transparently, minimizing the effects that such faults might have on the business tasks that 
the application is performing.

If an application detects a failure when it attempts to send a request to a remote service, it can handle 
the failure by retrying the application logic after a short wait. For the more-common transient failures, the 
period between retries should be chosen so as to spread requests from multiple instances of the applica-
tion as evenly as possible. This can reduce the chance of a busy service continuing to be overloaded. If 
many instances of an application are continually bombarding a service with retry requests, it may take the 
service longer to recover.

If the request still fails, the application can wait again and make another attempt. There should be a limit 
on attempts to avoid sending endless requests to a service that may actually be completely inoperable. 
All code that accesses the remote service should be implemented using a retry policy such as the one 
described here.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Design and Connectivity Patterns  9

Competing consumers pattern

Problem: handling variable quantities of requests
An application running in the cloud may be expected to handle a large number of requests. The number 
of requests could vary significantly over time for many reasons. A sudden burst in user activity or aggre-
gated requests coming from multiple tenants may cause an unpredictable workload. At peak hours, a 
system might need to process many hundreds of requests per second, while at other times, the number 
could be very small. Additionally, the nature of the work performed to handle these requests might be 
highly variable.

Using a single instance of the consumer service might cause that instance to become flooded with 
requests, or the messaging system may be overloaded by an influx of messages coming from the applica-
tion.

Solution: asynchronous messaging with variable quantities 
of message producers and consumers
Rather than processing each request synchronously, a common technique is for the application to pass 
them through a messaging system to another service (a consumer service) that handles them asynchro-
nously. This strategy helps to ensure that the business logic in the application is not blocked while the 
requests are being processed.

A message queue can be used to implement the communication channel between the application and 
the instances of the consumer service. To handle fluctuating workloads, the system can run multiple 
instances of the consumer service. The application posts requests in the form of messages to the queue, 
and the consumer service instances receive messages from the queue and process them. This approach 
enables the same pool of consumer service instances to handle messages from any instance of the 
application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



10  Module 1   Module Selecting Compute and Storage Solutions

Cache-aside pattern

Problem: cached data consistency
Applications use a cache to optimize repeated access to information held in a data store. However, it is 
usually impractical to expect that cached data will always be completely consistent with the data in the 
data store. Application developers should consider a strategy that helps to ensure that the data in the 
cache is up-to-date as much as possible but that can also detect and handle situations that arise when 
the data in the cache has become stale.

Solution: read-through and write-through caching
Many commercial caching systems provide read-through and write-through/write-behind operations. In 
these systems, an application retrieves data by referencing the cache. If the data is not in the cache, it is 
transparently retrieved from the data store and added to the cache. Any modifications to data held in the 
cache are automatically written back to the data store, as well.

For caches that do not provide this functionality, it is the responsibility of the applications that use the 
cache to maintain the data in the cache. An application can emulate the functionality of read-through 
caching by implementing the cache-aside strategy. This strategy effectively loads data into the cache on 
demand if it's not already available in the cache.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Design and Connectivity Patterns  11

Sharding pattern

Problem: hosting large volumes of data in a traditional 
single-instance store
A data store hosted by a single server may be subject to limitations in the following areas:

●● Storage space. A data store for a large-scale cloud application may be expected to contain a huge 
volume of data that could increase significantly over time. A server typically provides only a finite 
amount of disk storage, but it may be possible to replace existing disks with larger ones or to add 
disks to a machine as data volumes grow. However, the system will eventually reach a hard limit 
whereby it is not possible to easily increase the storage capacity on a given server.

●● Computing resources. A cloud application may be required to support a large number of concurrent 
users, each of whom runs queries that retrieve information from the data store. A single server hosting 
the data store may not be able to provide the necessary computing power to support this load, 
resulting in extended response times for users and frequent failures as applications attempting to 
store and retrieve data time out. It may be possible to add memory or upgrade processors, but the 
system will reach a limit when it is not possible to increase the compute resources any further.

●● Network bandwidth. Ultimately, the performance of a data store running on a single server is 
governed by the rate at which the server can receive requests and send replies. It is possible that the 
volume of network traffic might exceed the capacity of the network used to connect to the server, 
resulting in failed requests.

●● Geography. It may be necessary to store data generated by specific users in the same region as those 
users for legal, compliance, or performance reasons or to reduce the latency of data access. If the 
users are dispersed across different countries and regions, it may not be possible to store all the data 
for the application in a single data store.

Scaling vertically by adding more disk capacity, processing power, memory, and network connections 
may postpone the effects of some of these limitations, but that is likely to be only a temporary solution. A 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



12  Module 1   Module Selecting Compute and Storage Solutions

commercial cloud application capable of supporting large numbers of users and high volumes of data 
must be able to scale almost indefinitely, so vertical scaling is not necessarily the best solution.

Solution: partitioning data horizontally across many nodes
Divide the data store into horizontal partitions, or shards. Each shard has the same schema but holds its 
own distinct subset of the data. A shard is a data store in its own right (it can contain the data for many 
entities of different types) running on a server acting as a storage node.

Sharding physically organizes the data. When an application stores and retrieves data, the sharding logic 
directs the application to the appropriate shard. This sharding logic may be implemented as part of the 
data access code in the application, or it could be implemented by the data storage system if it transpar-
ently supports sharding.

Abstracting the physical location of the data in the sharding logic provides a high level of control over 
which shards contain which data, and it enables data to migrate between shards without a reworking of 
the business logic of an application if the data in the shards needs to be redistributed later (for example, 
if the shards become unbalanced). The tradeoff is the additional data access overhead required in 
determining the location of each data item as it is retrieved.

To help ensure optimal performance and scalability, it is important to split the data in a way that is 
appropriate for the types of queries the application performs. In many cases, it is unlikely that the 
sharding scheme will exactly match the requirements of every query. For example, in a multitenant 
system, an application may need to retrieve tenant data by using the tenant ID, but it may also need to 
look up this data based on some other attribute, such as the tenant’s name or location. To handle these 
situations, implement a sharding strategy with a shard key that supports the most commonly performed 
queries.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Storage Access Controls  13

Online Lab - Implementing Azure Storage Ac-
cess Controls
Lab Steps

Online Lab: Implementing Azure Storage access controls
NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario
Adatum Corporation wants to protect content residing in Azure Storage

Objectives
After completing this lab, you will be able to:

●● Create an Azure Storage account.

●● Upload data to Azure Storage.

●● Implement Azure Storage access controls

Lab Setup
Estimated Time: 30 minutes

User Name: Student

Password: Pa55w.rd

Exercise 1: Creating and configuring an Azure Storage ac-
count
The main tasks for this exercise are as follows:

1.	 Create a storage account in Azure

2.	 View the properties of the storage account

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



14  Module 1   Module Selecting Compute and Storage Solutions

Task 1: Create a storage account in Azure
1.	 From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.

azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure 
subscription.

2.	 From Azure Portal, create a new storage account with the following settings:

●● Subscription: the name of the target Azure subscription

●● Resource group: a new resource group named az3000201-LabRG

●● Storage account name: any valid, unique name between 3 and 24 characters consisting of lower-
case letters and digits

●● Location: the name of the Azure region that is available in your subscription and which is closest to 
the lab location

●● Performance: Standard

●● Account kind: Storage (general purpose v1)

●● Replication: Locally-redundant storage (LRS)

●● Secure transfer required: Disabled

●● Virtual network: All networks

●● Hierarchical namespace: Disabled

3.	 Wait for the storage account to be provisioned. This will take about a minute.

Task 2: View the properties of the storage account
1.	 In Azure Portal, with your storage account blade open, review the Overview section, including the 

location, replication, and performance settings.

2.	 Display the Access keys blade. On the access keys blade, note that you have the option of copying 
the values of storage account names including key1 and key2. You also have the ability to regenerate 
both keys.

3.	 Display the Configuration blade.

4.	 On the Configuration blade, notice that you have the option of performing an upgrade to General 
Purpose v2 account and changing the replication settings. However, you cannot change the perfor-
mance setting (this can only be assigned when the storage account is created).

Result: After you completed this exercise, you have created your Azure Storage and examined its proper-
ties.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Storage Access Controls  15

Exercise 2: Creating and managing blobs
The main tasks for this exercise are as follows:

1.	 Create a container

2.	 Upload data to the container by using the Azure portal

3.	 Access content of Azure Storage account by using a SAS token

Task 1: Create a container
1.	 In the Azure portal, navigate to the blade displaying the properties of the storage account you created 

in the previous task.

2.	 From the storage account blade, create a new blob container with the following settings:

●● Name: labcontainer

●● Access type: Private

Task 2: Upload data to the container by using the Azure por-
tal
1.	 In the Azure portal, navigate to the labcontainer blade.

2.	 From the labcontainer blade, upload the file: C:\Windows\ImmersiveControlPanel\images\
splashscreen.contrast-white_scale-400.png.

Task 3: Access content of Azure Storage account by using a 
SAS token
1.	 From the labcontainer blade, identify the URL of the newly uploaded blob.

2.	 Start Microsoft Edge and navigate to that URL.

3.	 Note the ResourceNotFound error message. This is expected since the blob is residing in a private 
container, which requires authenticated access.

4.	 Switch to the Microsoft Edge window displaying the Azure portal and, on the splashscreen.con-
trast-white_scale-400.png blade, switch to the Generate SAS tab.

5.	 On the Generate SAS tab, enable the HTTP option and generate blob SAS token and the correspond-
ing URL.

6.	 Open a new Microsoft Edge window and, in the navigate to the URL generated in the previous step.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



16  Module 1   Module Selecting Compute and Storage Solutions

7.	 Note that you can view the image. This is expected since this time you are authorized to access the 
blob based on the SAS token included in the URL.

8.	 Close the Microsoft Edge window displaying the image.

Task 4: Access content of Azure Storage account by using a 
SAS token and a stored access policy.
1.	 In the Azure portal, navigate to the labcontainer blade.

2.	 From the labcontainer blade, navigate to the labcontainer - Access policy blade.

3.	 Add a new policy with the following settings:

●● Identifier: labcontainer-read

●● Permissions: Read

●● Start time: current date and time

●● Expiry time: current date and time + 24 hours

4.	 In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

5.	 If you are presented with the You have no storage mounted message, configure storage using the 
following settings:

●● Subsciption: the name of the target Azure subscription

●● Cloud Shell region: the name of the Azure region that is available in your subscription and which is 
closest to the lab location

●● Resource group: az3000201-LabRG

●● Storage account: a name of a new storage account

●● File share: a name of a new file share

6.	 From the Cloud Shell pane, run the following to identify the storage account resource you created in 
the first exercise of this lab and store it in a variable:

$storageAccount = (Get-AzStorageAccount -ResourceGroupName az3000201-LabRG)
[0] 

7.	 From the Cloud Shell pane, run the following to establish security context granting full control to the 
storage account:

$keyContext = $storageAccount.Context 

8.	 From the Cloud Shell pane, run the following to create a blob-specific SAS token based on the access 
policy you created in the previous task:

$sasToken = New-AzStorageBlobSASToken -Container 'labcontainer' -Blob 
'splashscreen.contrast-white_scale-400.png' -Policy labcontainer-read 
-Context $keyContext 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Storage Access Controls  17

9.	 From the Cloud Shell pane, run the following to establish security context based on the newly created 
SAS token:

$sasContext = New-AzStorageContext $storageAccount.StorageAccountName 
-SasToken $sasToken 

10.	From the Cloud Shell pane, run the following to retrieve properties of the blob:

Get-AzStorageBlob -Container 'labcontainer' -Blob 'splashscreen.con-
trast-white_scale-400.png' -Context $sasContext 

11.	Verify that you successfully accessed the blob.

12.	Minimize the Cloud Shell pane.

Task 5: Invalidate a SAS token by modifying its access policy.
1.	 In the Azure portal, navigate to the labcontainer - Access policy blade.

2.	 Edit the existing policy labcontainer-read by setting its start and expiry time to yesterday's date.

3.	 Reopen the Cloud Shell pane.

4.	 From the Cloud Shell pane, re-run the following to attempt retrieving properties of the blob:

Get-AzStorageBlob -Container 'labcontainer' -Blob 'splashscreen.con-
trast-white_scale-400.png' -Context $sasContext 

5.	 Verify that you no longer can access the blob.

Result: After you completed this exercise, you have created a blob container, uploaded a file into it, and 
tested access control by using a SAS token and a stored access policy.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



18  Module 1   Module Selecting Compute and Storage Solutions

Review Question
Module 1 Review Questions
Design Concepts

You are designing a solution for an organization. The solution will be entirely cloud-based.

You must implement a distributed model for workloads.

Which design patterns Should you consider?

Suggested Answer ↓ 
• Partitioning workloads 
A modular application is divided into functional units that each handles a portion of the application's 
functionality.  
• Load balancing 
Load balancing is a computing concept where the application traffic, or load, is distributed among 
various endpoints by using algorithms.  
• Load balancing strategy 
There are a couple of things to consider when choosing a load balancer. First, you must decide whether 
you want to use a physical or a virtual load balancer. You need to select a load-balancing algorithm suc as 
round robin or random choice.  
• Transient fault handling 
Transient errors are as errors that occur due to temporary interruptions in the service or to excess latency. 
You can use retries to handle these types of errors. 
• Queues 
You can implement queues to ensure that messages are received and processed in a specific order. 
 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Module 2   Module Hybrid Networking

Hybrid Networking
Site-to-site connectivity

A site-to-site VPN allows you to create a security-enhanced connection between your on-premises site 
and your virtual network. To create a site-to-site connection, a VPN device that is located on your 
on-premises network is configured to create a security-enhanced connection with the Azure Virtual 
Network gateway. Once the connection is created, resources on your local network and resources located 
in your virtual network can directly and more-securely communicate. Site-to-site connections do not 
require you to establish a separate connection for each client computer on your local network to access 
resources in the virtual network.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



20  Module 2   Module Hybrid Networking

Point-to-site connectivity

A point-to-site VPN also allows you to create a security-enhanced connection to your virtual network. In 
a point-to-site configuration, the connection is configured individually on each client computer that you 
want to connect to the virtual network. Point-to-site connections do not require a VPN device. They work 
by using a VPN client that you install on each client computer. The VPN is established by manually 
starting the connection from the on-premises client computer. You can also configure the VPN client to 
automatically restart.

Note: Point-to-site and site-to-site configurations can exist concurrently.

Combining site-to-site and point-to-site connec-
tivity

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Hybrid Networking  21

Site-to-site and point-to-site connections can be combined for a variety of reasons. In the following 
diagram, the enterprise has decided to use a site-to-site connection to connect the in-office networks to 
Azure. Developers who are working remotely can connect to the virtual networks directly using a point-
to-site connection.

Combining ExpressRoute and site-to-site Con-
nectivity

You can connect ExpressRoute and a site-to-site VPN on the same virtual network. There are many 
reasons you may want to do this:

●● You may have multiple branch offices, and it would be cost prohibitive to purchase peering for every 
location. You can use a site-to-site VPN for the locations that don't require the fastest or most reliable 
connections.

●● You may have multiple networks within your enterprise and may want to connect one to Azure using 
ExpressRoute and one to Azure using a site-to-site VPN so there are two active connections. The 
ExpressRoute connection could be used for higher-risk traffic.

●● You can use the site-to-site VPN as a failover link if the ExpressRoute connection fails.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



22  Module 2   Module Hybrid Networking

Virtual network–to–virtual network connectivity

Virtual network–to–virtual network connectivity utilizes the Azure VPN gateways to more-securely 
connect two or more virtual networks together with Internet Protocol security (IPsec) / Internet Key 
Exchange (IKE) S2S VPN tunnels. Together with the multi-site VPNs, you can connect your virtual net-
works and on-premises sites together in a topology that suits your business needs. The diagram in the 
following section shows a simple example of a fully connected topology between virtual networks and 
on-premises sites.

Connecting across cloud providers
Since a site-to-site connection is simply an IPsec tunnel, you can connect to networks across cloud 
providers. This scenario could be used for failover, backup, or even migration between providers.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Hybrid Networking  23

Amazon Web Services (AWS)

In AWS, you can create a virtual private cloud that provides network capabilities similar to those of a 
virtual network in Azure. An Amazon Elastic Compute Cloud (EC2) instance with Openswan (VPN soft-
ware) can then be created for VPN functionality. After those instances are running, you simply create a 
gateway on the Azure virtual network side using static routing. The gateway IP address from Azure is then 
used to configure Openswan for a tunnel connection between the two virtual networks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



24  Module 2   Module Hybrid Networking

Virtual Network-to-Network
Virtual network–to–virtual network connectivity

Virtual network–to–virtual network connectivity utilizes the Azure VPN gateways to more-securely 
connect two or more virtual networks together with Internet Protocol security (IPsec) / Internet Key 
Exchange (IKE) S2S VPN tunnels. Together with the multi-site VPNs, you can connect your virtual net-
works and on-premises sites together in a topology that suits your business needs. The diagram in the 
following section shows a simple example of a fully connected topology between virtual networks and 
on-premises sites.

Connecting across cloud providers
Since a site-to-site connection is simply an IPsec tunnel, you can connect to networks across cloud 
providers. This scenario could be used for failover, backup, or even migration between providers.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Virtual Network-to-Network  25

Amazon Web Services (AWS)

In AWS, you can create a virtual private cloud that provides network capabilities similar to those of a 
virtual network in Azure. An Amazon Elastic Compute Cloud (EC2) instance with Openswan (VPN soft-
ware) can then be created for VPN functionality. After those instances are running, you simply create a 
gateway on the Azure virtual network side using static routing. The gateway IP address from Azure is then 
used to configure Openswan for a tunnel connection between the two virtual networks.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



26  Module 2   Module Hybrid Networking

Review Question
Module 2 Review Question
Combining site-to-site and point-to-site connectivity

An organization is developing a new application with the help of a consulting company. The consulting 
company is developing part of the solution in a remote location.

Management of your company is concerned to giving teams of external developers access to internal 
resources.

Which hybrid networking solution will minimize risk and maximize connectivity? Why might you choose 
one networking solution over another?

Suggested Answer ↓ 
Site-to-site and point-to-site connections can be combined for a variety of reasons. In this scenario, the 
enterprise has decided to use a site-to-site connection to connect the in-office networks to Azure, which 
can then be accessed by an off-shore development team, without exposing internal resources to the 
offshore team. Developers who are working remotely can connect to the virtual networks directly using a 
point-to-site connection. 
 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Module 3   Module Measure Throughput and 
Structure of Data Access

Address Durability of Data and Caching
Data Concurrency

ACID
The acronym ACID stands for atomic, consistent, isolated, and durable. To ensure predictable behavior, all 
transactions must possess these basic properties, reinforcing the role of mission-critical transactions as 
all-or-none propositions:

●● Atomic: A transaction must execute exactly once and must be atomic, meaning all work completes or 
none of it does. Operations within a transaction usually share a common intent and are interdepend-
ent. By performing only a subset of these operations, the system could compromise the overall intent 
of the transaction. Atomicity eliminates the chance of processing only a subset of operations.

●● Consistent: A transaction must preserve the consistency of data, transforming one consistent state of 
data into another consistent state of data. Typically, the application developer is responsible for 
maintaining consistency.

●● Isolated: A transaction must be a unit of isolation, which means that concurrent transactions should 
behave as if each were the only transaction running in the system. Because a high degree of isolation 
can limit the number of concurrent transactions, some applications reduce the isolation level in 
exchange for better throughput.

●● Durable: A transaction must be recoverable and therefore must have durability. If a transaction 
commits, the system guarantees that its updates can persist even if the computer crashes immediately 
after the commit. Specialized logging allows the system's restart procedure to complete unfinished 
operations required by the transaction, making the transaction durable.

A transaction in a database system is a set of operations, which are related, that seek to achieve some or 
all the ACID properties. In most relational database management systems (RDBMS), a transaction is a 
single unit of work. If a transaction is successful, all of the data modifications made during the transaction 
are committed and become a permanent part of the database. The database system erases all data 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



28  Module 3   Module Measure Throughput and Structure of Data Access

modifications based on that transaction if a transaction encounters any errors or must be rolled back for 
another reason.

Caching in distributed applications
Caching is a common technique that aims to improve the performance and scalability of a system. It does 
this by temporarily copying frequently accessed data to fast storage that's located close to the applica-
tion. If this fast data storage is located closer to the application than the original source, then caching can 
significantly improve response times for client applications by serving data more quickly.

Caching is most effective when a client instance repeatedly reads the same data, especially if all the 
following conditions apply to the original data store:

●● It remains relatively static.

●● It's slow compared to the cache’s speed.

●● It's subject to a significant level of contention.

●● It's far away when network latency can cause access to be slow.

Distributed applications typically implement either or both of the following strategies when caching data:

●● Using a private cache, where data is held locally on the computer that's running an instance of an 
application or service.

●● Using a shared cache, serving as a common source which multiple processes and/or machines can 
access.

In both cases, caching can occur on the client-side and the server-side. The process that provides the user 
interface for a system, such as a web browser or desktop application, performs client-side caching, while 
the process that provides the business services that are running remotely performs the server-side 
caching.

Private caching
The most basic type of cache is an in-memory store. It's held in the address space of a single process and 
accessed directly by the code that runs in that process. This type of cache is very quick to access. It can 
also provide an extremely effective means for storing modest amounts of static data, since the size of a 
cache is typically constrained by the volume of memory that's available on the machine hosting the 
process.

If you need to cache more information than is physically possible in memory, you can write cached data 
to the local file system. This will be slower to access than data that's held in-memory but should still be 
faster and more dependable than retrieving data across a network. If you have multiple instances of an 
application that uses this model running concurrently, each application instance has its own independent 
cache holding its own copy of the data.

Think of a cache as a snapshot of the original data at a point in the past. If this data is not static, it is likely 
that different application instances hold different versions of the data in their caches. Therefore, the same 
query performed by these instances can return different results.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Address Durability of Data and Caching  29

Shared caching
Using a shared cache can help alleviate concerns that data might differ in each cache, which can occur 
with in-memory caching. Shared caching ensures that different application instances see the same view 
of cached data. It does this by locating the cache in a separate location, typically hosted as part of a 
separate service.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



30  Module 3   Module Measure Throughput and Structure of Data Access

An important benefit of the shared caching approach is the scalability it provides. Many shared cache 
services are implemented by using a cluster of servers and utilize software that distributes the data across 
the cluster in a transparent manner. An application instance simply sends a request to the cache service. 
The underlying infrastructure is responsible for determining the location of the cached data in the cluster. 
You can easily scale the cache by adding more servers.

There are two main disadvantages of the shared caching approach:

●● The cache is slower to access because it isn’t held locally to each application instance.

●● The requirement to implement a separate cache service might add complexity to the solution.

Caching considerations

When to cache data
Caching can dramatically improve performance, scalability, and availability. The more data that you have 
and the larger the number of users that need to access this data, the greater the benefits of caching 
become. That's because caching reduces the latency and contention that's associated with handling large 
volumes of concurrent requests in the original data store.

For example, a database might support a limited number of concurrent connections. Retrieving data from 
a shared cache, however, rather than the underlying database, makes it possible for a client application to 
access this data even if the number of available connections is currently exhausted. Additionally, if the 
database becomes unavailable, client applications might be able to continue by using the data that's held 
in the cache.

How to cache data effectively
The key to using a cache effectively lies in determining the most appropriate data to cache and caching it 
at the appropriate time. You can add the data to the cache on demand the first time it is retrieved by an 
application. This means that the application needs to fetch the data only once from the data store, and 
that subsequent access can be satisfied by using the cache.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Address Durability of Data and Caching  31

Alternatively, a cache can be partially or fully populated with data in advance, typically when the applica-
tion starts (an approach known as seeding). However, it might not be advisable to implement seeding for 
a large cache because this approach can impose a sudden, high load on the original data store when the 
application starts running. Caching typically works well with data that is immutable or that changes 
infrequently.

Manage data expiration in a cache
In most cases, data that's held in a cache is a copy of data that's held in the original data store. The data 
in the original data store might change after it was cached, causing the cached data to become stale. 
Many caching systems enable you to configure the cache to expire data and reduce the period for which 
data may be out of date.

When cached data expires, it's removed from the cache, and the application must retrieve the data from 
the original data store (it can put the newly-fetched information back into cache). You can set a default 
expiration policy when you configure the cache. In many cache services, you can also stipulate the 
expiration period for individual objects when you store them programmatically in the cache.

Redis Cache
Note: There are two primary cache mechanisms available in Azure–Azure Cache and Azure Redis Cache. 
Azure Cache is deprecated and only exists to support existing cloud applications. All new applications 
should use the Redis Cache.

Redis Cache is an open-source not only SQL (NoSQL) storage mechanism that is implemented in the 
key-value pair pattern common among other NoSQL stores. Redis Cache is unique because it allows com-
plex data structures for its keys.

Azure Redis Cache is a managed service based on Redis Cache that provides you secure nodes as a 
service. There are only two tiers for this service currently available:

●● Basic: Includes a single node.

●● Standard: Includes two nodes in the Primary/Replica configuration and also includes replication 
support and a Service Level Agreement (SLA).

Azure Redis Cache provides a high degree of compatibility with existing tools and applications that 
already integrate with Redis Cache. You can use the Redis Cache documentation that already exists on the 
open source community for Azure Redis Cache.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



32  Module 3   Module Measure Throughput and Structure of Data Access

Redis Cache Console

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Measure Throughput and Structure of Data Access  33

Measure Throughput and Structure of Data 
Access
Normalized Units
In a world of hyperscale database services, it can be difficult to determine how much performance you 
need or how powerful an allocated database is. To help ease this challenge, many cloud vendors have 
provided normalized units of measurements that can be used to compare database tiers. Sometimes 
these units of measurement have a direct relation to on-premises database equivalents, but it is simpler 
to think of them as relative performance guarantees.

For example, if your application uses 20 database units today, 40 database units will guarantee you 
approximately double your performance, while 10 database units will guarantee you half of your perfor-
mance.

Let’s look at a few examples of normalized units in Azure and examine how you can use them to compare 
database service tiers.

DTUs – Azure SQL Database
In Azure SQL Database, we measure database performance in terms of database throughput units 
(DTUs). The DTU model is based on a bundled measure of compute, storage, and IO resources. Perfor-
mance levels are expressed in terms of database transaction units (DTUs) for single databases and elastic 
database transaction units (eDTUs) for elastic pools.

DTUs describe the capacity for a specific tier and performance level, and they are designed to be relative 
so that you can directly compare the tiers and performance levels. For example, the Basic tier has a single 
performance level (B) that is rated at 5 DTU. The S2 performance level in the Standard tier is rated at 50 
DTU. This means that you can expect ten times the power for a database at the S2 performance level than 
a database at the B performance level in the Basic tier.

The easiest way to visualize a DTU is to think about it in the context of a bounding box. The box repre-
sents the relative power (or resources) assigned to the database. This relative power is a natural blended 
measurement of the central processing unit (CPU), memory, and read-write performance:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



34  Module 3   Module Measure Throughput and Structure of Data Access

Every tier has one or more performance levels. In general, the performance levels in the Premium tier 
have a higher rating than the performance levels in the Standard tier, which have a higher rating than 
those in the Basic tier. The following chart illustrates this distinction. Service tiers are differentiated by a 
range of performance levels with a fixed amount of included storage, fixed retention period for backups, 
and fixed price. All service tiers provide flexibility of changing performance levels without downtime.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Measure Throughput and Structure of Data Access  35

RUs – Azure Cosmos DB
Azure Cosmos DB reserves resources to manage the throughput of an application. Because, application 
load and access patterns change over time, Azure Cosmos DB has support built-in to increase or decrease 
the amount of reserved throughput available at any time.

With Azure Cosmos DB, reserved throughput is specified in terms of request unit processing per 
second (RU/s). You reserve several guaranteed request units to be available to your application on a 
per-second basis. Each operation in Azure Cosmos DB, including writing a document, performing a query, 
and updating a document, consumes CPU, memory, and Input/output operations per second (IOPS). That 
is, each operation incurs a request charge, which is expressed in request units.

A request unit is a normalized measure of request processing cost. A single request unit represents the 
processing capacity that’s required to read, via self-link or ID, a single item that is 1 kilobyte (KB) and that 
consists of 10 unique property values (excluding system properties). A request to create (insert), replace, 
or delete the same item consumes more processing from the service and thereby requires more request 
units.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



36  Module 3   Module Measure Throughput and Structure of Data Access

Structured and Unstructured Data
Modern business systems manage increasingly large volumes of data, typically ingesting data from 
external services that the system generates or that users create. These data sets may have extremely 
varied characteristics and processing requirements. Businesses use data to assess trends, trigger business 
processes, audit their operations, analyze customer behavior, and other factors.

This heterogeneity means that a single data store is usually not the best approach. Instead, it's often 
better to store diverse types of data in different data stores, each focused towards a specific workload or 
usage pattern. The term polyglot persistence describes solutions that use a mix of data store technolo-
gies.

Selecting the right data store for your requirements is a key design decision. There are hundreds of 
implementations to choose from among SQL and NoSQL databases. Data stores typically are categorized 
by how they structure data and the types of operations they support. This article describes several 
common storage models.

Using structured data stores
Relational databases organize data as a series of two-dimensional tables with rows and columns. Each 
table has its own columns, and every row in a table has the same set of columns. This model is mathe-
matically based, and most vendors provide a dialect of the Structured Query Language (SQL) for retriev-
ing and managing data. An RDBMS typically implements a transactionally consistent mechanism that 
conforms to the ACID (Atomic, Consistent, Isolated, Durable) model for updating information.

An RDBMS typically supports a schema-on-write model, where you define the data structure and then all 
read or write operations use the schema. An RDBMS is especially useful when strong consistency guaran-
tees are important — where all changes are atomic, and transactions always leave the data in a consistent 
state. However, the underlying structures do not lend themselves to scaling out by distributing storage 
and processing across machines.

Structured data stores in Azure include:

●● Azure SQL Database

●● Azure Database for MySQL

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Measure Throughput and Structure of Data Access  37

●● Azure Database for PostgreSQL

Using Unstructured or semi-structured data 
stores
A non-relational database doesn’t use the tabular schema of rows and columns that most traditional 
database systems use. Rather, non-relational databases utilize an optimized storage model that is based 
on specific requirements of the type of data it’s story. For example, a non-relational database might store 
date as simple key/value pairs, as JSON documents, or as a graph consisting of edges and vertices.

What all of these data stores have in common is that they don't use a relational model. Also, they tend to 
be more specific in the type of data they support and how you can query that data. For example, time 
series data stores are optimized for queries over time-based sequences of data, while graph data stores 
are optimized for exploring weighted relationships between entities. Neither format would generalize 
well to the task of managing transactional data.

The term NoSQL refers to data stores that do not use SQL for queries, and instead use other program-
ming languages and constructs to query the data. In practice, “NoSQL” means "non-relational database," 
even though several of these databases do support SQL-compatible queries. However, the underlying 
query execution strategy is usually quite different from the way a traditional RDBMS would execute the 
same SQL query. There are several types of NoSQL data stores, and we’ll detail the most common in the 
next sections of this article.

Document databases
A document database is conceptually similar to a key/value store, except that it stores a collection of 
named fields and data (known as documents), each of which could be simple scalar items or compound 
elements such as lists and child collections. There are several ways in which you can encode the data in a 
document’s fields, including using Extensible Markup Language (XML), YAML, JavaScript Object Notation 
(JSON), Binary JSON (BSON), or even storing it as plain text. Unlike key/value stores, the fields in docu-
ments are exposed to the storage management system, enabling an application to query and filter data 
by using the values in these fields.

Typically, a document contains the entire data for an entity. What items constitute an entity are applica-
tion specific. For example, an entity could contain the details of a customer, an order, or a combination of 
both. A single document may contain information that would be spread across several relational tables in 
an RDBMS.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



38  Module 3   Module Measure Throughput and Structure of Data Access

Document stores in Azure include:

●● Azure Cosmos DB

Graph databases
A graph database stores two types of information, nodes and edges. You can think of nodes as entities. 
Edges which specify the relationships between nodes. Both nodes and edges can have properties that 
provide information about that node or edge, similar to columns in a table. Edges can also have a 
direction indicating the nature of the relationship.

The purpose of a graph database is to allow an application to efficiently perform queries that traverse the 
network of nodes and edges, and to analyze the relationships between entities. The following diagram 
shows an organization's personnel database structured as a graph. The entities are employees and 
departments, and the edges indicate reporting relationships and the department in which employees 
work. In this graph, the arrows on the edges show the direction of the relationships.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Measure Throughput and Structure of Data Access  39

Graph stores in Azure include:

●● Azure Cosmos DB

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



40  Module 3   Module Measure Throughput and Structure of Data Access

Online Lab - Implementing Azure Load Balanc-
er Standard
Lab Steps

Online Lab: Implementing Azure Load Balancer Standard
NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario
Adatum Corporation wants to implement Azure Load Balancer Standard to direct inbound and outbound 
traffic of Azure VMs.

Objectives
After completing this lab, you will be able to:

●● Implement inbound load balancing by using Azure Load Balancer Standard

●● Configure outbound SNAT traffic by using Azure Load Balancer Standard

Lab Setup
Estimated Time: 45 minutes

User Name: Student

Password: Pa55w.rd

Exercise 1: Implement inbound load balancing and NAT by 
using Azure Load Balancer Standard
The main tasks for this exercise are as follows:

1.	 Deploy Azure VMs in an availability set by using an Azure Resource Manager template

2.	 Create an instance of Azure Load Balancer Standard

3.	 Create a load balancing rule of Azure Load Balancer Standard

4.	 Create a NAT rule of Azure Load Balancer Standard

5.	 Test functionality of Azure Load Balancer Standard

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Load Balancer Standard  41

Task 1: Deploy Azure VMs in an availability set by using an 
Azure Resource Manager template
1.	 From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.

azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure 
subscription.

2.	 In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

3.	 If you are presented with the You have no storage mounted message, configure storage using the 
following settings:

●● Subsciption: the name of the target Azure subscription

●● Cloud Shell region: the name of the Azure region that is available in your subscription and which is 
closest to the lab location

●● Resource group: the name of a new resource group az3000800-LabRG

●● Storage account: a name of a new storage account

●● File share: a name of a new file share

4.	 From the Cloud Shell pane, create a resource groups by running (replace the <Azure region> 
placeholder with the name of the Azure region that is available in your subscription and which is 
closest to the lab location)

az group create --name az3000801-LabRG --location <Azure region> 

5.	 From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_03\azuredeploy0801.json into the home directory.

6.	 From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_03\azurede-
ploy0801.parameters.json into the home directory.

7.	 From the Cloud Shell pane, deploy a pair of Azure VMs hosting Windows Server 2016 Datacenter by 
running:

az group deployment create --resource-group az3000801-LabRG --template-file 
azuredeploy0801.json --parameters @azuredeploy0801.parameters.json 

8.	 Note: Wait for the deployment before you proceed to the next task. This might take about 10 min-
utes.

9.	 In the Azure portal, close the Cloud Shell pane.

Task 2: Create an instance of Azure Load Balancer Standard
1.	 In the Azure portal, create a new Azure Load Balancer with the following settings:

●● Subsciption: the name of the target Azure subscription

●● Resource group: az3000801-LabRG

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



42  Module 3   Module Measure Throughput and Structure of Data Access

●● Name: az3000801-lb

●● Region: the name of the Azure region in which you deployed Azure VMs in the previous task of 
this exercise

●● Type: Public

●● SKU: Standard

●● Public IP address: Create new named az3000801-lb-pip01

●● Availability zone: Zone-redundant

Task 3: Create a load balancing rule of Azure Load Balancer 
Standard
1.	 In the Azure portal, navigate to the blade displaying the properties of the newly deployed Azure Load 

Balancer az3000801-lb.

2.	 On the az3000801-lb blade, click Backend pools.

3.	 On the az3000801-lb - Backend pools blade, click + Add.

4.	 On the Add backend pool blade, specify the following settings and click Add:

●● Name: az3000801-bepool

●● Virtual network: az3000801-vnet (2 VM)

●● VIRTUAL MACHINE: az3000801-vm0 IP ADDRESS: ipconfig1 (10.0.0.4) or ipconfig1 (10.0.0.5)

●● VIRTUAL MACHINE: az3000801-vm1 IP ADDRESS: ipconfig1 (10.0.0.5) or ipconfig1 (10.0.0.4)

5.	 Note: It is possible that the IP addresses of virtual machines are asssigned in the reversed order.

6.	 Note: Wait for the operation to complete. This should not take more than 1 minute.

7.	 Back on the az3000801-lb - Backend pools blade, click Health probes.

8.	 On the az3000801-lb - Health probes blade, click + Add.

9.	 On the Add health probe blade, specify the following settings and click OK:

●● Name: az3000801-healthprobe

●● Protocol: TCP

●● Port: 80

●● Interval: 5

●● Unhealthy threshold: 2

10.	Note: Wait for the operation to complete. This should not take more than 1 minute.

11.	Back on the az3000801-lb - Health probes blade, click Load balancing rules.

12.	On the az3000801-lb - Load balancing rules blade, click + Add.

13.	On the Add load balancing rule blade, specify the following settings and click OK:

●● Name: az3000801-lbrule01

●● IP Version: IPv4

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Load Balancer Standard  43

●● Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the 
drop-down list

●● Protocol: TCP

●● Port: 80

●● Backend port: 80

●● Backend pool: az3000801-bepool (2 virtual machines)

●● Health probe: az3000801-healthprobe (TCP:80)

●● Session persistence: None

●● Idle timeout (minutes): 4

●● Floating IP (direct server return): Disabled

14.	Note: Wait for the operation to complete. This should not take more than 1 minute.

Task 4: Create a NAT rule of Azure Load Balancer Standard
1.	 In the Azure portal, on the az3000801-lb blade, click Inbound NAT rules.

2.	 On the az3000801-lb - Inbound NAT rules blade, click + Add.

3.	 On the Add inbound NAT rule blade, specify the following settings and click OK:

●● Name: az3000801-vm0-RDP

●● Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the 
drop-down list

●● IP Version: IPv4

●● Service: RDP

●● Protocol: TCP

●● Port: 33890

●● Target virtual machine: az3000801-vm0

●● Network IP configuration: ipconfig1 (10.0.0.4) or ipconfig1 (10.0.0.5)

●● Port mapping: Custom

●● Floating IP (direct server return): Disabled

●● Target port: 3389

4.	 Note: Wait for the operation to complete. This should not take more than 1 minute.

5.	 Back on the az3000801-lb - Inbound NAT rules blade, click + Add.

6.	 On the Add inbound NAT rule blade, specify the following settings and click OK:

●● Name: az3000801-vm1-RDP

●● Frontend IP address: select the public IP address assigned to the LoadBalancedFrontEnd from the 
drop-down list

●● IP Version: IPv4

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



44  Module 3   Module Measure Throughput and Structure of Data Access

●● Service: RDP

●● Protocol: TCP

●● Port: 33891

●● Target virtual machine: az3000801-vm1

●● Network IP configuration: ipconfig1 (10.0.0.5) or ipconfig1 (10.0.0.4)

●● Port mapping: Custom

●● Floating IP (direct server return): Disabled

●● Target port: 3389

7.	 Note: Wait for the operation to complete. This should not take more than 1 minute.

Task 5: Test functionality of Azure Load Balancer Standard
1.	 In the Azure portal, navigate to the az3000801-lb blade and note the value of the Public IP address 

entry.

2.	 On the lab computer, start Microsoft Edge and navigate to the IP address you identified in the 
previous step.

3.	 Verify that you are presented with the default Internet Information Services Welcome page.

4.	 On the lab computer, right-click Start, click Run, and, from the Open text box, run the following 
(replace the <IP address> placeholder with the public IP address you identified earlier in this task):

mstsc /v:<IP address>:33890 

5.	 When prompted, authenticate by specifying the following values:

●● User name: Student

●● Password: Pa55w.rd1234

6.	 Within the Remote Desktop session, switch to the Local Server view in the Server Manager window 
and verify that you are connected to az3000801-vm0 Azure VM.

7.	 Switch to the lab computer, right-click Start, click Run, and, from the Open text box, run the following 
(replace the <IP address> placeholder with the IP address you identified earlier in this task):

mstsc /v:<IP address>:33891 

8.	 When prompted, authenticate by specifying the following values:

●● User name: Student

●● Password: Pa55w.rd1234

9.	 Within the Remote Desktop session, switch to the Local Server view in the Server Manager window 
and verify that you are connected to az3000801-vm1 Azure VM.

10.	Within the Remote Desktop session, start a Windows PowerShell session and run the following to 
determine your current public IP address:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Load Balancer Standard  45

Invoke-RestMethod http://ipinfo.io/json  

11.	Review the output of the cmdlet and verify that the IP address entry matches the public IP address 
you identified earlier in this task.

12.	Leave the Remote Desktop sessions open. You will use them in the next exercise.

Result: After you completed this exercise, you have implemented and tested Azure Load Balancer 
Standard inbound load balancing and NAT rules

Exercise 2: Configure outbound SNAT traffic by using Az-
ure Load Balancer Standard
The main tasks for this exercise are as follows:

1.	 Deploy Azure VMs into an existing virtual network by using an Azure Resource Manager template

2.	 Create an Azure Standard Load Balancer and configure outbound SNAT rules

3.	 Test outbound rules of Azure Standard Load Balancer

Task 1: Deploy Azure VMs into an existing virtual network by 
using an Azure Resource Manager template
1.	 From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.

azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure 
subscription.

2.	 In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

3.	 From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_03\azuredeploy0802.json into the home directory.

4.	 From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_03\azurede-
ploy0802.parameters.json into the home directory.

5.	 From the Cloud Shell pane, deploy a pair of Azure VMs hosting Windows Server 2016 Datacenter by 
running:

az group deployment create --resource-group az3000801-LabRG --template-file 
azuredeploy0802.json --parameters @azuredeploy0802.parameters.json 

6.	 Note: Wait for the deployment before you proceed to the next task. This might take about 5 minutes.

7.	 In the Azure portal, close the Cloud Shell pane.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



46  Module 3   Module Measure Throughput and Structure of Data Access

Task 2: Create an Azure Standard Load Balancer and config-
ure outbound SNAT rules
1.	 In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

2.	 In the Azure portal, from the Cloud Shell pane, run the following to create an outbound public IP 
address of the load balancer:

az network public-ip create --resource-group az3000801-LabRG --name 
az3000802-lb-pip01 --sku standard 

3.	 In the Azure portal, from the Cloud Shell pane, run the following to create an Azure Load Balancer 
Standard:

LOCATION=$(az group show --name az3000801-LabRG --query location --out tsv) 
az network lb create --resource-group az3000801-LabRG --name az3000802-lb 
--sku standard --backend-pool-name az3000802-bepool --frontend-ip-name 
loadBalancedFrontEndOutbound --location $LOCATION --public-ip-address 
az3000802-lb-pip01 

4.	 From the Cloud Shell pane, run the following to create an outbound rule:

az network lb outbound-rule create --resource-group az3000801-LabRG --lb-
name az3000802-lb --name outboundRuleaz30000802 --frontend-ip-configs load-
BalancedFrontEndOutbound --protocol All --idle-timeout 15 --outbound-ports 
10000 --address-pool az3000802-bepool 

5.	 Note: Wait for the operation to complete. This should not take more than 1 minute.

6.	 Close the Cloud Shell pane.

7.	 In the Azure portal, navigate to the blade displaying the properties of the Azure Load Balancer 
az3000802-lb.

8.	 On the az3000802-lb blade, click Backend pools.

9.	 On the az3000802-lb - Backend pools blade, click az3000802-bepool.

10.	On the az3000802-bepool blade, specify the following settings and click Save:

●● Virtual network: az3000801-vnet (4 VM)

●● VIRTUAL MACHINE: az3000802-vm0 IP ADDRESS: ipconfig1 (10.0.1.4) or ipconfig1 (10.0.1.5)

●● VIRTUAL MACHINE: az3000802-vm1 IP ADDRESS: ipconfig1 (10.0.1.5) or ipconfig1 (10.0.1.4)

11.	Note: Wait for the operation to complete. This should not take more than 1 minute.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Azure Load Balancer Standard  47

Task 3: Verify that the outbound rule took effect
1.	 In the Azure portal, navigate to the az3000802-lb blade and note the value of the Public IP address 

entry.

2.	 On the lab computer, from the Remote Desktop session to az3000801-vm0, run the following to start 
a Remote Desktop session to az3000802-vm0.

mstsc /v:az3000802-vm0 

3.	 When prompted, authenticate by specifying the following values:

●● User name: Student

●● Password: Pa55w.rd1234

4.	 Within the Remote Desktop session to az3000802-vm0, start a Windows PowerShell session and run 
the following to determine your current public IP address:

Invoke-RestMethod http://ipinfo.io/json  

5.	 Review the output of the cmdlet and verify that the IP address entry matches the public IP address 
you identified earlier in this task.

Result: After you completed this exercise, you have configured and tested Azure Load Balancer Standard 
outbound rules

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



48  Module 3   Module Measure Throughput and Structure of Data Access

Review Question
Module 3 Review Question
Redis cache

A company has several applications in Azure that use Azure Cache.

You plan to migrate the applications to use Azure Redis Cache. You must prepare the environment for the 
change

What options are available for preparing the environment? What should you do?

Suggested Answer ↓ 
Before you can migrate to Azure Redis Cache you need to register a resource provider for your subscrip-
tion. You can create a new Azure Redis Cache instance by using the Azure portal, Azure CLI, or Azure 
PowerShell.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Module 4   Module Implementing Authentica-
tion

Implementing authentication in applications
Certificate-based authentication
Client certificate authentication enables each web-based client to establish its identity to a server by 
using a digital certificate, which provides additional security for user authentication. In the context of 
Microsoft Azure, certificate-based authentication enables you to be authenticated by Azure Active 
Directory (Azure AD) with a client certificate on a Windows or mobile device when connecting to different 
services, including (but not limited to):

●● Custom services authored by your organization

●● Microsoft SharePoint Online

●● Microsoft Office 365 (or Microsoft Exchange)

●● Skype for Business

●● Azure API Management

●● Third-party services deployed in your organization

Helping to secure back-end services
Certificate-based authentication can be useful in scenarios where your organization has multiple front-
end applications communicating with back-end services. Traditionally, the certificates are installed on 
each server, and the machines trust each other after validating certificates. This same traditional structure 
can be used for infrastructure in Azure.

With cloud-native applications, you can use certificates to help secure connections in hybrid scenarios. 
For example, you can restrict access to your Azure web app by enabling different types of authentication 
for it. One way to do so is to authenticate using a client certificate when the request is over Transport 
Layer Security (TLS) / Secure Sockets Layer (SSL). This mechanism is called TLS mutual authentication or 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



50  Module 4   Module Implementing Authentication

client certificate authentication. As another example, API Management allows more-secure access to the 
back-end service of an API using client certificates.

Azure Active Directory (Azure AD)
Azure AD is an identity and access management cloud solution that provides directory services, identity 
governance, and application access management. Azure AD quickly enables single sign-on (SSO) to 
thousands of pre-integrated commercial and custom apps in the Azure AD application gallery. A single 
Azure AD directory is automatically associated with an Azure subscription when it is created. As the 
identity service in Azure, Azure AD then provides all identity management and access control functions 
for cloud-based resources. These resources can include users, apps, and groups for an individual tenant 
(organization), as shown in the following diagram:

Azure offers several ways to leverage identity as a service (IDaaS) with varying levels of complexity.

Understanding the difference between Active Directory 
Domain Services and Azure Active Directory
Both Azure AD and Active Directory Domain Services (AD DS) are systems that store directory data and 
manage communication between users and resources, including user logon processes, authentication, 
and directory searches.

If you are already familiar with AD DS, first introduced with Windows 2000 Server, then you probably 
understand the basic concept of an identity service. However, it’s also important to understand that Azure 
AD is not just a domain controller in the cloud. It is an entirely new way of providing IDaaS in Azure that 
requires an entirely new way of thinking to fully embrace cloud-based capabilities and help protect your 
organization from modern threats.

AD DS is a server role in Windows Server, which means that it can be deployed on physical machines or 
virtual machines (VMs). It has a hierarchical structure based on X.500. It uses DNS for locating objects, can 
be interacted with using Lightweight Directory Access Protocol (LDAP), and primarily uses Kerberos for 
authentication. Windows Server Active Directory enables organizational units (OUs) and Group Policy 
Objects (GPOs) in addition to joining machines to the domain, and trusts are created between domains.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implementing authentication in applications  51

IT has protected its security perimeter for years using AD DS, but modern, perimeter-less enterprises 
supporting identity needs for employees, customers, and partners require a new control plane. Azure AD 
is that identity control plane. Security has moved beyond the corporate firewall to the cloud, where Azure 
AD help protect company resources and access by providing one common identity for users (either 
on-premises or in the cloud). This gives your users the flexibility to more securely access the apps they 
need to get their work done from almost any device. Seamless, risk-based data protection controls, 
backed by machine-learning capabilities and in-depth reporting, which IT needs to help keep company 
data secure, are also provided.

Azure AD is a multi-customer public directory service, which means that within Azure AD, you can create 
a tenant for your cloud servers and applications, such as Office 365. Users and groups are created in a flat 
structure without OUs or GPOs. Authentication is performed through protocols such as SAML, WS-Feder-
ation, and Open Authorization (OAuth). It's possible to query Azure AD, but instead of using LDAP, you 
must use a REST API called Azure AD Graph API. These all work over HTTP and HTTPS.

Azure AD Connect
Azure AD Connect integrates on-premises directories with Azure AD. This allows you to provide a 
common identity for enterprise users in Office 365, Azure, and software as a service (SaaS) applications.

Azure AD Connect is made up of three primary components: the synchronization services, the optional 
Active Directory Federation Services (AD FS) component, and the monitoring component named Azure 
AD Connect Health.

●● Synchronization - This component is responsible for creating users, groups, and other objects. It is 
also responsible for making sure identity information for your on-premises users and groups is 
matching the cloud.

●● Active Directory Federation Services - Federation is an optional part of Azure AD Connect and can 
be used to configure a hybrid environment using an on-premises AD FS infrastructure. This can be 
used by organizations to address complex deployments, such as domain-join SSO, the enforcement of 
Azure AD sign-in policy, and smart card or third-party multi-factor authentication.

●● Health monitoring - Azure AD Connect Health can provide robust monitoring and a central location 
in the Azure portal to view this activity.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



52  Module 4   Module Implementing Authentication

●●

Azure AD Connect comes with several features you can optionally turn on or that are enabled by default. 
Some features might sometimes require more configuration in certain scenarios and topologies.

●● Filtering is used when you want to limit which objects are synchronized to Azure AD. By default, all 
users, contacts, groups, and Windows 10 computers are synchronized. You can change the filtering 
based on domains, OUs, or attributes.

●● Password hash synchronization synchronizes the password hash in Active Directory to Azure AD. 
The end user can use the same password on-premises and in the cloud but only manage it in one 
location. Since it uses your on-premises Active Directory as the authority, you can also use your own 
password policy.

●● Password writeback will allow your users to change and reset their passwords in the cloud and have 
your on-premises password policy applied.

●● Device writeback will allow a device registered in Azure AD to be written back to on-premises Active 
Directory so it can be used for conditional access.

●● The prevent accidental deletes feature is turned on by default and helps protect your cloud directory 
from numerous delete operations at the same time. By default, it allows 500 delete operations per run. 
You can change this setting depending on your organization size.

●● Automatic upgrade is enabled by default for express settings installations and helps ensure that your 
Azure AD Connect is always up-to-date with the latest release.

Legacy authentication methods
Most cloud-native applications will use a token-based or certificate-based authentication scheme. 
However, many applications are migrated to the cloud or connected to the cloud in a hybrid way. These 
applications may already have significant developer investment that makes changing the authentication 
scheme a significant resource challenge.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implementing authentication in applications  53

Forms-based authentication
Forms authentication uses an HTML form to send the user's credentials to the server. It is not an internet 
standard. Forms authentication is appropriate only for web APIs that are called from a web application so 
that the user can interact with the HTML form. Forms authentication does have a few disadvantages, 
including:

●● It requires a browser client to use the HTML form.

●● It requires measures to prevent cross-site request forgery (CSRF).

●● User credentials are sent in plaintext as part of an HTTP request.

The most common workflow for forms-based authentication works like this:

1.	 The client requests a resource that requires authentication.

2.	 If the user is not authenticated, the server returns HTTP 302 (Found) and redirects to a login page.

3.	 The user enters credentials and submits the form.

4.	 The server returns another HTTP 302 that redirects back to the original URI. This response includes an 
authentication cookie.

5.	 The client requests the resource again. The request includes the authentication cookie, so the server 
grants the request.

6.	

In the context of Azure, many applications using forms-based authentication are legacy applications that 
were shifted to Azure without being refactored or rewritten. Using Microsoft ASP.NET forms authentica-
tion as an example, migration to the cloud would require only changing the connection string for the 
database that is used to store the forms authentication data. Using Azure as an example, you can migrate 
the identity database from Microsoft SQL Server to Azure SQL Database to continue to use forms-based 
authentication in Azure.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



54  Module 4   Module Implementing Authentication

Windows-based authentication
Integrated Windows authentication enables users to log in with their Windows credentials using Kerberos 
or NTLM. The client sends credentials in the Authorization header. Windows authentication is best 
suited for an intranet environment. Windows authentication does have a few disadvantages, including:

●● It’s difficult to use in internet applications without exposing the entire user directory.

●● It can’t be used in Bring Your Own Device (BYOD) scenarios.

●● It Requires Kerberos or Integrated Windows Authentication (NTLM) support in the client browser or 
device.

●● The client must be joined to the Active Directory Domain.

In a hybrid deployment, it is common to see the main responsibilities of identity moved from on-premis-
es Active Directory to Azure AD. The on-premises Active Directory servers remain as a way to manage 
physical machines and to enable simple Windows-based authentication. Azure AD Connect is used to 
synchronize identity from Azure AD to the on-premises Active Directory servers.

Token-based authentication

Claims-based authentication in .NET
Historically, ASP.NET applications used forms authentication to solve member requirements that were 
common in the early 2000s. These requirements revolved mostly around authoring login forms and 
managing a SQL Server database for user names, passwords, and profile data. Today, there is a much 
broader array of data storage options for web applications, and most developers want to enable their 
sites to use social identity providers for authentication and authorization functionality. While it’s possible 
to implement these new features in a database, it is unnecessarily difficult when many identity providers 
implement storage, tokens, and claims already.

ASP.NET Identity is a unified identity platform for ASP.NET applications that can be used across all flavors 
of ASP.NET and that can be used in web, phone, store, or hybrid applications. ASP.NET Identity imple-
ments two core features that makes it ideal for token-based authentication:

●● ASP.NET Identity implements a provider model for logins. Today you may want to log in using a 
local Active Directory server, but tomorrow you may want to migrate to Azure AD. In ASP.NET Identity, 
you can simply add, remove, or replace providers. If your company decides to implement social 
network logins, you can keep adding providers or write your own providers without changing any 
other code in your application.

●● ASP.NET Identity supports claims-based authentication, where the user's identity is represented as a 
set of claims. Claims allow developers to be a lot more expressive in describing a user's identity than 
roles allow. Whereas role membership is just a Boolean value (member or non-member), a claim can 
include rich information about the user's identity and membership. Most social providers return 
metadata about the logged-in user as a series of claims.

App Service authentication and authorization
Azure App Service provides built-in authentication and authorization support, so you can sign in users 
and access data by writing minimal or no code in your app instance. The authentication and authorization 
module runs in the same sandbox as your application code. When it's enabled, every incoming HTTP 
request passes through it before being handled by your application code.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implementing authentication in applications  55

All AuthN/AuthZ logic, including cryptography for token validation and session management, executes in 
the worker sandbox and outside of the web app code. The module runs separately from your application 
code and is configured using app settings. No software development kits (SDKs), specific languages, or 
changes to your application code are required.

Identity information flows directly into the application code. For all language frameworks, App Service 
makes the user's claims available to your code by injecting them into the request headers. For Microsoft .
NET applications, App Service populates ClaimsPrincipal.Current with the authenticated user's claims, so 
you can follow the standard .NET code pattern, including the [Authorize] attribute. Similarly, for PHP 
apps, App Service populates the _SERVER[‘REMOTE_USER’] variable.

App Service provides a built-in token store, which is a repository of tokens that are associated with the 
users of your web apps, APIs, or native mobile apps. You typically must write code to collect, store, and 
refresh these tokens in your application. With the token store, you just retrieve the tokens when you need 
them and tell App Service to refresh them when they become invalid. When you enable authentication 
with any provider, this token store is immediately available to your app. The token information can be 
used in your application code to perform tasks such as:

●● Posting to the authenticated user's Facebook timeline.

●● Reading the user's corporate data from the Azure AD Graph API or even from the Microsoft Graph.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



56  Module 4   Module Implementing Authentication

Implement multi-factor authentication
Multi-factor authentication
When a user logs into an application, they typically provide a username and password. The password is 
provided by the user as a piece of evidence to the authentication system that the user is who they claim 
to be. The password is considered one factor proving the user’s identity. A user could have other factors 
that proves their identity, such as:

●● A physical badge from the company.

●● Knowledge of the answers to security questions.

●● A mobile device, registered with the company, that can receive notifications, phone calls, or SMS 
messages.

●● Their physical appearance that can be captured by a camera device.

●● Their fingerprint that could be captured by a biometric scanner.

Unfortunately, a single factor can potentially be compromised either intentionally or unintentionally. A 
badge can be stolen and used by an unauthorized party. During a robbery, someone could ask you to use 
your fingerprint on a device. A mobile company could accidentally send SMS messages to another device.

In security best practices, it is recommended to use two or more factors when authenticating users. This 
practice is referred to as multi-factor authentication. Using an enterprise as an example, the company 
could require employees to scan their badges and then enter their passwords as two factors of authenti-
cation. In the world of security, it is often recommended to have two of the following factors:

●● Knowledge – Something that only the user knows (security questions, password, or PIN).

●● Possession – Something that only the user has (corporate badge, mobile device, or security token).

●● Inherence – Something that only the user is (fingerprint, face, voice, or iris).

The security of two-step verification lies in its layered approach. Compromising multiple authentication 
factors presents a significant challenge for attackers. Even if an attacker manages to learn the user's 
password, it is useless without possession of the additional authentication method.

Multi-factor authentication with Azure AD
Azure Multi-Factor Authentication (MFA) is a two-step verification solution that is built in to Azure AD. 
Administrators can configure approved authentication methods to ensure that at least two factors are 
used while still keeping the sign-in process as streamlined as possible.

There are two ways to enable MFA:

●● The first option is to enable each user for MFA. When users are enabled individually, they perform 
two-step verification each time they sign in. There are a few exceptions, such as when they sign in 
from trusted IP addresses or when the remembered devices feature is turned on.

●● The second option is to set up a conditional access policy that requires two-step verification under 
certain conditions. This method uses the Azure AD Identity Protection risk policy to require two-step 
verification based only on the sign-in risk for all cloud applications.

Once MFA is enabled, administrators can choose which methods of authentication are available to users. 
Once users enroll, they must choose at least one method from the list that the administrator has enabled. 
These methods include:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement multi-factor authentication  57

Method Description
Call to phone Places an automated voice call. The user answers 

the call and presses # on the phone keypad to 
authenticate. The phone number is not synchro-
nized to on-premises Active Directory.

Text message to phone Sends a text message that contains a verification 
code. The user is prompted to enter the verifica-
tion code into the sign-in interface. This process is 
called one-way SMS. Two-way SMS means that the 
user must text back a particular code.

Notification through mobile app Sends a push notification to your phone or 
registered device. The user views the notification 
and selects Verify to complete the verification.

Verification code from mobile app The Microsoft Authenticator app generates a new 
OAuth verification code every 30 seconds. The 
user enters the verification code into the sign-in 
interface.

The Microsoft Authenticator app helps to prevent unauthorized access to accounts and to stop fraudu-
lent transactions by offering an additional level of security for Azure AD accounts or Microsoft accounts. 
It can be used either as a second verification method or as a replacement for a password when using 
phone sign-in. The Authenticator app fully supports both the Verification code and Notification 
methods of verification in MFA. The Authenticator app is available for Windows phone, Android, and iOS.

Implementing custom multi-factor authentication using 
.NET
The Multi-Factor Authentication SDK lets you build two-step verification directly into the sign-in or 
transaction processes of applications in your Azure AD tenant.

The Multi-Factor Authentication SDK is available for C#, Visual Basic (.NET), Java, Perl, PHP, and Ruby. The 
SDK provides a thin wrapper around two-step verification. It includes everything you need to write your 
code, including commented source code files, example files, and a detailed ReadMe file. Each SDK also 
includes a certificate and private key for encrypting transactions that are unique to your MFA provider. As 
long as you have a provider, you can download the SDK in as many languages and formats as you need.

Because the APIs do not have access to users registered in Azure AD, you must provide user information 
in a file or database. Also, the APIs do not provide enrollment or user management features, so you need 
to build these processes into your application.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



58  Module 4   Module Implementing Authentication

Claims-based authorization
Claims
Authorization is the process of determining which entities have permission to change, view, or otherwise 
access a computer resource. For example, in a business, only managers may be allowed to access the files 
of their employees. In the past, this was simple to accomplish with identity databases using protocols like 
Lightweight Directory Access Protocol (LDAP) or tools like Active Directory Domain Services. Whenever a 
user attempted to access an application, the application would query the identity database.

In a world where identity is usually managed by third-party providers, like Microsoft Azure Active Directo-
ry, Facebook, Google, LinkedIn, and Twitter, this information needs to be shared in a standardized way to 
applications. In the simplest workflow, the user needs to access an application, so they first log in using 
their social identity. Once they are logged in, the identity provider is trusted by the organization’s 
application and can share claims about that user with the application.

When an identity is created, it may be assigned one or more claims issued by a trusted party. A claim is a 
name/value pair that represents what the subject is and not what the subject can do. For example, you 
may have a driver's license issued by a local driving license authority. Your driver's license has your date 
of birth on it. In this case, the claim name would be DateOfBirth, the claim value would be your date of 
birth — for example, June 8, 1970 — and the issuer would be the driving license authority. An identity 
can contain multiple claims with multiple values and can contain multiple claims of the same type.

Note: The terms authentication and authorization can be confusing. To keep it simple, authentication is 
the act of verifying someone’s identity. When you authenticate someone, you are determining who they 
are. Authorization is the act of verifying that someone has access to a certain subsystem or operation. 
When you authorize someone, you are determining what they can do.

Claims-based authorization
Claims-based authorization is an approach where the authorization decision to grant or deny access is 
based on arbitrary logic that uses data available in claims to make the decision. Claims-based authoriza-

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Claims-based authorization  59

tion, at its simplest, checks the value of a claim and allows access to a resource based on that value. For 
example, if you want access to a night club, the authorization process might be:

●● The door security officer evaluates the value of your date of birth claim and whether they trust the 
issuer (the driving license authority) before granting you access.

In a relying party application, authorization determines what resources an authenticated identity is 
allowed to access and what operations it is allowed to perform on those resources. Improper or weak 
authorization leads to information disclosure and data tampering.

Claim-based authorization checks are declarative—the developer embeds them within their code, against 
a controller or an action within a controller, specifying claims that the current user must possess and 
optionally the value the claim must hold to access the requested resource. Claims requirements are policy 
based; the developer must build and register a policy expressing the claims requirements.

Claims-based authorization in Microsoft ASP.NET
The simplest type of claim policy looks for the presence of a claim and doesn't check the value. First, you 
need to build and register the policy. This takes place as part of the authorization service configuration, 
which normally takes place in ConfigureServices() in your Startup.cs file:

public void ConfigureServices(IServiceCollection services) 
{ 
	 services.AddMvc(); 
 
	 services.AddAuthorization(options => 
	 { 
		  options.AddPolicy("EmployeeOnly", policy => policy.Require-
Claim("EmployeeNumber")); 
	 }); 
} 

In this case, the EmployeeOnly policy checks for the presence of an EmployeeNumber claim on the 
current identity. You then apply the policy using the Policy property on the AuthorizeAttribute attribute 
to specify the policy name:

[Authorize(Policy = "EmployeeOnly")] 
public IActionResult VacationBalance() 
{ 
	 return View(); 
} 

Alternatively, the AuthorizeAttribute attribute can be applied to an entire controller; in this instance, 
only identities matching the policy will be allowed access to any action on the controller:

[Authorize(Policy = "EmployeeOnly")] 
public class VacationController : Controller 
{ 
	 public ActionResult VacationBalance() 
	 { 
	 } 
} 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



60  Module 4   Module Implementing Authentication

If you have a controller that's protected by the AuthorizeAttribute attribute but want to allow anony-
mous access to particular actions, you apply the AllowAnonymousAttribute attribute:

[Authorize(Policy = "EmployeeOnly")] 
public class VacationController : Controller 
{ 
	 public ActionResult VacationBalance() 
	 { 
	 } 
 
	 [AllowAnonymous] 
	 public ActionResult VacationPolicy() 
	 { 
	 } 
} 

Most claims come with a value. You can specify a list of allowed values when creating the policy. The 
following example succeeds only for employees whose employee number is 1, 2, 3, 4 or 5:

public void ConfigureServices(IServiceCollection services) 
{ 
    services.AddMvc(); 
 
    services.AddAuthorization(options => 
    { 
        options.AddPolicy("Founders", policy => 
                          policy.RequireClaim("EmployeeNumber", "1", "2", 
"3", "4", "5")); 
    }); 
} 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Role-based access control (RBAC) authorization  61

Role-based access control (RBAC) authoriza-
tion
Role-based authorization

Role-based authorization is an authorization approach in which user permissions are managed and 
enforced by an application based on user roles. If a user has a role that is required to perform an action, 
access is granted; otherwise, access is denied. When an identity is created, it may belong to one or more 
roles. For example, Holly may belong to the Administrator and User roles, whereas Adam may belong 
only to the User role. How these roles are created and managed depends on the backing store of the 
authorization process.

Role-Based authorization in ASP.NET
Roles are exposed to the developer through the IsInRole method on the ClaimsPrincipal class. 
Role-based authorization checks are declarative—the developer embeds them within their code, against 
a controller or an action within a controller, specifying roles that the current user must be a member of to 
access the requested resource.

For example, the following code limits access to any actions on the AdministrationController to 
users who are members of the Administrator role:

[Authorize(Roles = "Administrator")] 
public class AdministrationController : Controller 
{ 
} 

You can specify multiple roles as a comma separated list:

[Authorize(Roles = "HRManager,Finance")] 
public class SalaryController : Controller 
{ 
} 

This controller would be accessible only by users who are members of the HRManager role or the 
Finance role.

If you apply multiple attributes, an accessing user must be a member of all the roles specified. The 
following sample requires that a user be a member of both the PowerUser and ControlPanelUser roles:

[Authorize(Roles = "PowerUser")] 
[Authorize(Roles = "ControlPanelUser")] 
public class ControlPanelController : Controller 
{ 
} 

You can further limit access by applying additional role authorization attributes at the action level:

[Authorize(Roles = "Administrator, PowerUser")] 
public class ControlPanelController : Controller 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



62  Module 4   Module Implementing Authentication

{ 
    public ActionResult SetTime() 
    { 
    } 
 
    [Authorize(Roles = "Administrator")] 
    public ActionResult ShutDown() 
    { 
    } 
} 

In the previous code snippet, members of either the Administrator role or the PowerUser role can 
access the controller and the SetTime action, but only members of the Administrator role can access 
the ShutDown action.

You can also lock down a controller but allow anonymous, unauthenticated access to individual actions:

[Authorize] 
public class ControlPanelController : Controller 
{ 
    public ActionResult SetTime() 
    { 
    } 
 
    [AllowAnonymous] 
    public ActionResult Login() 
    { 
    } 
} 

Role requirements can also be expressed using the Policy syntax, where a developer registers a policy 
at startup as part of the authorization service configuration. This normally occurs in ConfigureServic-
es() in your Startup.cs file:

public void ConfigureServices(IServiceCollection services) 
{ 
    services.AddMvc(); 
 
    services.AddAuthorization(options => 
    { 
        options.AddPolicy("RequireAdministratorRole", policy => policy.
RequireRole("Administrator")); 
    }); 
} 

Policies are applied using the Policy property on the AuthorizeAttribute attribute:

[Authorize(Policy = "RequireAdministratorRole")] 
public IActionResult Shutdown() 
{ 
    return View(); 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Role-based access control (RBAC) authorization  63

} 

If you want to specify multiple allowed roles in a requirement, you can specify them as parameters to the 
RequireRole method:

options.AddPolicy("ElevatedRights", policy => 
                  policy.RequireRole("Administrator", "PowerUser", "Backu-
pAdministrator")); 

This example authorizes users who belong to the Administrator, PowerUser, or BackupAdministrator 
roles.

Note: You can mix and match both claims-based authorization and role-based authorization. Is it typical 
to see the role defined as a special claim. The role claim type is expressed using the following URI: 
http://schemas.microsoft.com/ws/2008/06/identity/claims/role.

Role-based access control (RBAC)
Role-based access control (RBAC) is a system that provides fine-grained access management of resources 
in Azure. Using RBAC, you can segregate duties within your team and grant only the amount of access to 
users that they need to perform their jobs. RBAC in Azure is an authorization system built on Azure 
Resource Manager that provides fine-grained access management to Azure resources, such as compute 
and storage.

Using RBAC, you can segregate duties within your team and grant only the amount of access to users 
that they need to perform their jobs. Instead of giving everybody unrestricted permissions in your Azure 
subscription or resources, you can allow only certain actions at a particular scope.

When planning your access control strategy, it's a best practice to grant users the least privileges to get 
their work done. The following diagram shows a suggested pattern for using RBAC.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



64  Module 4   Module Implementing Authentication

The way you control access to resources using RBAC is to create role assignments. This is a key concept 
to understand — it’s how permissions are enforced. A role assignment consists of three elements: a 
security principal, a role definition, and the scope.

●● A security principal is an object that represents a user, group, or service principal that is requesting 
access to Azure resources.

●● A user is an individual who has a profile in Azure Active Directory. You can also assign roles to 
users in other tenants.

●● A group is a set of users created in Azure Active Directory. When you assign a role to a group, all 
users within that group have that role.

●● A service principal is a security identity used by applications or services to access specific Azure 
resources. You can think of it as a user identity (username and password or certificate) for an 
application.

●● A role definition is a collection of permissions. It's sometimes just called a role. A role definition lists 
the operations that can be performed, such as read, write, and delete. Roles can be high level, like 
owner, or specific, like virtual machine reader.

●● The Scope is the boundary that the access applies to. When you assign a role, you can further limit 
the actions allowed by defining a scope. This is helpful if you want to make someone a Website 
Contributor but only for one resource group. In Azure, you can specify a scope at multiple levels: 
management group, subscription, resource group, or resource. Scopes are structured in a parent-child 
relationship.

A role assignment is the process of binding a role definition to a user, group, or service principal at a 
particular scope for the purpose of granting access. Access is granted by creating a role assignment, and 
access is revoked by removing a role assignment.

The following diagram shows an example of a role assignment. In this example, the Marketing group has 
been assigned the Contributor role for the pharma-sales resource group. This means that users in the 
Marketing group can create or manage any Azure resource in the pharma-sales resource group. Market-
ing users do not have access to resources outside the pharma-sales resource group, unless they are part 
of another role assignment.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Role-based access control (RBAC) authorization  65

Built-in roles
RBAC in Azure includes over 70 built-in roles. There are four fundamental RBAC roles. The first three 
apply to all resource types:

RBAC role in Azure Permissions Notes
Owner Has full access to all resources 

and can delegate access to 
others

The Service Administrator and 
Co-Administrators are assigned 
the Owner role at the subscrip-
tion scope. This applies to all 
resource types.

Contributor Creates and manages all types of 
Azure resources but cannot 
grant access to others

This applies to all resource types.

Reader Creates and manages all types of 
Azure resources but cannot 
grant access to others

This applies to all resource types.

User Access Administrator Manages user access to Azure 
resources

The rest of the built-in roles allow the management of specific Azure resources. For example, the Virtual 
Machine Contributor role allows the user to create and manage virtual machines.

Note: Only the Azure portal and the Azure Resource Manager APIs support RBAC. Users, groups, and 
applications that are assigned RBAC roles cannot use the Azure classic deployment model APIs.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



66  Module 4   Module Implementing Authentication

Implement OAuth2 authentication
Authorize access to web applications using 
OpenID Connect

OpenID Connect is a simple identity layer built on top of the OAuth 2.0 protocol. OAuth 2.0 defines 
mechanisms to obtain and use access tokens to access protected resources, but they do not define 
standard methods to provide identity information. OpenID Connect implements authentication as an 
extension to the OAuth 2.0 authorization process. It provides information about the end user in the form 
of an id_token that verifies the identity of the user and provides basic profile information about the 
user.

OpenID Connect is our recommendation if you are building a web application that is hosted on a server 
and accessed via a browser.

Register your application with your AD tenant
First, you need to register your application with your Azure Active Directory (Azure AD) tenant. This will 
give you an Application ID for your application, as well as enable it to receive tokens.

●● Sign in to the Azure portal.

●● Choose your Azure AD tenant by clicking on your account in the top right corner of the page, 
followed by clicking on the Switch Directory navigation and then select the appropriate tenant.

--Skip this step, if you've only one Azure AD tenant under your account or if you've already selected the 
appropriate Azure AD tenant.

●● In the left hand navigation pane, click on Azure Active Directory.

●● Click on App Registrations and click on New application registration.

●● Follow the prompts and create a new application. It doesn't matter if it is a web application or a native 
application for this tutorial.

●● --For Web Applications, provide the Sign-On URL, which is the base URL of your app, where users can 
sign in e.g http://localhost:12345.

●● --For Native Applications provide a Redirect URI, which Azure AD will use to return token responses. 
Enter a value specific to your application, .e.g http://MyFirstAADApp.

●● Once you've completed registration, Azure AD will assign your application a unique client identifier, 
the Application ID. You need this value in the next sections, so copy it from the application page.

●● To find your application in the Azure portal, click App registrations, and then click View all applica-
tions.

Authentication flow using OpenID Connect
The most basic sign-in flow contains the following steps - each of them is described in detail below.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  67

OpenID Connect metadata document
OpenID Connect describes a metadata document that contains most of the information required for an 
app to perform sign-in. This includes information such as the URLs to use and the location of the service's 
public signing keys. The OpenID Connect metadata document can be found at:

https://login.microsoftonline.com/{tenant}/.well-known/openid-configuration 

The metadata is a simple JavaScript Object Notation (JSON) document. See the following snippet for an 
example. The snippet's contents are fully described in the OpenID Connect specification1. Note that 
providing tenant rather than common in place of {tenant} above will result in tenant-specific URIs in the 
JSON object returned.

{ 
    "authorization_endpoint": "https://login.microsoftonline.com/common/
oauth2/authorize", 
    "token_endpoint": "https://login.microsoftonline.com/common/oauth2/
token", 
    "token_endpoint_auth_methods_supported": 
    [ 
        "client_secret_post", 
        "private_key_jwt", 
        "client_secret_basic" 

1	 https://openid.net/

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



68  Module 4   Module Implementing Authentication

    ], 
    "jwks_uri": "https://login.microsoftonline.com/common/discovery/keys" 
    "userinfo_endpoint":"https://login.microsoftonline.com/{tenant}/openid/
userinfo", 
    ... 
} 

Send the sign-in request
When your web application needs to authenticate the user, it must direct the user to the /authorize 
endpoint. This request is similar to the first leg of the OAuth 2.0 Authorization Code Flow2, with a few 
important distinctions:

●● The request must include the scope openid in the scope parameter.

●● The response_type parameter must include id_token.

●● The request must include the nonce parameter.

So a sample request would look like this:

// Line breaks for legibility only 
 
GET https://login.microsoftonline.com/{tenant}/oauth2/authorize? 
client_id=6731de76-14a6-49ae-97bc-6eba6914391e 
&response_type=id_token 
&redirect_uri=http%3A%2F%2Flocalhost%3a12345 
&response_mode=form_post 
&scope=openid 
&state=12345 
&nonce=7362CAEA-9CA5-4B43-9BA3-34D7C303EBA7 

Parameter Description
tenant required The {tenant} value in the path 

of the request can be used to 
control who can sign into the 
application. The allowed values 
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4da1-
9baa-8bc8c9d6a490 or 
contoso.onmicrosoft.com 
or common for tenant-independ-
ent tokens

2	 https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-oauth-code

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  69

Parameter Description
client_id required The Application Id assigned to 

your app when you registered it 
with Azure AD. You can find this 
in the Azure Portal. Click Azure 
Active Directory, click App 
Registrations, choose the 
application and locate the 
Application Id on the application 
page.

response_type required Must include id_token for 
OpenID Connect sign-in. It may 
also include other response_
types, such as code or token.

scope required A space-separated list of scopes. 
For OpenID Connect, it must 
include the scope openid, which 
translates to the "Sign you in" 
permission in the consent UI. You 
may also include other scopes in 
this request for requesting 
consent.

nonce required A value included in the request, 
generated by the app, that is 
included in the resulting id_to-
ken as a claim. The app can then 
verify this value to mitigate 
token replay attacks. The value is 
typically a randomized, unique 
string or GUID that can be used 
to identify the origin of the 
request.

redirect_uri recommended The redirect_uri of your app, 
where authentication responses 
can be sent and received by your 
app. It must exactly match one of 
the redirect_uris you registered 
in the portal, except it must be 
url encoded.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



70  Module 4   Module Implementing Authentication

Parameter Description
response_mode optional Specifies the method that should 

be used to send the resulting 
authorization_code back to your 
app. Supported values are 
form_post for HTTP form post 
and fragment for URL frag-
ment. For web applications, we 
recommend using response_
mode=form_post to ensure the 
most secure transfer of tokens to 
your application. The default for 
any flow including an id_token is 
fragment.

state recommended A value included in the request 
that is returned in the token 
response. It can be a string of 
any content that you wish. A 
randomly generated unique 
value is typically used for 
preventing cross-site request 
forgery attacks. The state is also 
used to encode information 
about the user's state in the app 
before the authentication 
request occurred, such as the 
page or view they were on.

prompt optional Indicates the type of user 
interaction that is required. 
Currently, the only valid values 
are 'login', 'none', and 'consent'. 
prompt=login forces the user 
to enter their credentials on that 
request, negating single-sign on. 
prompt=none is the opposite - 
it ensures that the user is not 
presented with any interactive 
prompt whatsoever. If the 
request cannot be completed 
silently via single-sign on, the 
endpoint returns an error. 
prompt=consent triggers the 
OAuth consent dialog after the 
user signs in, asking the user to 
grant permissions to the app.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  71

Parameter Description
login_hint optional Can be used to pre-fill the 

username/email address field of 
the sign-in page for the user, if 
you know their username ahead 
of time. Often apps use this 
parameter during reauthentica-
tion, having already extracted 
the username from a previous 
sign-in using the preferred_
username claim.

At this point, the user is asked to enter their credentials and complete the authentication.

Sample response
A sample response, after the user has authenticated, could look like this:

POST / HTTP/1.1 
Host: localhost:12345 
Content-Type: application/x-www-form-urlencoded 
 
id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1uQ19W-
WmNB...&state=12345 

Parameter Description
id_token The id_token that the app requested. You can 

use the id_token to verify the user's identity and 
begin a session with the user.

state A value included in the request that is also 
returned in the token response. A randomly 
generated unique value is typically used for 
preventing cross-site request forgery attacks. The 
state is also used to encode information about the 
user's state in the app before the authentication 
request occurred, such as the page or view they 
were on.

Error response
Error responses may also be sent to the redirect_uri so the app can handle them appropriately:

POST / HTTP/1.1 
Host: localhost:12345 
Content-Type: application/x-www-form-urlencoded 
 
error=access_denied&error_description=the+user+canceled+the+authentication 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



72  Module 4   Module Implementing Authentication

Parameter Description
error An error code string that can be used to classify 

types of errors that occur, and can be used to 
react to errors.

error_description A specific error message that can help a developer 
identify the root cause of an authentication error.

Error codes for authorization endpoint errors
The following table describes the various error codes that can be returned in the error parameter of the 
error response.

Error Code Description Client Action
invalid_request Protocol error, such as a missing 

required parameter.
Fix and resubmit the request. 
This is a development error, and 
is typically caught during initial 
testing.

unauthorized_client The client application is not 
permitted to request an authori-
zation code.

This usually occurs when the 
client application is not regis-
tered in Azure AD or is not 
added to the user's Azure AD 
tenant. The application can 
prompt the user with instruction 
for installing the application and 
adding it to Azure AD.

access_denied Resource owner denied consent The client application can notify 
the user that it cannot proceed 
unless the user consents.

unsupported_response_type The authorization server does 
not support the response type in 
the request.

Fix and resubmit the request. 
This is a development error, and 
is typically caught during initial 
testing.

server_error The server encountered an 
unexpected error.

Retry the request. These errors 
can result from temporary 
conditions. The client application 
might explain to the user that its 
response is delayed due to a 
temporary error.

temporarily_unavailable The server is temporarily too 
busy to handle the request.

Retry the request. The client 
application might explain to the 
user that its response is delayed 
due to a temporary condition.

invalid_resource The target resource is invalid 
because it does not exist, Azure 
AD cannot find it, or it is not 
correctly configured.

This indicates the resource, if it 
exists, has not been configured 
in the tenant. The application 
can prompt the user with 
instruction for installing the 
application and adding it to 
Azure AD.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  73

Validate the id_token
Just receiving an id_token is not sufficient to authenticate the user; you must validate the signature and 
verify the claims in the id_token per your app's requirements. The Azure AD endpoint uses JSON Web 
Tokens (JWTs) and public key cryptography to sign tokens and verify that they are valid.

You can choose to validate the id_token in client code, but a common practice is to send the id_to-
ken to a backend server and perform the validation there. Once you've validated the signature of the 
id_token, there are a few claims you are required to verify.

You may also wish to validate additional claims depending on your scenario. Some common validations 
include:

●● Ensuring the user/organization has signed up for the app.

●● Ensuring the user has proper authorization/privileges

●● Ensuring a certain strength of authentication has occurred, such as multi-factor authentication.

Once you have validated the id_token, you can begin a session with the user and use the claims in the 
id_token to obtain information about the user in your app. This information can be used for display, 
records, personalization, etc.

Send a sign-out request
When you wish to sign the user out of the app, it is not sufficient to clear your app's cookies or otherwise 
end the session with the user. You must also redirect the user to the end_session_endpoint for sign-out. If 
you fail to do so, the user will be able to reauthenticate to your app without entering their credentials 
again, because they will have a valid single sign-on session with the Azure AD endpoint.

You can simply redirect the user to the end_session_endpoint listed in the OpenID Connect metadata 
document:

GET https://login.microsoftonline.com/common/oauth2/logout? 
post_logout_redirect_uri=http%3A%2F%2Flocalhost%2Fmyapp%2F 

Parameter Description
post_logout_redirect_uri recommended The URL that the user should be 

redirected to after successful 
logout. If not included, the user 
is shown a generic message.

Single sign-out
When you redirect the user to the end_session_endpoint, Azure AD clears the user's session from 
the browser. However, the user may still be signed in to other applications that use Azure AD for authen-
tication. To enable those applications to sign the user out simultaneously, Azure AD sends an HTTP GET 
request to the registered LogoutUrl of all the applications that the user is currently signed in to. 
Applications must respond to this request by clearing any session that identifies the user and returning a 
200 response. If you wish to support single sign out in your application, you must implement such a 
LogoutUrl in your application's code. You can set the LogoutUrl from the Azure portal:

1.	 Navigate to the Azure Portal.

2.	 Choose your Active Directory by clicking on your account in the top right corner of the page.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



74  Module 4   Module Implementing Authentication

3.	 From the left hand navigation panel, choose Azure Active Directory, then choose App registrations 
and select your application.

4.	 Click on Settings, then Properties and find the Logout URL text box.

Token Acquisition
Many web apps need to not only sign the user in, but also access a web service on behalf of that user 
using OAuth. This scenario combines OpenID Connect for user authentication while simultaneously 
acquiring an authorization_code that can be used to get access_tokens using the OAuth Author-
ization Code Flow.

Get Access Tokens
To acquire access tokens, you need to modify the sign-in request from above:

// Line breaks for legibility only 
 
GET https://login.microsoftonline.com/{tenant}/oauth2/authorize? 
client_id=6731de76-14a6-49ae-97bc-6eba6914391e        // Your registered 
Application Id 
&response_type=id_token+code 
&redirect_uri=http%3A%2F%2Flocalhost%3a12345          // Your registered 
Redirect Uri, url encoded 
&response_mode=form_post                              // `form_post' or 
'fragment' 
&scope=openid 
&resource=https%3A%2F%2Fservice.contoso.com%2F        // The identifier of 
the protected resource (web API) that your application needs access to 
&state=12345                                          // Any value, provid-
ed by your app 
&nonce=678910                                         // Any value, provid-
ed by your app 

By including permission scopes in the request and using response_type=code+id_token, the 
authorize endpoint ensures that the user has consented to the permissions indicated in the scope 
query parameter, and return your app an authorization code to exchange for an access token.

Successful response
A successful response using response_mode=form_post looks like:

POST /myapp/ HTTP/1.1 
Host: localhost 
Content-Type: application/x-www-form-urlencoded 
 
id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1uQ19W-
WmNB...&code=AwABAAAAvPM1KaPlrEqdFSBzjqfTGBCmLdgfSTLEMPGYuNHSUY-
Brq...&state=12345 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  75

Parameter Description
id_token The id_token that the app requested. You can 

use the id_token to verify the user's identity and 
begin a session with the user.

code The authorization_code that the app requested. 
The app can use the authorization code to request 
an access token for the target resource. Authoriza-
tion_codes are short lived, and typically expire 
after about 10 minutes.

state If a state parameter is included in the request, the 
same value should appear in the response. The 
app should verify that the state values in the 
request and response are identical.

Error response
Error responses may also be sent to the redirect_uri so the app can handle them appropriately:

POST /myapp/ HTTP/1.1 
Host: localhost 
Content-Type: application/x-www-form-urlencoded 
 
error=access_denied&error_description=the+user+canceled+the+authentication 

Parameter Description
error An error code string that can be used to classify 

types of errors that occur, and can be used to 
react to errors.

error_description A specific error message that can help a developer 
identify the root cause of an authentication error.

For a description of the possible error codes and their recommended client action, see Error codes for 
authorization endpoint errors above.

Once you've gotten an authorization code and an id_token, you can sign the user in and get access 
tokens on their behalf. To sign the user in, you must validate the id_token exactly as described above.

Understanding the OAuth2 implicit grant flow in 
Azure Active Directory
The OAuth2 implicit grant is notorious for being the grant with the longest list of security concerns in the 
OAuth2 specification. And yet, that is the approach implemented by ADAL JS and the one we recommend 
when writing SPA applications. What gives? It’s all a matter of tradeoffs: and as it turns out, the implicit 
grant is the best approach you can pursue for applications that consume a Web API via JavaScript from a 
browser.

What is the OAuth2 implicit grant?
The quintessential OAuth2 authorization code grant is the authorization grant that uses two separate 
endpoints. The authorization endpoint is used for the user interaction phase, which results in an authori-

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



76  Module 4   Module Implementing Authentication

zation code. The token endpoint is then used by the client for exchanging the code for an access token, 
and often a refresh token as well. Web applications are required to present their own application creden-
tials to the token endpoint, so that the authorization server can authenticate the client.

The OAuth2 implicit grant is a variant of other authorization grants. It allows a client to obtain an access 
token (and id_token, when using OpenId Connect) directly from the authorization endpoint, without 
contacting the token endpoint nor authenticating the client. This variant was designed for JavaScript 
based applications running in a Web browser: in the original OAuth2 specification, tokens are returned in 
a URI fragment. That makes the token bits available to the JavaScript code in the client, but it guarantees 
they won’t be included in redirects toward the server. Returning tokens via browser redirects directly from 
the authorization endpoint. It also has the advantage of eliminating any requirements for cross origin 
calls, which are necessary if the JavaScript application is required to contact the token endpoint.

An important characteristic of the OAuth2 implicit grant is the fact that such flows never return refresh 
tokens to the client. The next section shows how this isn’t necessary and would in fact be a security issue.

Suitable scenarios for the OAuth2 implicit grant
The OAuth2 specification declares that the implicit grant has been devised to enable user-agent applica-
tions – that is to say, JavaScript applications executing within a browser. The defining characteristic of 
such applications is that JavaScript code is used for accessing server resources (typically a Web API) and 
for updating the application user experience accordingly. Think of applications like Gmail or Outlook Web 
Access: when you select a message from your inbox, only the message visualization panel changes to 
display the new selection, while the rest of the page remains unmodified. This characteristic is in contrast 
with traditional redirect-based Web apps, where every user interaction results in a full page postback and 
a full page rendering of the new server response.

Applications that take the JavaScript based approach to its extreme are called single-page applications, 
or SPAs. The idea is that these applications only serve an initial HTML page and associated JavaScript, 
with all subsequent interactions being driven by Web API calls performed via JavaScript. However, hybrid 
approaches, where the application is mostly postback-driven but performs occasional JS calls, are not 
uncommon – the discussion about implicit flow usage is relevant for those as well.

Redirect-based applications typically secure their requests via cookies, however, that approach does not 
work as well for JavaScript applications. Cookies only work against the domain they have been generated 
for, while JavaScript calls might be directed toward other domains. In fact, that will frequently be the case: 
think of applications invoking Microsoft Graph API, Office API, Azure API – all residing outside the domain 
from where the application is served. A growing trend for JavaScript applications is to have no backend at 
all, relying 100% on third party Web APIs to implement their business function.

Currently, the preferred method of protecting calls to a Web API is to use the OAuth2 bearer token 
approach, where every call is accompanied by an OAuth2 access token. The Web API examines the 
incoming access token and, if it finds in it the necessary scopes, it grants access to the requested opera-
tion. The implicit flow provides a convenient mechanism for JavaScript applications to obtain access 
tokens for a Web API, offering numerous advantages in respect to cookies:

●● Tokens can be reliably obtained without any need for cross origin calls – mandatory registration of the 
redirect URI to which tokens are return guarantees that tokens are not displaced

●● JavaScript applications can obtain as many access tokens as they need, for as many Web APIs they 
target – with no restriction on domains

●● HTML5 features like session or local storage grant full control over token caching and lifetime man-
agement, whereas cookies management is opaque to the app

●● Access tokens aren’t susceptible to Cross-site request forgery (CSRF) attacks

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  77

The implicit grant flow does not issue refresh tokens, mostly for security reasons. A refresh token isn’t as 
narrowly scoped as access tokens, granting far more power hence inflicting far more damage in case it is 
leaked out. In the implicit flow, tokens are delivered in the URL, hence the risk of interception is higher 
than in the authorization code grant.

However, a JavaScript application has another mechanism at its disposal for renewing access tokens 
without repeatedly prompting the user for credentials. The application can use a hidden iframe to 
perform new token requests against the authorization endpoint of Azure AD: as long as the browser still 
has an active session (read: has a session cookie) against the Azure AD domain, the authentication 
request can successfully occur without any need for user interaction.

This model grants the JavaScript application the ability to independently renew access tokens and even 
acquire new ones for a new API (provided that the user previously consented for them). This avoids the 
added burden of acquiring, maintaining, and protecting a high value artifact such as a refresh token. The 
artifact that makes the silent renewal possible, the Azure AD session cookie, is managed outside of the 
application. Another advantage of this approach is a user can sign out from Azure AD, using any of the 
applications signed into Azure AD, running in any of the browser tabs. This results in the deletion of the 
Azure AD session cookie, and the JavaScript application will automatically lose the ability to renew tokens 
for the signed out user.

Is the implicit grant suitable for my app?
The implicit grant presents more risks than other grants. However, the higher risk profile is largely due to 
the fact that it is meant to enable applications that execute active code, served by a remote resource to a 
browser. If you are planning an SPA architecture, have no backend components or intend to invoke a 
Web API via JavaScript, use of the implicit flow for token acquisition is recommended.

If your application is a native client, the implicit flow isn’t a great fit. The absence of the Azure AD session 
cookie in the context of a native client deprives your application from the means of maintaining a long 
lived session. Which means your application will repeatedly prompt the user when obtaining access 
tokens for new resources.

If you are developing a Web application that includes a backend, and consuming an API from its backend 
code, the implicit flow is also not a good fit. Other grants give you far more power. For example, the 
OAuth2 client credentials grant provides the ability to obtain tokens that reflect the permissions assigned 
to the application itself, as opposed to user delegations. This means the client has the ability to maintain 
programmatic access to resources even when a user is not actively engaged in a session, and so on. Not 
only that, but such grants give higher security guarantees. For instance, access tokens never transit 
through the user browser, they don’t risk being saved in the browser history, and so on. The client 
application can also perform strong authentication when requesting a token.

Authorize access to Azure Active Directory web 
applications using the OAuth 2.0 code grant 
flow

Azure Active Directory (Azure AD) uses OAuth 2.0 to enable you to authorize access to web applications 
and web APIs in your Azure AD tenant. This guide is language independent, and describes how to send 
and receive HTTP messages without using any of our open-source libraries.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



78  Module 4   Module Implementing Authentication

The OAuth 2.0 authorization code flow is described in section 4.1 of the OAuth 2.0 specification3. It is 
used to perform authentication and authorization in most application types, including web apps and 
natively installed apps.

Register your application with your AD tenant
First, you need to register your application with your Azure Active Directory (Azure AD) tenant. This will 
give you an Application ID for your application, as well as enable it to receive tokens.

●● Sign in to the Azure portal.

●● Choose your Azure AD tenant by clicking on your account in the top right corner of the page, fol-
lowed by clicking on the Switch Directory navigation and then select the appropriate tenant.

●● --Skip this step, if you've only one Azure AD tenant under your account or if you've already selected 
the appropriate Azure AD tenant.

●● In the left hand navigation pane, click on Azure Active Directory.

●● Click on App Registrations and click on New application registration.

●● Follow the prompts and create a new application. It doesn't matter if it is a web application or a native 
application for this tutorial.

●● --For Web Applications, provide the Sign-On URL, which is the base URL of your app, where users can 
sign in e.g http://localhost:12345.

●● --For Native Applications provide a Redirect URI, which Azure AD will use to return token responses. 
Enter a value specific to your application, .e.g http://MyFirstAADApp.

●● Once you've completed registration, Azure AD will assign your application a unique client identifier, 
the Application ID. You need this value in the next sections, so copy it from the application page.

●● To find your application in the Azure portal, click App registrations, and then click View all applica-
tions.

Request an authorization code
The authorization code flow begins with the client directing the user to the /authorize endpoint. In this 
request, the client indicates the permissions it needs to acquire from the user. You can get the OAuth 2.0 
authorization endpoint for your tenant by selecting App registrations > Endpoints in the Azure portal.

// Line breaks for legibility only 
 
https://login.microsoftonline.com/{tenant}/oauth2/authorize? 
client_id=6731de76-14a6-49ae-97bc-6eba6914391e 
&response_type=code 
&redirect_uri=http%3A%2F%2Flocalhost%3A12345 
&response_mode=query 
&resource=https%3A%2F%2Fservice.contoso.com%2F 
&state=12345 

3	 https://tools.ietf.org/html/rfc6749#section-4.1

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  79

Parameter Need Description
tenant required The {tenant} value in the path 

of the request can be used to 
control who can sign into the 
application. The allowed values 
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4da1-
9baa-8bc8c9d6a490 or 
contoso.onmicrosoft.com 
or common for tenant-independ-
ent tokens

client_id required The Application ID assigned to 
your app when you registered it 
with Azure AD. You can find this 
in the Azure Portal. Click Azure 
Active Directory in the services 
sidebar, click App registrations, 
and choose the application.

response_type required Must include code for the 
authorization code flow.

redirect_uri recommended The redirect_uri of your app, 
where authentication responses 
can be sent and received by your 
app. It must exactly match one of 
the redirect_uris you registered 
in the portal, except it must be 
url encoded. For native & mobile 
apps, you should use the default 
value of urn:ietf:wg:oau-
th:2.0:oob.

response_mode optional Specifies the method that should 
be used to send the resulting 
token back to your app. Can be 
query, fragment, or form_
post. query provides the code 
as a query string parameter on 
your redirect URI. If you're 
requesting an ID token using the 
implicit flow, you cannot use 
query as specified in the 
OpenID spec. If you're request-
ing just the code, you can use 
query, fragment, or form_
post. form_post executes a 
POST containing the code to 
your redirect URI. The default is 
query for a code flow.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



80  Module 4   Module Implementing Authentication

Parameter Need Description
state recommended A value included in the request 

that is also returned in the token 
response. A randomly generated 
unique value is typically used for 
preventing cross-site request 
forgery attacks. The state is also 
used to encode information 
about the user's state in the app 
before the authentication 
request occurred, such as the 
page or view they were on.

resource recommended The App ID URI of the target web 
API (secured resource). To find 
the App ID URI, in the Azure 
Portal, click Azure Active 
Directory, click Application 
registrations, open the applica-
tion's Settings page, then click 
Properties. It may also be an 
external resource like https://
graph.microsoft.com. This is 
required in one of either the 
authorization or token requests. 
To ensure fewer authentication 
prompts place it in the authori-
zation request to ensure consent 
is received from the user.

scope ignored For v1 Azure AD apps, scopes 
must be statically configured in 
the Azure Portal under the 
applications Settings, Required 
Permissions.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  81

Parameter Need Description
prompt optional Indicate the type of user interac-

tion that is required. 

Valid values are:

login: The user should be 
prompted to reauthenticate.

select_account: The user is 
prompted to select an account, 
interrupting single sign on. The 
user may select an existing 
signed-in account, enter their 
credentials for a remembered 
account, or choose to use a 
different account altogether.

consent: User consent has been 
granted, but needs to be 
updated. The user should be 
prompted to consent.

admin_consent: An administrator 
should be prompted to consent 
on behalf of all users in their 
organization

login_hint optional Can be used to pre-fill the 
username/email address field of 
the sign-in page for the user, if 
you know their username ahead 
of time. Often apps use this 
parameter during reauthentica-
tion, having already extracted 
the username from a previous 
sign-in using the preferred_
username claim.

domain_hint optional Provides a hint about the tenant 
or domain that the user should 
use to sign in. The value of the 
domain_hint is a registered 
domain for the tenant. If the 
tenant is federated to an 
on-premises directory, AAD 
redirects to the specified tenant 
federation server.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



82  Module 4   Module Implementing Authentication

Parameter Need Description
code_challenge_method recommended The method used to encode the 

code_verifier for the code_
challenge parameter. Can be 
one of plain or S256. If 
excluded, code_challenge is 
assumed to be plaintext if code_
challenge is included. Azure 
AAD v1.0 supports both plain 
and S256.

code_challenge recommended Used to secure authorization 
code grants via Proof Key for 
Code Exchange (PKCE) from a 
native or public client. Required 
if code_challenge_method is 
included.

Note: If the user is part of an organization, an administrator of the organization can consent or decline 
on the user's behalf, or permit the user to consent. The user is given the option to consent only when the 
administrator permits it.

At this point, the user is asked to enter their credentials and consent to the permissions requested by the 
app in the Azure Portal. Once the user authenticates and grants consent, Azure AD sends a response to 
your app at the redirect_uri address in your request with the code.

Successful response
A successful response could look like this:

GET  HTTP/1.1 302 Found 
Location: http://localhost:12345/?code= AwABAAAAvPM1KaPlrEqdFSBzjqfTGBCm-
LdgfSTLEMPGYuNHSUYBrqqf_ZT_p5uEAEJJ_nZ3UmphWygRNy2C3jJ239gV_DBnZ2syeg-
95Ki-374WHUP-i3yIhv5i-7KU2CEoPXwURQp6IVYMw-DjAOzn7C3JCu5wpngXmbZKtJdWmiBzH-
pcO2aICJPu1KvJrDLDP20chJBXzVYJtkfjviLNNW7l7Y3ydcHDsBRKZc3GuMQanmcghXPyoDg-
41g8XbwPudVh7uCmUponBQpIhbuffFP_tbV8SNzsPoFz9CLpBCZagJVXeqWoYMPe2dSsPi-
LO9Alf_YIe5zpi-zY4C3aLw5g9at35eZTfNd0gBRpR5ojkMIcZZ6IgAA&session_
state=7B29111D-C220-4263-99AB-6F6E135D75EF&state=D79E5777-702E-4260-9A62-
37F75FF22CCE 

Parameter Description
admin_consent The value is True if an administrator consented to 

a consent request prompt.
code The authorization code that the application 

requested. The application can use the authoriza-
tion code to request an access token for the target 
resource.

session_state A unique value that identifies the current user 
session. This value is a GUID, but should be treated 
as an opaque value that is passed without exami-
nation.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  83

Parameter Description
state If a state parameter is included in the request, the 

same value should appear in the response. It's a 
good practice for the application to verify that the 
state values in the request and response are 
identical before using the response. This helps to 
detect Cross-Site Request Forgery (CSRF) attacks 
against the client.

Error response
Error responses may also be sent to the redirect_uri so that the application can handle them appro-
priately.

GET http://localhost:12345/? 
error=access_denied 
&error_description=the+user+canceled+the+authentication 

Parameter Description
error An error code value defined in Section 5.2 of the 

OAuth 2.0 Authorization Framework. The next 
table describes the error codes that Azure AD 
returns.

error_description A more detailed description of the error. This 
message is not intended to be end-user friendly.

state The state value is a randomly generated non-re-
used value that is sent in the request and returned 
in the response to prevent cross-site request 
forgery (CSRF) attacks.

Error codes for authorization endpoint errors
The following table describes the various error codes that can be returned in the error parameter of the 
error response.

Error Code Description Client Action
invalid_request Protocol error, such as a missing 

required parameter.
Fix and resubmit the request. 
This is a development error, and 
is typically caught during initial 
testing.

unauthorized_client The client application is not 
permitted to request an authori-
zation code.

This usually occurs when the 
client application is not regis-
tered in Azure AD or is not 
added to the user's Azure AD 
tenant. The application can 
prompt the user with instruction 
for installing the application and 
adding it to Azure AD.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



84  Module 4   Module Implementing Authentication

Error Code Description Client Action
access_denied Resource owner denied consent The client application can notify 

the user that it cannot proceed 
unless the user consents.

unsupported_response_type The authorization server does 
not support the response type in 
the request.

Fix and resubmit the request. 
This is a development error, and 
is typically caught during initial 
testing.

server_error The server encountered an 
unexpected error.

Retry the request. These errors 
can result from temporary 
conditions. The client application 
might explain to the user that its 
response is delayed due to a 
temporary error.

temporarily_unavailable The server is temporarily too 
busy to handle the request.

Retry the request. The client 
application might explain to the 
user that its response is delayed 
due to a temporary condition.

invalid_resource The target resource is invalid 
because it does not exist, Azure 
AD cannot find it, or it is not 
correctly configured.

This indicates the resource, if it 
exists, has not been configured 
in the tenant. The application 
can prompt the user with 
instruction for installing the 
application and adding it to 
Azure AD.

Use the authorization code to request an access token
Now that you've acquired an authorization code and have been granted permission by the user, you can 
redeem the code for an access token to the desired resource, by sending a POST request to the /token 
endpoint:

// Line breaks for legibility only 
 
POST /{tenant}/oauth2/token HTTP/1.1 
Host: https://login.microsoftonline.com 
Content-Type: application/x-www-form-urlencoded 
grant_type=authorization_code 
&client_id=2d4d11a2-f814-46a7-890a-274a72a7309e 
&code=AwABAAAAvPM1KaPlrEqdFSBzjqfTGBCmLdgfSTLEMPGYuNHSUYBrqqf_ZT_p5uEAEJJ_
nZ3UmphWygRNy2C3jJ239gV_DBnZ2syeg95Ki-374WHUP-i3yIhv5i-7KU2CEoPXwURQp6IVY-
Mw-DjAOzn7C3JCu5wpngXmbZKtJdWmiBzHpcO2aICJPu1KvJrDLDP20chJBXzVYJtkfjviLNN-
W7l7Y3ydcHDsBRKZc3GuMQanmcghXPyoDg41g8XbwPudVh7uCmUponBQpIhbuffFP_tbV8SN-
zsPoFz9CLpBCZagJVXeqWoYMPe2dSsPiLO9Alf_YIe5zpi-zY4C3aLw5g9at35eZTfNd0g-
BRpR5ojkMIcZZ6IgAA 
&redirect_uri=https%3A%2F%2Flocalhost%3A12345 
&resource=https%3A%2F%2Fservice.contoso.com%2F 
&client_secret=p@ssw0rd 
 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  85

//NOTE: client_secret only required for web apps 

Parameter Description
tenant required The {tenant} value in the path 

of the request can be used to 
control who can sign into the 
application. The allowed values 
are tenant identifiers, for exam-
ple, 8eaef023-2b34-4da1-
9baa-8bc8c9d6a490 or 
contoso.onmicrosoft.com 
or common for tenant-independ-
ent tokens

client_id required The Application Id assigned to 
your app when you registered it 
with Azure AD. You can find this 
in the Azure portal. The Applica-
tion Id is displayed in the 
settings of the app registration.

grant_type required Must be authorization_code 
for the authorization code flow.

code required The authorization_code 
that you acquired in the previous 
section

redirect_uri required The same redirect_uri value 
that was used to acquire the 
authorization_code.

client_secret required for web apps, not 
allowed for public clients

The application secret that you 
created in the Azure Portal for 
your app under Keys. It cannot 
be used in a native app (public 
client), because client_secrets 
cannot be reliably stored on 
devices. It is required for web 
apps and web APIs (all confiden-
tial clients), which have the 
ability to store the client_se-
cret securely on the server side. 
The client_secret should be 
URL-encoded before being sent.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



86  Module 4   Module Implementing Authentication

Parameter Description
resource recommended The App ID URI of the target web 

API (secured resource). To find 
the App ID URI, in the Azure 
Portal, click Azure Active 
Directory, click Application 
registrations, open the applica-
tion's Settings page, then click 
Properties. It may also be an 
external resource like https://
graph.microsoft.com. This is 
required in one of either the 
authorization or token requests. 
To ensure fewer authentication 
prompts place it in the authori-
zation request to ensure consent 
is received from the user. If in 
both the authorization request 
and the token request, the 
resource` parameters must 
match.

code_verifier optional The same code_verifier that was 
used to obtain the authoriza-
tion_code. Required if PKCE was 
used in the authorization code 
grant request.

To find the App ID URI, in the Azure Portal, click Azure Active Directory, click Application registrations, 
open the application's Settings page, then click Properties.

Successful response
Azure AD returns an access token upon a successful response. To minimize network calls from the client 
application and their associated latency, the client application should cache access tokens for the token 
lifetime that is specified in the OAuth 2.0 response. To determine the token lifetime, use either the 
expires_in or expires_on parameter values.

If a web API resource returns an invalid_token error code, this might indicate that the resource has 
determined that the token is expired. If the client and resource clock times are different (known as a “time 
skew”), the resource might consider the token to be expired before the token is cleared from the client 
cache. If this occurs, clear the token from the cache, even if it is still within its calculated lifetime.

A successful response could look like this:

{ 
  "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik5HVEZ-
2ZEstZnl0aEV1THdqcHdBSk9NOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9z-
by5jb20vIiwiaXNzIjoiaHR0cHM6Ly9zdHMud2luZG93cy5uZXQvN2ZlODE0NDctZGE-
1Ny00Mzg1LWJlY2ItNmRlNTdmMjE0NzdlLyIsImlhdCI6MTM4ODQ0MDg2My-
wibmJmIjoxMzg4NDQwODYzLCJleHAiOjEzODg0NDQ3NjMsInZlciI6IjEuMCIsInRpZCI6Ijd-
mZTgxNDQ3LWRhNTctNDM4NS1iZWNiLTZkZTU3ZjIxNDc3ZSIsIm9pZCI6IjY4Mzg5YWUyLTYyZ-
mEtNGIxOC05MWZlLTUzZGQxMDlkNzRmNSIsInVwbiI6ImZyYW5rbUBjb250b3NvLmNvbSIsIn-
VuaXF1ZV9uYW1lIjoiZnJhbmttQGNvbnRvc28uY29tIiwic3ViIjoiZGVOcUlqOUlPRTlQV0pX-

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  87

YkhzZnRYdDJFYWJQVmwwQ2o4UUFtZWZSTFY5OCIsImZhbWlseV9uYW1lIjoiTWlsbGVyIiwi-
Z2l2ZW5fbmFtZSI6IkZyYW5rIiwiYXBwaWQiOiIyZDRkMTFhMi1mODE0LTQ2YTctODkwYS0yNz-
RhNzJhNzMwOWUiLCJhcHBpZGFjciI6IjAiLCJzY3AiOiJ1c2VyX2ltcGVyc29uYXRpb24iL-
CJhY3IiOiIxIn0.
JZw8jC0gptZxVC-7l5sFkdnJgP3_tRjeQEPgUn28XctVe3QqmheLZw7QVZDPCyGycDWBaqy-
7FLpSekET_BftDkewRhyHk9FW_KeEz0ch2c3i08NGNDbr6XYGVayNuSesYk5Aw_p3ICRlU-
V1bqEwk-Jkzs9EEkQg4hbefqJS6yS1HoV_2EsEhpd_wCQpxK89WPs3hLYZETRJtG5kvCCEO-
vSHXmDE6eTHGTnEgsIk--UlPe275Dvou4gEAwLofhLDQbMSjnlV5VLsjimNBVcSRFShoxmQwB-
JR_b2011Y5IuD6St5zPnzruBbZYkGNurQK63TJPWmRd3mbJsGM0mf3CUQ", 
  "token_type": "Bearer", 
  "expires_in": "3600", 
  "expires_on": "1388444763", 
  "resource": "https://service.contoso.com/", 
  "refresh_token": "AwABAAAAvPM1KaPlrEqdFSBzjqfTGAMxZGUTdM0t4B4rTfgV29gh-
DOHRc2B-C_hHeJaJICqjZ3mY2b_YNqmf9SoAylD1PycGCB90xzZeEDg6oBzOIPfYsbDWNf621p-
Ko2Q3GGTHYlmNfwoc-OlrxK69hkha2CF12azM_NYhgO668yfcUl4VBbiSHZyd1NVZG5QTIOc-
bObu3qnLutbpadZGAxqjIbMkQ2bQS09fTrjMBtDE3D6kSMIodpCecoANon9b0LATkpitim-
VCrl-NyfN3oyG4ZCWu18M9-vEou4Sq-1oMDzExgAf61noxzkNiaTecM-Ve5cq6wHqYQjfV9DO-
z4lbceuYCAA", 
  "scope": "https%3A%2F%2Fgraph.microsoft.com%2Fmail.read", 
  "id_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJhdWQiOiIyZDRkMTFhMi-
1mODE0LTQ2YTctODkwYS0yNzRhNzJhNzMwOWUiLCJpc3MiOiJodHRwczovL3N0cy53aW5kb3d-
zLm5ldC83ZmU4MTQ0Ny1kYTU3LTQzODUtYmVjYi02ZGU1N2YyMTQ3N2U-
vIiwiaWF0IjoxMzg4NDQwODYzLCJuYmYiOjEzODg0NDA4NjMsImV4cCI6MTM4ODQ0NDc2Mywid-
mVyIjoiMS4wIiwidGlkIjoiN2ZlODE0NDctZGE1Ny00Mzg1LWJlY2ItNmRlNTdmMjE0NzdlIi-
wib2lkIjoiNjgzODlhZTItNjJmYS00YjE4LTkxZmUtNTNkZDEwOWQ3NGY1IiwidXBuIjoiZnJh-
bmttQGNvbnRvc28uY29tIiwidW5pcXVlX25hbWUiOiJmcmFua21AY29udG9zby5jb20iLCJzd-
WIiOiJKV3ZZZENXUGhobHBTMVpzZjd5WVV4U2hVd3RVbTV5elBtd18talgzZkhZIiwiZm-
FtaWx5X25hbWUiOiJNaWxsZXIiLCJnaXZlbl9uYW1lIjoiRnJhbmsifQ." 
} 

Parameter Description
access_token The requested access token as a signed JSON Web 

Token (JWT). The app can use this token to 
authenticate to the secured resource, such as a 
web API.

token_type Indicates the token type value. The only type that 
Azure AD supports is Bearer.

expires_in How long the access token is valid (in seconds).
expires_on The time when the access token expires. The date 

is represented as the number of seconds from 
1970-01-01T0:0:0Z UTC until the expiration time. 
This value is used to determine the lifetime of 
cached tokens.

resource The App ID URI of the web API (secured resource).
scope Impersonation permissions granted to the client 

application. The default permission is user_im-
personation. The owner of the secured resource 
can register additional values in Azure AD.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



88  Module 4   Module Implementing Authentication

Parameter Description
refresh_token An OAuth 2.0 refresh token. The app can use this 

token to acquire additional access tokens after the 
current access token expires. Refresh tokens are 
long-lived, and can be used to retain access to 
resources for extended periods of time.

id_token An unsigned JSON Web Token (JWT) representing 
an ID token. The app can base64Url decode the 
segments of this token to request information 
about the user who signed in. The app can cache 
the values and display them, but it should not rely 
on them for any authorization or security bounda-
ries.

Error response
The token issuance endpoint errors are HTTP error codes, because the client calls the token issuance 
endpoint directly. In addition to the HTTP status code, the Azure AD token issuance endpoint also returns 
a JSON document with objects that describe the error.

A sample error response could look like this:

{ 
  "error": "invalid_grant", 
  "error_description": "AADSTS70002: Error validating credentials. 
AADSTS70008: The provided authorization code or refresh token is expired. 
Send a new interactive authorization request for this user and resource.\r\
nTrace ID: 3939d04c-d7ba-42bf-9cb7-1e5854cdce9e\r\nCorrelation ID: 
a8125194-2dc8-4078-90ba-7b6592a7f231\r\nTimestamp: 2016-04-11 18:00:12Z", 
  "error_codes": [ 
    70002, 
    70008 
  ], 
  "timestamp": "2016-04-11 18:00:12Z", 
  "trace_id": "3939d04c-d7ba-42bf-9cb7-1e5854cdce9e", 
  "correlation_id": "a8125194-2dc8-4078-90ba-7b6592a7f231" 
} 

Parameter Description
error An error code string that can be used to classify 

types of errors that occur, and can be used to 
react to errors.

error_description A specific error message that can help a developer 
identify the root cause of an authentication error.

error_codes A list of STS-specific error codes that can help in 
diagnostics.

timestamp The time at which the error occurred.
trace_id A unique identifier for the request that can help in 

diagnostics.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  89

Parameter Description
correlation_id A unique identifier for the request that can help in 

diagnostics across components.

Error codes for token endpoint errors
Error Code Description Client Action
invalid_request Protocol error, such as a missing 

required parameter.
Fix and resubmit the request

invalid_grant The authorization code is invalid 
or has expired.

Try a new request to the /
authorize endpoint

unauthorized_client The authenticated client is not 
authorized to use this authoriza-
tion grant type.

This usually occurs when the 
client application is not regis-
tered in Azure AD or is not 
added to the user's Azure AD 
tenant. The application can 
prompt the user with instruction 
for installing the application and 
adding it to Azure AD.

invalid_client Client authentication failed. The client credentials are not 
valid. To fix, the application 
administrator updates the 
credentials.

unsupported_grant_type The authorization server does 
not support the authorization 
grant type.

Change the grant type in the 
request. This type of error should 
occur only during development 
and be detected during initial 
testing.

invalid_resource The target resource is invalid 
because it does not exist, Azure 
AD cannot find it, or it is not 
correctly configured.

This indicates the resource, if it 
exists, has not been configured 
in the tenant. The application 
can prompt the user with 
instruction for installing the 
application and adding it to 
Azure AD.

interaction_required The request requires user 
interaction. For example, an 
additional authentication step is 
required.

Instead of a non-interactive 
request, retry with an interactive 
authorization request for the 
same resource.

temporarily_unavailable The server is temporarily too 
busy to handle the request.

Retry the request. The client 
application might explain to the 
user that its response is delayed 
due to a temporary condition.

Use the access token to access the resource
Now that you've successfully acquired an access_token, you can use the token in requests to Web 
APIs, by including it in the Authorization header.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



90  Module 4   Module Implementing Authentication

Sample request
GET /data HTTP/1.1 
Host: service.contoso.com 
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik5HVEZ-
2ZEstZnl0aEV1THdqcHdBSk9NOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9z-
by5jb20vIiwiaXNzIjoiaHR0cHM6Ly9zdHMud2luZG93cy5uZXQvN2ZlODE0NDctZGE-
1Ny00Mzg1LWJlY2ItNmRlNTdmMjE0NzdlLyIsImlhdCI6MTM4ODQ0MDg2My-
wibmJmIjoxMzg4NDQwODYzLCJleHAiOjEzODg0NDQ3NjMsInZlciI6IjEuMCIsInRpZCI6Ijd-
mZTgxNDQ3LWRhNTctNDM4NS1iZWNiLTZkZTU3ZjIxNDc3ZSIsIm9pZCI6IjY4Mzg5YWUyLTYyZ-
mEtNGIxOC05MWZlLTUzZGQxMDlkNzRmNSIsInVwbiI6ImZyYW5rbUBjb250b3NvLmNvbSIsIn-
VuaXF1ZV9uYW1lIjoiZnJhbmttQGNvbnRvc28uY29tIiwic3ViIjoiZGVOcUlqOUlPRTlQV0pX-
YkhzZnRYdDJFYWJQVmwwQ2o4UUFtZWZSTFY5OCIsImZhbWlseV9uYW1lIjoiTWlsbGVyIiwi-
Z2l2ZW5fbmFtZSI6IkZyYW5rIiwiYXBwaWQiOiIyZDRkMTFhMi1mODE0LTQ2YTctODkwYS0yNz-
RhNzJhNzMwOWUiLCJhcHBpZGFjciI6IjAiLCJzY3AiOiJ1c2VyX2ltcGVyc29uYXRpb24iL-
CJhY3IiOiIxIn0.
JZw8jC0gptZxVC-7l5sFkdnJgP3_tRjeQEPgUn28XctVe3QqmheLZw7QVZDPCyGycDWBaqy-
7FLpSekET_BftDkewRhyHk9FW_KeEz0ch2c3i08NGNDbr6XYGVayNuSesYk5Aw_p3ICRlU-
V1bqEwk-Jkzs9EEkQg4hbefqJS6yS1HoV_2EsEhpd_wCQpxK89WPs3hLYZETRJtG5kvCCEO-
vSHXmDE6eTHGTnEgsIk--UlPe275Dvou4gEAwLofhLDQbMSjnlV5VLsjimNBVcSRFShoxmQwB-
JR_b2011Y5IuD6St5zPnzruBbZYkGNurQK63TJPWmRd3mbJsGM0mf3CUQ 

Error Response
Secured resources that implement RFC 6750 issue HTTP status codes. If the request does not include 
authentication credentials or is missing the token, the response includes an WWW-Authenticate header. 
When a request fails, the resource server responds with the HTTP status code and an error code.

The following is an example of an unsuccessful response when the client request does not include the 
bearer token:

HTTP/1.1 401 Unauthorized 
WWW-Authenticate: Bearer authorization_uri="https://login.microsoftonline.
com/contoso.com/oauth2/authorize",  error="invalid_token",  error_descrip-
tion="The access token is missing.", 

Parameter Description
authorization_uri The URI (physical endpoint) of the authorization 

server. This value is also used as a lookup key to 
get more information about the server from a 
discovery endpoint. 
 
 The client must validate that the authorization 
server is trusted. When the resource is protected 
by Azure AD, it is sufficient to verify that the URL 
begins with https://login.microsofton-
line.com or another hostname that Azure AD 
supports. A tenant-specific resource should always 
return a tenant-specific authorization URI.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  91

Parameter Description
error An error code value defined in Section 5.2 of the 

OAuth 2.0 Authorization Framework.
error_description A more detailed description of the error. This 

message is not intended to be end-user friendly.
resource_id Returns the unique identifier of the resource. The 

client application can use this identifier as the 
value of the resource parameter when it re-
quests a token for the resource. 
 
It is important for the client application to verify 
this value, otherwise a malicious service might be 
able to induce an elevation-of-privileges attack. 
 
The recommended strategy for preventing an 
attack is to verify that the resource_id matches 
the base of the web API URL that being accessed. 
For example, if https://service.contoso.
com/data is being accessed, the resource_id 
can be htttps://service.contoso.com/. 
The client application must reject a resource_id 
that does not begin with the base URL unless 
there is a reliable alternate way to verify the id.

Refreshing the access tokens
Access Tokens are short-lived and must be refreshed after they expire to continue accessing resources. 
You can refresh the access_token by submitting another POST request to the /token endpoint, but this 
time providing the refresh_token instead of the code. Refresh tokens are valid for all resources that your 
client has already been given consent to access - thus, a refresh token issued on a request for re-
source=https://graph.microsoft.com can be used to request a new access token for re-
source=https://contoso.com/api.

Refresh tokens do not have specified lifetimes. Typically, the lifetimes of refresh tokens are relatively long. 
However, in some cases, refresh tokens expire, are revoked, or lack sufficient privileges for the desired 
action. Your application needs to expect and handle errors returned by the token issuance endpoint 
correctly.

When you receive a response with a refresh token error, discard the current refresh token and request a 
new authorization code or access token. In particular, when using a refresh token in the Authorization 
Code Grant flow, if you receive a response with the interaction_required or invalid_grant error codes, 
discard the refresh token and request a new authorization code.

A sample request to the tenant-specific endpoint (you can also use the common endpoint) to get a new 
access token using a refresh token looks like this:

// Line breaks for legibility only 
 
POST /{tenant}/oauth2/token HTTP/1.1 
Host: https://login.microsoftonline.com 
Content-Type: application/x-www-form-urlencoded 
 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



92  Module 4   Module Implementing Authentication

client_id=6731de76-14a6-49ae-97bc-6eba6914391e 
&refresh_token=OAAABAAAAiL9Kn2Z27UubvWFPbm0gLWQJVzCTE9UkP3pSx1aXxUjq... 
&grant_type=refresh_token 
&resource=https%3A%2F%2Fservice.contoso.com%2F 
&client_secret=JqQX2PNo9bpM0uEihUPzyrh    // NOTE: Only required for web 
apps 

Successful response
A successful token response will look like:

{ 
  "token_type": "Bearer", 
  "expires_in": "3600", 
  "expires_on": "1460404526", 
  "resource": "https://service.contoso.com/", 
  "access_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik5HVEZ-
2ZEstZnl0aEV1THdqcHdBSk9NOW4tQSJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9z-
by5jb20vIiwiaXNzIjoiaHR0cHM6Ly9zdHMud2luZG93cy5uZXQvN2ZlODE0NDctZGE-
1Ny00Mzg1LWJlY2ItNmRlNTdmMjE0NzdlLyIsImlhdCI6MTM4ODQ0MDg2My-
wibmJmIjoxMzg4NDQwODYzLCJleHAiOjEzODg0NDQ3NjMsInZlciI6IjEuMCIsInRpZCI6Ijd-
mZTgxNDQ3LWRhNTctNDM4NS1iZWNiLTZkZTU3ZjIxNDc3ZSIsIm9pZCI6IjY4Mzg5YWUyLTYyZ-
mEtNGIxOC05MWZlLTUzZGQxMDlkNzRmNSIsInVwbiI6ImZyYW5rbUBjb250b3NvLmNvbSIsIn-
VuaXF1ZV9uYW1lIjoiZnJhbmttQGNvbnRvc28uY29tIiwic3ViIjoiZGVOcUlqOUlPRTlQV0pX-
YkhzZnRYdDJFYWJQVmwwQ2o4UUFtZWZSTFY5OCIsImZhbWlseV9uYW1lIjoiTWlsbGVyIiwi-
Z2l2ZW5fbmFtZSI6IkZyYW5rIiwiYXBwaWQiOiIyZDRkMTFhMi1mODE0LTQ2YTctODkwYS0yNz-
RhNzJhNzMwOWUiLCJhcHBpZGFjciI6IjAiLCJzY3AiOiJ1c2VyX2ltcGVyc29uYXRpb24iL-
CJhY3IiOiIxIn0.
JZw8jC0gptZxVC-7l5sFkdnJgP3_tRjeQEPgUn28XctVe3QqmheLZw7QVZDPCyGycDWBaqy-
7FLpSekET_BftDkewRhyHk9FW_KeEz0ch2c3i08NGNDbr6XYGVayNuSesYk5Aw_p3ICRlU-
V1bqEwk-Jkzs9EEkQg4hbefqJS6yS1HoV_2EsEhpd_wCQpxK89WPs3hLYZETRJtG5kvCCEO-
vSHXmDE6eTHGTnEgsIk--UlPe275Dvou4gEAwLofhLDQbMSjnlV5VLsjimNBVcSRFShoxmQwB-
JR_b2011Y5IuD6St5zPnzruBbZYkGNurQK63TJPWmRd3mbJsGM0mf3CUQ", 
  "refresh_token": "AwABAAAAv YNqmf9SoAylD1PycGCB90xzZeEDg6oBzOIPfYsbDWNf-
621pKo2Q3GGTHYlmNfwoc-OlrxK69hkha2CF12azM_NYhgO668yfcUl4VBbiSHZyd1NVZG5QTI-
OcbObu3qnLutbpadZGAxqjIbMkQ2bQS09fTrjMBtDE3D6kSMIodpCecoANon9b0LATkpitim-
VCrl 
PM1KaPlrEqdFSBzjqfTGAMxZGUTdM0t4B4rTfgV29ghDOHRc2B-C_hHeJaJICqjZ3mY2b_YNqm-
f9SoAylD1PycGCB90xzZeEDg6oBzOIPfYsbDWNf621pKo2Q3GGTHYlmNfwoc-OlrxK69hkha2C-
F12azM_NYhgO668yfmVCrl-NyfN3oyG4ZCWu18M9-vEou4Sq-1oMDzExgAf61noxz-
kNiaTecM-Ve5cq6wHqYQjfV9DOz4lbceuYCAA" 
} 

Parameter Description
token_type The token type. The only supported value is 

bearer.
expires_in The remaining lifetime of the token in seconds. A 

typical value is 3600 (one hour).

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  93

Parameter Description
expires_on The date and time on which the token expires. The 

date is represented as the number of seconds 
from 1970-01-01T0:0:0Z UTC until the expiration 
time.

resource Identifies the secured resource that the access 
token can be used to access.

scope Impersonation permissions granted to the native 
client application. The default permission is user_
impersonation. The owner of the target resource 
can register alternate values in Azure AD.

access_token The new access token that was requested.
refresh_token A new OAuth 2.0 refresh_token that can be used 

to request new access tokens when the one in this 
response expires.

Error response
A sample error response could look like this:

{ 
  "error": "invalid_resource", 
  "error_description": "AADSTS50001: The application named https://foo.
microsoft.com/mail.read was not found in the tenant named 295e01fc-0c56-
4ac3-ac57-5d0ed568f872. This can happen if the application has not been 
installed by the administrator of the tenant or consented to by any user in 
the tenant. You might have sent your authentication request to the wrong 
tenant.\r\nTrace ID: ef1f89f6-a14f-49de-9868-61bd4072f0a9\r\nCorrelation 
ID: b6908274-2c58-4e91-aea9-1f6b9c99347c\r\nTimestamp: 2016-04-11 
18:59:01Z", 
  "error_codes": [ 
    50001 
  ], 
  "timestamp": "2016-04-11 18:59:01Z", 
  "trace_id": "ef1f89f6-a14f-49de-9868-61bd4072f0a9", 
  "correlation_id": "b6908274-2c58-4e91-aea9-1f6b9c99347c" 
} 

Parameter Description
error An error code string that can be used to classify 

types of errors that occur, and can be used to 
react to errors.

error_description A specific error message that can help a developer 
identify the root cause of an authentication error.

error_codes A list of STS-specific error codes that can help in 
diagnostics.

timestamp The time at which the error occurred.
trace_id A unique identifier for the request that can help in 

diagnostics.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



94  Module 4   Module Implementing Authentication

Parameter Description
correlation_id A unique identifier for the request that can help in 

diagnostics across components.

For a description of the error codes and the recommended client action, see “Error codes for token 
endpoint errors” list in the "Use the authorization code to request an access token" section above.

Service to service calls using client credentials
The OAuth 2.0 Client Credentials Grant Flow permits a web service (confidential client) to use its own 
credentials instead of impersonating a user, to authenticate when calling another web service. In this 
scenario, the client is typically a middle-tier web service, a daemon service, or web site. For a higher level 
of assurance, Azure AD also allows the calling service to use a certificate (instead of a shared secret) as a 
credential.

Client credentials grant flow diagram

The following diagram explains how the client credentials grant flow works in Azure Active Directory 
(Azure AD).

1.	 The client application authenticates to the Azure AD token issuance endpoint and requests an access 
token.

2.	 The Azure AD token issuance endpoint issues the access token.

3.	 The access token is used to authenticate to the secured resource.

4.	 Data from the secured resource is returned to the client application.

Register the Services in Azure AD
Register both the calling service and the receiving service in Azure Active Directory (Azure AD). For 
detailed instructions, see Integrating applications with Azure Active Directory4.

Request an Access Token
To request an access token, use an HTTP POST to the tenant-specific Azure AD endpoint.

https://login.microsoftonline.com/<tenant id>/oauth2/token 

4	 https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-v1-integrate-apps-with-azure-ad

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  95

Service-to-service access token request
There are two cases depending on whether the client application chooses to be secured by a shared 
secret, or a certificate.

First case: Access token request with a shared secret
When using a shared secret, a service-to-service access token request contains the following parameters:

Parameter Description
grant_type required Specifies the requested grant 

type. In a Client Credentials 
Grant flow, the value must be 
client_credentials.

client_id required Specifies the Azure AD client id 
of the calling web service. To find 
the calling application's client ID, 
in the Azure portal, click Azure 
Active Directory, click App 
registrations, click the applica-
tion. The client_id is the 
Application ID.

client_secret required Enter a key registered for the 
calling web service or daemon 
application in Azure AD. To 
create a key, in the Azure portal, 
click Azure Active Directory, 
click App registrations, click the 
application, click Settings, click 
Keys, and add a Key. URL-en-
code this secret when providing 
it.

resource required Enter the App ID URI of the 
receiving web service. To find the 
App ID URI, in the Azure portal, 
click Azure Active Directory, 
click App registrations, click the 
service application, and then 
click Settings and Properties.

Example
The following HTTP POST requests an access token for the https://service.contoso.com/ web 
service. The client_id identifies the web service that requests the access token.

POST /contoso.com/oauth2/token HTTP/1.1 
Host: login.microsoftonline.com 
Content-Type: application/x-www-form-urlencoded 
 
grant_type=client_credentials&client_id=625bc9f6-3bf6-4b6d-94ba-e97c-
f07a22de&client_secret=qkDwDJlDfig2IpeuUZYKH1Wb8q1V0ju6sILxQQqhJ+s=&re-

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



96  Module 4   Module Implementing Authentication

source=https%3A%2F%2Fservice.contoso.com%2F 

Second case: Access token request with a certificate
A service-to-service access token request with a certificate contains the following parameters:

Parameter Description
grant_type required Specifies the requested response 

type. In a Client Credentials 
Grant flow, the value must be 
client_credentials.

client_id required Specifies the Azure AD client id 
of the calling web service. To find 
the calling application's client ID, 
in the Azure portal, click Azure 
Active Directory, click App 
registrations, click the applica-
tion. The client_id is the 
Application ID.

client_assertion_type required The value must be urn:iet-
f:params:oauth:cli-
ent-assertion-type:-
jwt-bearer

client_assertion required An assertion (a JSON Web Token) 
that you need to create and sign 
with the certificate you regis-
tered as credentials for your 
application. Read about certifi-
cate credentials (https://docs.
microsoft.com/en-us/azure/
active-directory/develop/ac-
tive-directory-certificate-creden-
tials) to learn how to register 
your certificate and the format of 
the assertion.

resource required Enter the App ID URI of the 
receiving web service. To find the 
App ID URI, in the Azure portal, 
click Azure Active Directory, 
click App registrations, click the 
service application, and then 
click Settings and Properties.

Notice that the parameters are almost the same as in the case of the request by shared secret except that 
the client_secret parameter is replaced by two parameters: a client_assertion_type and 
client_assertion.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement OAuth2 authentication  97

Example
The following HTTP POST requests an access token for the https://service.contoso.com/ web 
service with a certificate. The client_id identifies the web service that requests the access token.

POST /<tenant_id>/oauth2/token HTTP/1.1 
Host: login.microsoftonline.com 
Content-Type: application/x-www-form-urlencoded 
 
resource=https%3A%2F%contoso.onmicrosoft.com%2Ff-
c7664b4-cdd6-43e1-9365-c2e1c4e1b3bf&client_id=97e-
0a5b7-d745-40b6-94fe-5f77d35c6e05&client_assertion_type=urn%3Aietf%3Apar-
ams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer&client_assertion=eyJhbGci-
OiJSUzI1NiIsIng1dCI6Imd4OHRHeXN5amNScUtqRlBuZDdSRnd2d1pJMCJ9.eyJ{a lot of 
characters here}M8U3bSUKKJDEg&grant_type=client_credentials 

Service-to-Service Access Token Response
A success response contains a JSON OAuth 2.0 response with the following parameters:

Parameter Description
access_token The requested access token. The calling web 

service can use this token to authenticate to the 
receiving web service.

token_type Indicates the token type value. The only type that 
Azure AD supports is Bearer. For more informa-
tion about bearer tokens, see The OAuth 2.0 
Authorization Framework: Bearer Token Usage 
(RFC 6750) (https://www.rfc-editor.org/rfc/rfc6750.
txt).

expires_in How long the access token is valid (in seconds).
expires_on The time when the access token expires. The date 

is represented as the number of seconds from 
1970-01-01T0:0:0Z UTC until the expiration time. 
This value is used to determine the lifetime of 
cached tokens.

not_before The time from which the access token becomes 
usable. The date is represented as the number of 
seconds from 1970-01-01T0:0:0Z UTC until time of 
validity for the token.

resource The App ID URI of the receiving web service.

Example of response
The following example shows a success response to a request for an access token to a web service.

{ 
"access_token":"eyJhbGciOiJSUzI1NiIsIng1dCI6IjdkRC1nZWNOZ1gxWmY3R0xrT3Zw-
T0IyZGNWQSIsInR5cCI6IkpXVCJ9.eyJhdWQiOiJodHRwczovL3NlcnZpY2UuY29udG9zby5jb-
20vIiwiaXNzIjoiaHR0cHM6Ly9zdHMud2luZG93cy5uZXQvN2ZlODE0NDctZGE1Ny00Mzg1LW-

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



98  Module 4   Module Implementing Authentication

JlY2ItNmRlNTdmMjE0NzdlLyIsImlhdCI6MTM4ODQ0ODI2NywibmJmIjoxMzg4NDQ4MjY3L-
CJleHAiOjEzODg0NTIxNjcsInZlciI6IjEuMCIsInRpZCI6IjdmZTgxNDQ3LWRhNTctNDM4N-
S1iZWNiLTZkZTU3ZjIxNDc3ZSIsIm9pZCI6ImE5OTE5MTYyLTkyMTctNDlkYS1hZTIyLWYxMT-
M3YzI1Y2RlYSIsInN1YiI6ImE5OTE5MTYyLTkyMTctNDlkYS1hZTIyLWYxMTM3YzI1Y2RlYSI-
sImlkcCI6Imh0dHBzOi8vc3RzLndpbmRvd3MubmV0LzdmZTgxNDQ3LWRhNTctNDM4NS1i-
ZWNiLTZkZTU3ZjIxNDc3ZS8iLCJhcHBpZCI6ImQxN2QxNWJjLWM1NzYtNDFlNS05MjdmLWRiN-
WYzMGRkNThmMSIsImFwcGlkYWNyIjoiMSJ9.
aqtfJ7G37CpKV901Vm9sGiQhde0WMg6luYJR4wuNR2ffaQsVPPpKirM5rbc6o5CmW1OtmaAIdwD-
cL6i9ZT9ooIIicSRrjCYMYWHX08ip-tj-uWUihGztI02xKdWiycItpWiHxapQm0a8T-
i1CWRjJghORC1B1-fah_yWx6Cjuf4QE8xJcu-ZHX0pVZNPX22PHYV5Km-vPTq2HtIqd-
boKyZy3Y4y3geOrRIFElZYoqjqSv5q9Jgtj5ERsNQIjefpyxW3EwPtFqMcDm4ebiAEpoEWRN-
4QYOMxnC9OUBeG9oLA0lTfmhgHLAtvJogJcYFzwngTsVo6HznsvPWy7UP3MINA", 
"token_type":"Bearer", 
"expires_in":"3599", 
"expires_on":"1388452167", 
"resource":"https://service.contoso.com/" 
} 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  99

Implement managed identities for Azure re-
sources
Managed identities for Azure resources over-
view
Note: Managed identities for Azure resources is a feature of Azure Active Directory. Each of the Azure 
services that support managed identities for Azure resources are subject to their own timeline. Make sure 
you review the availability5 status of managed identities for your resource and known issues6 before 
you begin.

A common challenge when building cloud applications is how to manage the credentials in your code for 
authenticating to cloud services. Keeping the credentials secure is an important task. Ideally, the creden-
tials never appear on developer workstations and aren't checked into source control. Azure Key Vault pro-
vides a way to securely store credentials, secrets, and other keys, but your code has to authenticate to 
Key Vault to retrieve them.

The managed identities for Azure resources feature in Azure Active Directory (Azure AD) solves this 
problem. The feature provides Azure services with an automatically managed identity in Azure AD. You 
can use the identity to authenticate to any service that supports Azure AD authentication, including Key 
Vault, without any credentials in your code.

The managed identities for Azure resources feature is free with Azure AD for Azure subscriptions. There's 
no additional cost.

Note: Managed identities for Azure resources is the new name for the service formerly known as Man-
aged Service Identity (MSI).

Terminology
The following terms are used throughout the managed identities for Azure resources documentation set:

●● Client id - a unique identifier generated by Azure AD that is tied to an application and service 
principal during its initial provisioning.

●● Principal id - the object id of the service principal object for your managed identity that is used to 
grant role based access to an Azure resource.

●● Azure Instance Metadata Service (IMDS) - a REST Endpoint accessible to all IaaS VMs created via 
the Azure Resource Manager. The endpoint is available at a well-known non-routable IP address 
(169.254.169.254) that can be accessed only from within the VM.

How the managed identities for Azure resources works
There are two types of managed identities:

●● A system-assigned managed identity is enabled directly on an Azure service instance. When the 
identity is enabled, Azure creates an identity for the instance in the Azure AD tenant that's trusted by 
the subscription of the instance. After the identity is created, the credentials are provisioned onto the 
instance. The lifecycle of a system-assigned identity is directly tied to the Azure service instance that 

5	 https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/services-support-msi
6	 https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/known-issues

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



100  Module 4   Module Implementing Authentication

it's enabled on. If the instance is deleted, Azure automatically cleans up the credentials and the 
identity in Azure AD.

●● A user-assigned managed identity is created as a standalone Azure resource. Through a create 
process, Azure creates an identity in the Azure AD tenant that's trusted by the subscription in use. 
After the identity is created, the identity can be assigned to one or more Azure service instances. The 
lifecycle of a user-assigned identity is managed separately from the lifecycle of the Azure service 
instances to which it's assigned.

Your code can use a managed identity to request access tokens for services that support Azure AD 
authentication. Azure takes care of rolling the credentials that are used by the service instance.

The following diagram shows how managed service identities work with Azure virtual machines (VMs):

How a system-assigned managed identity works with an 
Azure VM
1.	 Azure Resource Manager receives a request to enable the system-assigned managed identity on a 

VM.

2.	 Azure Resource Manager creates a service principal in Azure AD for the identity of the VM. The service 
principal is created in the Azure AD tenant that's trusted by the subscription.

3.	 Azure Resource Manager configures the identity on the VM:

●● Updates the Azure Instance Metadata Service identity endpoint with the service principal client ID 
and certificate.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  101

●● Provisions the VM extension (planned for deprecation in January 2019), and adds the service 
principal client ID and certificate. (This step is planned for deprecation.)

4.	 After the VM has an identity, use the service principal information to grant the VM access to Azure 
resources. To call Azure Resource Manager, use role-based access control (RBAC) in Azure AD to 
assign the appropriate role to the VM service principal. To call Key Vault, grant your code access to the 
specific secret or key in Key Vault.

5.	 Your code that's running on the VM can request a token from two endpoints that are accessible only 
from within the VM:

●● Azure Instance Metadata Service identity endpoint (recommended): 
http://169.254.169.254/metadata/identity/oauth2/token

●● The resource parameter specifies the service to which the token is sent. To authenticate to 
Azure Resource Manager, use resource=https://management.azure.com/.

●● API version parameter specifies the IMDS version, use api-version=2018-02-01 or greater.

●● VM extension endpoint (planned for deprecation in January 2019): http://localhost:50342/
oauth2/token

●● The resource parameter specifies the service to which the token is sent. To authenticate to 
Azure Resource Manager, use resource=https://management.azure.com/.

6.	 A call is made to Azure AD to request an access token (as specified in step 5) by using the client ID 
and certificate configured in step 3. Azure AD returns a JSON Web Token (JWT) access token.

7.	 Your code sends the access token on a call to a service that supports Azure AD authentication.

How a user-assigned managed identity works with an Azure 
VM
1.	 Azure Resource Manager receives a request to create a user-assigned managed identity.

2.	 Azure Resource Manager creates a service principal in Azure AD for the user-assigned managed 
identity. The service principal is created in the Azure AD tenant that's trusted by the subscription.

3.	 Azure Resource Manager receives a request to configure the user-assigned managed identity on a 
VM:

●● Updates the Azure Instance Metadata Service identity endpoint with the user-assigned managed 
identity service principal client ID and certificate.

●● Provisions the VM extension, and adds the user-assigned managed identity service principal client 
ID and certificate. (This step is planned for deprecation.)

4.	 After the user-assigned managed identity is created, use the service principal information to grant the 
identity access to Azure resources. To call Azure Resource Manager, use RBAC in Azure AD to assign 
the appropriate role to the service principal of the user-assigned identity. To call Key Vault, grant your 
code access to the specific secret or key in Key Vault.

5.	 Note: You can also do this step before step 3.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



102  Module 4   Module Implementing Authentication

6.	 Your code that's running on the VM can request a token from two endpoints that are accessible only 
from within the VM:

●● Azure Instance Metadata Service identity endpoint (recommended): 
http://169.254.169.254/metadata/identity/oauth2/token

●● The resource parameter specifies the service to which the token is sent. To authenticate to 
Azure Resource Manager, use resource=https://management.azure.com/.

●● The client ID parameter specifies the identity for which the token is requested. This value is 
required for disambiguation when more than one user-assigned identity is on a single VM.

●● The API version parameter specifies the Azure Instance Metadata Service version. Use 
api-version=2018-02-01 or higher.

●● VM extension endpoint (planned for deprecation in January 2019): http://localhost:50342/
oauth2/token

●● The resource parameter specifies the service to which the token is sent. To authenticate to 
Azure Resource Manager, use resource=https://management.azure.com/.

●● The client ID parameter specifies the identity for which the token is requested. This value is 
required for disambiguation when more than one user-assigned identity is on a single VM.

7.	 A call is made to Azure AD to request an access token (as specified in step 5) by using the client ID 
and certificate configured in step 3. Azure AD returns a JSON Web Token (JWT) access token.

8.	 Your code sends the access token on a call to a service that supports Azure AD authentication.

Configure managed identities for Azure resourc-
es on an Azure VM using Azure CLI
In this article, you learn how to enable and disable system and user-assigned managed identities for an 
Azure Virtual Machine (VM), using the Azure CLI.

System-assigned managed identity
In this section, you learn how to enable and disable the system-assigned managed identity on an Azure 
VM using Azure CLI.

To create an Azure VM with the system-assigned managed identity enabled,your account needs the 
Virtual Machine Contributor role assignment. No additional Azure AD directory role assignments are 
required.

Enable system-assigned managed identity during creation of 
an Azure VM
1.	 If you're using the Azure CLI in a local console, first sign in to Azure using az login. Use an account 

that is associated with the Azure subscription under which you would like to deploy the VM:

az login 

2.	 Create a resource group for containment and deployment of your VM and its related resources, using 
az group create. You can skip this step if you already have resource group you would like to use 
instead:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  103

az group create --name myResourceGroup --location westus 

3.	 Create a VM using az vm create. The following example creates a VM named myVM with a 
system-assigned managed identity, as requested by the --assign-identity parameter. The 
--admin-username and --admin-password parameters specify the administrative user name and 
password account for virtual machine sign-in. Update these values as appropriate for your environ-
ment:

az vm create --resource-group myResourceGroup --name myVM --image win-
2016datacenter --generate-ssh-keys --assign-identity --admin-username 
azureuser --admin-password myPassword12 

Enable system-assigned managed identity on an existing 
Azure VM
Sign in to Azure using an account that is associated with the Azure subscription that contains the VM. 
Use az vm with the identity assign command to enable to the system-assigned identity to an 
existing VM.

az vm identity assign -g myResourceGroup -n myVm 

Disable system-assigned identity from an Azure VM
To disable system-assigned managed identity on a VM, your account needs the Virtual Machine Contrib-
utor role assignment. No additional Azure AD directory role assignments are required.

If you have a Virtual Machine that no longer needs the system-assigned identity, but still needs user-as-
signed identities, use the following command:

az vm update -n myVM -g myResourceGroup --set identity.type='UserAssigned'  

If you have a virtual machine that no longer needs system-assigned identity and it has no user-assigned 
identities, use the following command:

Note: The value none is case sensitive. It must be lowercase.

az vm update -n myVM -g myResourceGroup --set identity.type="none" 

To remove the managed identity for Azure resources VM extension (planned for deprecation in January 
2019), user -n ManagedIdentityExtensionForWindows or -n ManagedIdentityExtension-
ForLinux switch (depending on the type of VM):

az vm identity --resource-group myResourceGroup --vm-name myVm -n Manage-
dIdentityExtensionForWindows 

User-assigned managed identity
In this section, you will learn how to add and remove a user-assigned managed identity from an Azure 
VM using Azure CLI.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



104  Module 4   Module Implementing Authentication

To assign a user-assigned identity to a VM during its creation, your account needs the Virtual Machine 
Contributor and Managed Identity Operator role assignments. No additional Azure AD directory role 
assignments are required.

Important: When creating user assigned identities, only alphanumeric characters (0-9, a-z, A-Z) and the 
hyphen (-) are supported. Additionally, the name should be limited to 24 characters in length for the 
assignment to VM/VMSS to work properly. Check back for updates. For more information, see FAQs and 
known issues7.

Assign a user-assigned managed identity during the creation 
of an Azure VM
1.	 You can skip this step if you already have a resource group you would like to use. Create a resource 

group for containment and deployment of your user-assigned managed identity, using az group 
create. Be sure to replace the <RESOURCE GROUP> and <LOCATION> parameter values with your 
own values. :

az group create --name <RESOURCE GROUP> --location <LOCATION> 

2.	 Create a user-assigned managed identity using az identity create. The -g parameter specifies 
the resource group where the user-assigned managed identity is created, and the -n parameter 
specifies its name.

az identity create -g myResourceGroup -n myUserAssignedIdentity 

3.	 The response contains details for the user-assigned managed identity created, similar to the following. 
The resource id value assigned to the user-assigned managed identity is used in the following step.

{ 
    "clientId": "73444643-8088-4d70-9532-c3a0fdc190fz", 
    "clientSecretUrl": "https://control-westcentralus.identity.azure.net/
subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/providers/
Microsoft.ManagedIdentity/userAssignedIdentities/<myUserAssignedIdentity>/
credentials?tid=5678&oid=9012&aid=73444643-8088-4d70-9532-c3a0fdc190fz", 
    "id": "/subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/
providers/Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED 
IDENTITY NAME>", 
    "location": "westcentralus", 
    "name": "<USER ASSIGNED IDENTITY NAME>", 
    "principalId": "e5fdfdc1-ed84-4d48-8551-fe9fb9dedfll", 
    "resourceGroup": "<RESOURCE GROUP>", 
    "tags": {}, 
    "tenantId": "733a8f0e-ec41-4e69-8ad8-971fc4b533bl", 
    "type": "Microsoft.ManagedIdentity/userAssignedIdentities"     
} 

4.	 Create a VM using az vm create. The following example creates a VM associated with the new 
user-assigned identity, as specified by the --assign-identity parameter. Be sure to replace the 
<RESOURCE GROUP>, <VM NAME>, <USER NAME>, <PASSWORD>, and <USER ASSIGNED IDENTI-
TY NAME> parameter values with your own values.

7	 https://docs.microsoft.com/en-us/azure/active-directory/managed-service-identity/known-issues

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  105

az vm create --resource-group <RESOURCE GROUP> --name <VM NAME> --image 
UbuntuLTS --admin-username <USER NAME> --admin-password <PASSWORD> --as-
sign-identity <USER ASSIGNED IDENTITY NAME> 

Assign a user-assigned managed identity to an existing Az-
ure VM
1.	 Create a user-assigned identity using az identity create. The -g parameter specifies the 

resource group where the user-assigned identity is created, and the -n parameter specifies its name. 
Be sure to replace the <RESOURCE GROUP> and <USER ASSIGNED IDENTITY NAME> parameter 
values with your own values:

az identity create -g <RESOURCE GROUP> -n <USER ASSIGNED IDENTITY NAME> 

1.	 The response contains details for the user-assigned managed identity created, similar to the following.

{ 
    "clientId": "73444643-8088-4d70-9532-c3a0fdc190fz", 
    "clientSecretUrl": "https://control-westcentralus.identity.azure.net/
subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/providers/
Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED IDENTITY 
NAME>/credentials?tid=5678&oid=9012&aid=73444643-8088-4d70-9532-c3a0fd-
c190fz", 
    "id": "/subscriptions/<SUBSCRIPTON ID>/resourcegroups/<RESOURCE GROUP>/
providers/Microsoft.ManagedIdentity/userAssignedIdentities/<USER ASSIGNED 
IDENTITY NAME>", 
    "location": "westcentralus", 
    "name": "<USER ASSIGNED IDENTITY NAME>", 
    "principalId": "e5fdfdc1-ed84-4d48-8551-fe9fb9dedfll", 
    "resourceGroup": "<RESOURCE GROUP>", 
    "tags": {}, 
    "tenantId": "733a8f0e-ec41-4e69-8ad8-971fc4b533bl", 
    "type": "Microsoft.ManagedIdentity/userAssignedIdentities"     
} 

2.	 Assign the user-assigned identity to your VM using az vm identity assign. Be sure to replace 
the <RESOURCE GROUP> and <VM NAME> parameter values with your own values. The <USER 
ASSIGNED IDENTITY NAME> is the user-assigned managed identity's resource name property, as 
created in the previous step:

az vm identity assign -g <RESOURCE GROUP> -n <VM NAME> --identities <USER 
ASSIGNED IDENTITY> 

Remove a user-assigned managed identity from an Azure 
VM
To remove a user-assigned identity to a VM, your account needs the Virtual Machine Contributor role 
assignment.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



106  Module 4   Module Implementing Authentication

If this is the only user-assigned managed identity assigned to the virtual machine, UserAssigned will be 
removed from the identity type value. Be sure to replace the <RESOURCE GROUP> and <VM NAME> 
parameter values with your own values. The <USER ASSIGNED IDENTITY> will be the user-assigned 
identity's name property, which can be found in the identity section of the virtual machine using az vm 
identity show:

az vm identity remove -g <RESOURCE GROUP> -n <VM NAME> --identities <USER 
ASSIGNED IDENTITY> 

If your VM does not have a system-assigned managed identity and you want to remove all user-assigned 
identities from it, use the following command:

Note: The value none is case sensitive. It must be lowercase.

az vm update -n myVM -g myResourceGroup --set identity.type="none" identi-
ty.userAssignedIdentities=null 

If your VM has both system-assigned and user-assigned identities, you can remove all the user-assigned 
identities by switching to use only system-assigned by using the following command:

az vm update -n myVM -g myResourceGroup --set identity.type='SystemAs-
signed' identity.userAssignedIdentities=null  

How to use managed identities for Azure re-
sources on an Azure VM to acquire an access 
token
A client application can request managed identities for Azure resources app-only access token for 
accessing a given resource. The token is based on the managed identities for Azure resources service 
principal. As such, there is no need for the client to register itself to obtain an access token under its own 
service principal. The token is suitable for use as a bearer token in service-to-service calls requiring client 
credentials.

Get a token using HTTP
The fundamental interface for acquiring an access token is based on REST, making it accessible to any 
client application running on the VM that can make HTTP REST calls. This is similar to the Azure AD 
programming model, except the client uses an endpoint on the virtual machine (vs an Azure AD end-
point).

Sample request using the Azure Instance Metadata Service 
(IMDS) endpoint:

GET 'http://169.254.169.254/metadata/identity/oauth2/token?api-ver-
sion=2018-02-01&resource=https://management.azure.com/' HTTP/1.1 Metadata: 
true 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  107

Element Description
GET The HTTP verb, indicating you want to retrieve 

data from the endpoint. In this case, an OAuth 
access token.

http://169.254.169.254/metadata/
identity/oauth2/token

The managed identities for Azure resources 
endpoint for the Instance Metadata Service.

api-version A query string parameter, indicating the API 
version for the IMDS endpoint. Please use API 
version 2018-02-01 or greater.

resource A query string parameter, indicating the App ID 
URI of the target resource. It also appears in the 
aud (audience) claim of the issued token. This 
example requests a token to access Azure Re-
source Manager, which has an App ID URI of 
https://management.azure.com/.

Metadata An HTTP request header field, required by man-
aged identities for Azure resources as a mitigation 
against Server Side Request Forgery (SSRF) attack. 
This value must be set to "true", in all lower case.

object_id (Optional) A query string parameter, indicating the 
object_id of the managed identity you would like 
the token for. Required, if your VM has multiple 
user-assigned managed identities.

client_id (Optional) A query string parameter, indicating the 
client_id of the managed identity you would like 
the token for. Required, if your VM has multiple 
user-assigned managed identities.

Sample response:

HTTP/1.1 200 OK 
Content-Type: application/json 
{ 
  "access_token": "eyJ0eXAi...", 
  "refresh_token": "", 
  "expires_in": "3599", 
  "expires_on": "1506484173", 
  "not_before": "1506480273", 
  "resource": "https://management.azure.com/", 
  "token_type": "Bearer" 
} 

Element Description
access_token The requested access token. When calling a 

secured REST API, the token is embedded in the 
Authorization request header field as a 
“bearer” token, allowing the API to authenticate 
the caller.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



108  Module 4   Module Implementing Authentication

Element Description
refresh_token Not used by managed identities for Azure resourc-

es.
expires_in The number of seconds the access token contin-

ues to be valid, before expiring, from time of 
issuance. Time of issuance can be found in the 
token's iat claim.

expires_on The timespan when the access token expires. The 
date is represented as the number of seconds 
from "1970-01-01T0:0:0Z UTC" (corresponds to the 
token's exp claim).

not_before The timespan when the access token takes effect, 
and can be accepted. The date is represented as 
the number of seconds from “1970-01-01T0:0:0Z 
UTC” (corresponds to the token's nbf claim).

resource The resource the access token was requested for, 
which matches the resource query string 
parameter of the request.

token_type The type of token, which is a "Bearer" access 
token, which means the resource can give access 
to the bearer of this token.

Token caching
While the managed identities for Azure resources subsystem being used (IMDS/managed identities for 
Azure resources VM Extension) does cache tokens, we also recommend to implement token caching in 
your code. As a result, you should prepare for scenarios where the resource indicates that the token is 
expired.

On-the-wire calls to Azure AD result only when:

●● cache miss occurs due to no token in the managed identities for Azure resources subsystem cache

●● the cached token is expired

Error handling
The managed identities for Azure resources endpoint signals errors via the status code field of the HTTP 
response message header, as either 4xx or 5xx errors:

Status Code Error Reason How To Handle
404 Not found. IMDS endpoint is updating. Retry with Expontential Backoff. 

See guidance below.
429 Too many requests. IMDS Throttle limit reached. Retry with Exponential Backoff. 

See guidance below.
4xx Error in request. One or more of the request 

parameters was incorrect.
Do not retry. Examine the error 
details for more information. 4xx 
errors are design-time errors.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  109

Status Code Error Reason How To Handle
5xx Transient error from service. The managed identities for Azure 

resources sub-system or Azure 
Active Directory returned a 
transient error.

It is safe to retry after waiting for 
at least 1 second. If you retry too 
quickly or too often, IMDS and/
or Azure AD may return a rate 
limit error (429).

timeout IMDS endpoint is updating. Retry with Expontential Backoff. 
See guidance below.

If an error occurs, the corresponding HTTP response body contains JSON with the error details:

Element Description
error Error identifier.
error_description Verbose description of error. Error descriptions can 

change at any time. Do not write code that 
branches based on values in the error description.

HTTP response reference
This section documents the possible error responses. A “200 OK” status is a successful response, and the 
access token is contained in the response body JSON, in the access_token element.

Status code Error Error Description Solution
400 Bad Request invalid_resource AADSTS50001: The 

application named 
<URI> was not found in 
the tenant named 
<TENANT-ID>. This can 
happen if the applica-
tion has not been 
installed by the admin-
istrator of the tenant or 
consented to by any 
user in the tenant. You 
might have sent your 
authentication request 
to the wrong tenant.\

(Linux only)

400 Bad Request bad_request_102 Required metadata 
header not specified

Either the Metadata 
request header field is 
missing from your 
request, or is formatted 
incorrectly. The value 
must be specified as 
true, in all lower case. 
See the "Sample 
request" in the preced-
ing REST section for an 
example.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



110  Module 4   Module Implementing Authentication

Status code Error Error Description Solution
401 Unauthorized unknown_source Unknown Source <URI> Verify that your HTTP 

GET request URI is 
formatted correctly. The 
scheme:host/
resource-path 
portion must be 
specified as http://
localhost:50342/
oauth2/token.

invalid_request The request is missing a 
required parameter, 
includes an invalid 
parameter value, 
includes a parameter 
more than once, or is 
otherwise malformed.

unauthorized_client The client is not author-
ized to request an 
access token using this 
method.

Caused by a request 
that didn’t use local 
loopback to call the 
extension, or on a VM 
that doesn’t have 
managed identities for 
Azure resources 
configured correctly.

access_denied The resource owner or 
authorization server 
denied the request.

unsupported_response_
type

The authorization server 
does not support 
obtaining an access 
token using this 
method.

invalid_scope The requested scope is 
invalid, unknown, or 
malformed.

500 Internal server error unknown Failed to retrieve token 
from the Active directo-
ry. For details see logs 
in <file path>

Verify that managed 
identities for Azure 
resources has been 
enabled on the VM. 
 
Also verify that your 
HTTP GET request URI is 
formatted correctly, 
particularly the resource 
URI specified in the 
query string.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement managed identities for Azure resources  111

Retry guidance
It is recommended to retry if you receive a 404, 429, or 5xx error code.

Throttling limits apply to the number of calls made to the IMDS endpoint. When the throttling threshold 
is exceeded, IMDS endpoint limits any further requests while the throttle is in effect. During this period, 
the IMDS endpoint will return the HTTP status code 429 (“Too many requests”), and the requests fail.

For retry, we recommend the following strategy:

Retry strategy Settings Values How it works
ExponentialBackoff Retry count 

Min back-off 
Max back-off 
Delta back-off 
First fast retry

5 
0 sec 
60 sec 
2 sec 
false

Attempt 1 - delay 0 sec 
Attempt 2 - delay ~2 
sec 
Attempt 3 - delay ~6 
sec 
Attempt 4 - delay ~14 
sec 
Attempt 5 - delay ~30 
sec

Assign a managed identity access to a resource 
using Azure CLI
Once you've configured an Azure resource with a managed identity, you can give the managed identity 
access to another resource, just like any security principal. This example shows you how to give an Azure 
virtual machine or virtual machine scale set's managed identity access to an Azure storage account using 
Azure CLI.

Use RBAC to assign a managed identity access to another 
resource
After you've enabled managed identity on an Azure resource, such as an Azure virtual machine:

1.	 If you're using the Azure CLI in a local console, first sign in to Azure using az login. Use an account 
that is associated with the Azure subscription under which you would like to deploy the VM:

az login 

2.	 In this example, we are giving an Azure virtual machine access to a storage account. First we use az 
resource list to get the service principal for the virtual machine named myVM:

spID=$(az resource list -n myVM --query [*].identity.principalId --out tsv) 

3.	 For an Azure virtual machine scale set, the command is the same except here, you get the service 
principal for the virtual machine scale set named DevTestVMSS:

spID=$(az resource list -n DevTestVMSS --query [*].identity.principalId 
--out tsv) 

4.	 Once you have the service principal ID, use az role assignment create to give the virtual 
machine Reader access to a storage account called myStorageAcct:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



112  Module 4   Module Implementing Authentication

az role assignment create --assignee $spID --role 'Reader' --scope /sub-
scriptions/<mySubscriptionID>/resourceGroups/<myResourceGroup>/providers/
Microsoft.Storage/storageAccounts/myStorageAcct 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles  113

Online Lab - Implementing Custom Role Based 
Access Control (RBAC) Roles
Lab Steps

Online Lab: Implementing Custom Role Based Access Con-
trol (RBAC) Roles
NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario
Adatum Corporation wants to implement custom RBAC roles to delegate permissions to start and stop 
(deallocate) Azure VMs.

Objectives
After completing this lab, you will be able to:

●● Define a custom RBAC role

●● Assign a custom RBAC role

Lab Setup
Estimated Time: 30 minutes

User Name: Student

Password: Pa55w.rd

Exercise 1: Define a custom RBAC role
The main tasks for this exercise are as follows:

1.	 Deploy an Azure VM by using an Azure Resource Manager template

2.	 Identify actions to delegate via RBAC

3.	 Create a custom RBAC role in an Azure AD tenant

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



114  Module 4   Module Implementing Authentication

Task 1: Deploy an Azure VM by using an Azure Resource 
Manager template
1.	 From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.

azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure 
subscription.

2.	 In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

3.	 If you are presented with the You have no storage mounted message, configure storage using the 
following settings:

●● Subsciption: the name of the target Azure subscription

●● Cloud Shell region: the name of the Azure region that is available in your subscription and which is 
closest to the lab location

●● Resource group: the name of a new resource group az3000900-LabRG

●● Storage account: a name of a new storage account

●● File share: a name of a new file share

4.	 From the Cloud Shell pane, create a resource groups by running (replace the <Azure region> 
placeholder with the name of the Azure region that is available in your subscription and which is 
closest to the lab location)

New-AzResourceGroup -Name az3000901-LabRG -Location <Azure region> 

5.	 From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_04\azuredeploy09.json into the home directory.

6.	 From the Cloud Shell pane, upload the parameter file \allfiles\AZ-300T03\Module_04\azurede-
ploy09.parameters.json into the home directory.

7.	 From the Cloud Shell pane, deploy an Azure VM hosting Ubuntu by running:

New-AzResourceGroupDeployment -ResourceGroupName az3000901-LabRG -Template-
File azuredeploy09.json -TemplateParameterFile azuredeploy09.parameters.
json 

8.	 Note: Do not wait for the deployment to complete but instead proceed to the next task.

9.	 In the Azure portal, close the Cloud Shell pane.

Task 2: Identify actions to delegate via RBAC
1.	 In the Azure portal, navigate to the az3000901-LabRG blade.

2.	 On the az3000901-LabRG blade, click Access Control (IAM).

3.	 On the az3000901-LabRG - Access Control (IAM) blade, click Roles.

4.	 On the Roles blade, click Owner.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles  115

5.	 On the Owner blade, click Permissions.

6.	 On the Permissions (preview) blade, click Microsoft Compute.

7.	 On the Microsoft Compute blade, click Virtual machines.

8.	 On the Virtual Machines blade, review the list of management actions that can be delegated through 
RBAC. Note that they include the Deallocate Virtual Machine and Start Virtual Machine actions.

Task 3: Create a custom RBAC role in an Azure AD tenant
1.	 On the lab computer, open the file \allfiles\AZ-300T03\Module_04\customRoleDefinition09.json 

and review its content:

{ 
   "Name": "Virtual Machine Operator (Custom)", 
   "Id": null, 
   "IsCustom": true, 
   "Description": "Allows to start and stop (deallocate) Azure VMs", 
   "Actions": [ 
       "Microsoft.Compute/*/read", 
       "Microsoft.Compute/virtualMachines/deallocate/action", 
       "Microsoft.Compute/virtualMachines/start/action" 
   ], 
   "NotActions": [ 
   ], 
   "AssignableScopes": [ 
       "/subscriptions/SUBSCRIPTION_ID" 
   ] 
} 

2.	 In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

3.	 From the Cloud Shell pane, upload the Azure Resource Manager template \allfiles\AZ-300T03\
Module_04\customRoleDefinition09.json into the home directory.

4.	 From the Cloud Shell pane, run the following to replace the $SUBSCRIPTION_ID placeholder with the 
ID value of the Azure subscription:

$subscription_id = (Get-AzSubscription).Id 
(Get-Content -Path $HOME/customRoleDefinition09.json) -Replace 'SUBSCRIP-
TION_ID', "$subscription_id" | Set-Content -Path $HOME/customRoleDefini-
tion09.json 

5.	 From the Cloud Shell pane, run the following to create the custom role definition:

New-AzRoleDefinition -InputFile $HOME/customRoleDefinition09.json 

6.	 From the Cloud Shell pane, run the following to verify that the role was created successfully:

Get-AzRoleDefinition -Name 'Virtual Machine Operator (Custom)' 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



116  Module 4   Module Implementing Authentication

7.	 Close the Cloud Shell pane.

Result: After you completed this exercise, you have defined a custom RBAC role

Exercise 2: Assign and test a custom RBAC role
The main tasks for this exercise are as follows:

1.	 Create an Azure AD user

2.	 Create an RBAC role assignment

3.	 Test the RBAC role assignment

Task 1: Create an Azure AD user
1.	 In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

2.	 From the Cloud Shell pane, run the following to identify the Azure AD DNS domain name:

$domainName = ((Get-AzureAdTenantDetail).VerifiedDomains)[0].Name 

3.	 From the Cloud Shell pane, run the following to create a new Azure AD user:

$passwordProfile = New-Object -TypeName Microsoft.Open.AzureAD.Model.Pass-
wordProfile 
$passwordProfile.Password = 'Pa55w.rd1234' 
$passwordProfile.ForceChangePasswordNextLogin = $false 
New-AzureADUser -AccountEnabled $true -DisplayName 'lab user0901' -Pass-
wordProfile $passwordProfile -MailNickName 'labuser0901' -UserPrincipalName 
"labuser0901@$domainName" 

4.	 From the Cloud Shell pane, run the following to identify the user principal name of the newly created 
Azure AD user:

(Get-AzureADUser -Filter "MailNickName eq 'labuser0901'").UserPrincipalName 

5.	 Close the Cloud Shell pane.

Task 2: Create an RBAC role assignment
1.	 In the Azure portal, navigate to the az3000901-LabRG blade.

2.	 On the az3000901-LabRG blade, click Access Control (IAM).

3.	 On the az3000901-LabRG - Access Control (IAM) blade, click + Add and select the Add role 
assignment option.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Online Lab - Implementing Custom Role Based Access Control (RBAC) Roles  117

4.	 On the Add role assignment blade, specify the following settings and click Save:

●● Role: Virtual Machine Operator (Custom)

●● Assign access to: Azure AD user, group, or application

●● Select: lab user0901

Task 3: Test the RBAC role assignment
1.	 Start a new in-private Microsoft Edge window, browse to the Azure portal at http://portal.azure.com 

and sign in by using the newly created user account:

●● Username: the user principal name you identified in the first task of this exercise

●● Password: Pa55w.rd1234

2.	 In the Azure portal, navigate to the Resource groups blade. Note that you are not able to see any 
resource groups.

3.	 In the Azure portal, navigate to the All resources blade. Note that you are able to see only the 
az3000901-vm and its managed disk.

4.	 In the Azure portal, navigate to the az3000901-vm blade. Try restarting the virtual machine. Review 
the error message in the notification area and note that this action failed because the current user is 
not authorized to carry it out.

5.	 Stop the virtual machine and verify that the action completed successfully.

Result: After you completed this exercise, you have assigned and tested a custom RBAC role

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



118  Module 4   Module Implementing Authentication

Review Questions
Module 1 Review Questions
Token-based authentication

You develop a message board for students to collaborate on courses they take at a college.

The message board should allow students to use their existing social media accounts to register and 
authenticate.

You decide to implement ASP.NET Identity to allow social media accounts to be used in the application.

What are the benefits of using ASP.NET Identity for the application? What functionality can be added to 
the application in the future by using ASP.NET Identity?

Suggested Answer ↓ 
ASP.NET Identity is a unified identity platform for ASP.NET applications that can be used across all flavors 
of ASP.NET and that can be used in web, phone, store, or hybrid applications. ASP.NET Identity imple-
ments two core features that makes it ideal for token-based authentication:

ASP.NET Identity implements a provider model for logins. Today you may want to log in using a local 
Active Directory server, but tomorrow you may want to migrate to Azure AD. In ASP.NET Identity, you can 
simply add, remove, or replace providers. If your company decides to implement social network logins, 
you can keep adding providers or write your own providers without changing any other code in your 
application. 
 

App Service Authentication

You develop a game that will use the players social media account for authentication and access to the 
app.

You decide to implement ASP.NET Identity to allow social media accounts to be used in your application.

You need to ensure that users can post high scores from the application to timelines on social media 
platforms.

How can you use Azure App Service to enable this functionality? How does it work?

Suggested Answer ↓ 
Azure App Service provides built-in authentication and authorization support, so you can sign in users 
and access data by writing minimal or no code in your app instance. The authentication and authorization 
module runs in the same sandbox as your application code.

Identity information flows directly into the application code. For all language frameworks, App Service 
makes the user's claims available to your code by injecting them into the request headers.

App Service provides a built-in token store, which is a repository of tokens that are associated with the 
users of your web apps, APIs, or native mobile apps. When you enable authentication with any provider, 
this token store is immediately available to your app. The token information can be used in your applica-
tion code to perform tasks such as posting to the authenticated user's social media timeline. 
 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Review Questions  119

Security Best Practices

Your company has experienced several instances of data loss. The losses are a combination of weak 
passwords, loss of hardware, and brute force attacks.

You decide to implement multi-factor authentication (MFA).

What tenets of secure authentication should you consider before you deploy MFA?

Suggested Answer ↓ 
In security best practices, it is recommended to use two or more factors when authenticating users. This 
practice is referred to as multi-factor authentication. Using an enterprise as an example, the company 
could require employees to scan their badges and then enter their passwords as two factors of authenti-
cation. In the world of security, it is often recommended to have two of the following factors:

• Knowledge – Something that only the user knows (security questions, password, or PIN). 
• Possession – Something that only the user has (corporate badge, mobile device, or security token). 
• Inherence – Something that only the user is (fingerprint, face, voice, or iris).

The security of two-step verification lies in its layered approach. Compromising multiple authentication 
factors presents a significant challenge for attackers. Even if an attacker manages to learn the user's 
password, it is useless without possession of the additional authentication method. 
 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED





Module 5   Module Implementing Secure Data

Encryption options
Encryption
Encryption is the process of translating plain text data (plaintext) into something that appears to be 
random and meaningless (ciphertext). Decryption is the process of converting ciphertext back to plain-
text. To encrypt more than a small amount of data, symmetric encryption is used. A symmetric key is 
used during both the encryption and the decryption process. To decrypt a particular piece of ciphertext, 
the key that was used to encrypt the data must be used.

The goal of every encryption algorithm is to make it as difficult as possible to decrypt the generated 
ciphertext without using the key. If a really good encryption algorithm is used, there is no technique 
significantly better than methodically trying every possible key. For such an algorithm, the longer the key, 
the more difficult it is to decrypt a piece of ciphertext without possessing the key. It is difficult to deter-
mine the quality of an encryption algorithm. Algorithms that look promising sometimes turn out to be 
very easy to break, given the proper attack. When selecting an encryption algorithm, it is a good idea to 
choose one that has been in use for several years and has successfully resisted all attacks.

Encryption at rest
Encryption at rest is the encoding (encryption) of data when it is persisted. It is a common security 
requirement that data that is persisted on disk be encrypted with a secret encryption key. Encryption at 
rest helps provide data protection for stored data (at rest). Attacks against data at rest include attempts 
to obtain physical access to the hardware on which the data is stored and to then compromise the 
contained data. In such an attack, a server’s hard drive may have been mishandled during maintenance, 
allowing an attacker to remove the hard drive. Later, the attacker puts the hard drive into a computer 
under their control to attempt to access the data.

Encryption at rest is designed to prevent the attacker from accessing the unencrypted data by ensuring 
that the data is encrypted when on disk. If an attacker were to obtain a hard drive with such encrypted 
data but no access to the encryption keys, the attacker would not compromise the data without great 
difficulty. In such a scenario, an attacker would have to attempt attacks against encrypted data, which are 
much more complex and resource consuming than accessing unencrypted data on a hard drive. For this 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



122  Module 5   Module Implementing Secure Data

reason, encryption at rest is highly recommended and is a high-priority requirement for many organiza-
tions.

Encryption at rest may also be required by an organization’s need for data governance and compliance 
efforts. Industry and government regulations, such as the Health Insurance Portability and Accountability 
Act (HIPAA), PCI DSS, and Federal Risk and Authorization Management Program (FedRAMP), lay out 
specific safeguards regarding data protection and encryption requirements. Encryption at rest is a 
mandatory measure required for compliance with some of those regulations. In addition to meeting 
compliance and regulatory requirements, encryption at rest should be perceived as a defense-in-depth 
platform capability.

In Microsoft Azure, organizations can achieve encryption at rest without having the cost of implementa-
tion and management and the risk of a custom key management solution. While Microsoft provides a 
compliant platform for services, applications, data, comprehensive facility and physical security enhance-
ment, data access control, and auditing, it is important to provide additional, overlapping security 
measures in case one of the other security measures fails. Encryption at rest provides such an additional 
defense mechanism.

The encryption at rest designs in Azure use symmetric encryption to encrypt and decrypt large amounts 
of data quickly according to a simple conceptual model:

●● A symmetric encryption key is used to encrypt data as it is written to storage.

●● The same encryption key is used to decrypt that data as it is readied for use in memory.

●● Data may be partitioned, and different keys may be used for each partition.

●● Keys must be stored in a security-enhanced location with access control policies limiting access to 
certain identities and logging key usage. Data encryption keys are often encrypted with asymmetric 
encryption to further limit access.

●●

Azure Storage encryption
All Azure Storage services (Blob storage, Queue storage, Table storage, and Azure Files) support serv-
er-side encryption at rest, with some services supporting customer-managed keys and client-side 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Encryption options  123

encryption. All Azure Storage services enable server-side encryption by default using service-managed 
keys, which is transparent to the application.

Storage Service Encryption is enabled for all new and existing storage accounts and cannot be disabled. 
Because your data is security enhanced by default, you don't need to modify your code or applications to 
take advantage of Storage Service Encryption.

Azure SQL Database encryption
Azure SQL Database supports encryption at rest for Microsoft-managed server-side and client-side 
encryption scenarios. Support for server encryption is currently provided through the unified SQL feature 
called Transparent Data Encryption (TDE). Once an Azure SQL Database customer enables TDE, keys are 
automatically created and managed for them. Encryption at rest can be enabled at the database and 
server levels. TDE is enabled by default on newly created databases. Azure SQL Database also supports 
RSA 2048-bit customer-managed keys in Azure Key Vault.

Azure Cosmos DB encryption
Cosmos DB stores its primary databases on solid-state drives (SSDs). Its media attachments and backups 
are stored in Azure Blob storage, which is generally backed up by hard disk drives (HDDs). Cosmos DB 
automatically encrypts all databases, media attachments and backups.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



124  Module 5   Module Implementing Secure Data

End-to-end encryption
Encrypt data with Transparent Data Encryption 
(TDE)
You can take several precautions to help secure the database, such as designing a security-enhanced 
system, encrypting confidential assets, and building a firewall around the database servers. However, in a 
scenario where the physical media (such as drives or backup tapes) are stolen, a malicious party can just 
restore or attach the database and browse the data. One solution is to encrypt the sensitive data in the 
database and help to protect the keys that are used to encrypt the data with a certificate. This helps 
prevent anyone without the keys from using the data, but this kind of protection must be planned in 
advance.

TDE encrypts SQL Server, Azure SQL Database, and Azure SQL Data Warehouse data files. TDE performs 
real-time I/O encryption and decryption of the data and log files. The encryption of the database file is 
performed at the page level. The pages in an encrypted database are encrypted before they are written 
to disk and decrypted when read into memory. TDE does not increase the size of the encrypted database.

The encryption uses a database encryption key (DEK), which is stored in the database boot record for 
availability during recovery. The DEK is either a symmetric key secured by using a certificate stored in the 
master database of the server or an asymmetric key protected by an Extensible Key Management (EKM) 
module. TDE protects data at rest, meaning the data and log files. It provides the ability to comply with 
many laws, regulations, and guidelines established in various industries. This enables software developers 
to encrypt data by using the AES and 3DES encryption algorithms without changing existing applications.

Encrypt data with Always Encrypted
Always Encrypted is a new data encryption technology in Azure SQL Database and SQL Server that helps 
protect sensitive data at rest on the server, during movement between client and server, and while the 
data is in use, helping to ensure that sensitive data never appears as plaintext inside the database system.

Always Encrypted is a feature designed to protect sensitive data, such as credit card numbers or national 
identification numbers (for example, United States social security numbers), stored in Azure SQL Database 
or SQL Server databases. Always Encrypted allows clients to encrypt sensitive data inside client applica-
tions and never reveal the encryption keys to the database engine ( SQL Database or SQL Server). As a 
result, Always Encrypted provides a separation between those who own the data (and can view it) and 
those who manage the data (but should have no access). After you encrypt the data, only client applica-
tions or app servers that have access to the keys can access the plaintext data.

By helping ensure that on-premises database administrators, cloud database operators, or other highly 
privileged but unauthorized users cannot access the encrypted data, Always Encrypted allows organiza-
tions to encrypt data at rest and in use for storage in Azure, to enable the delegation of on-premises 
database administration to third parties, or to reduce security clearance requirements for database 
administrators.

Note: Always Encrypted requires a specialized driver installed on the client computer to automatically 
encrypt and decrypt sensitive data in the client application. For many applications, this does require some 
code changes. This is in contrast to TDE, which only requires a change to the application’s connection 
string.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Implement Azure confidential computing  125

Implement Azure confidential computing
Azure confidential computing
Azure confidential computing refers to features available in many Azure services that encrypt data in use. 
Confidential computing is designed for scenarios where data needs to be processed in the cloud while 
still maintaining a level of encryption that helps protect the data from being viewed in a plaintext man-
ner. Confidential computing is a collaborative project between hardware vendors like Intel and software 
vendors like Microsoft.

Confidential computing helps to ensure that when data is “in the clear,” which is required for efficient 
processing, the data is protected inside a Trusted Execution Environment (TEE). TEEs help to ensure that 
there is no way to view data or operations inside from the outside, even with a debugger. They also help 
to ensure that only authorized code is permitted to access data. If the code is altered or tampered with, 
the operations are denied and the environment disabled. The TEE enforces these protections throughout 
the execution of the code within it.

Note: In some online articles, TEEs are commonly referred to as enclaves.

The goal of confidential computing is to build a platform where developers can take advantage of both 
hardware and software TEEs without being required to change their code. TEEs are exposed in multiple 
ways:

●● Hardware – Intel Xeon processors with Intel SGX technology are available for Azure Virtual Machines.

●● Software – The Intel SGX software development kit (SDK) and third-party enclave APIs can be used 
with compute instances and Virtual Machines in Azure.

●● Services – Many Azure services, such as Azure SQL Database, already execute code in TEEs.

●● Frameworks – The Microsoft Research team has developer frameworks, such as the Confidential 
Consortium Blockchain Framework, to help jumpstart new projects that need to run in TEEs.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



126  Module 5   Module Implementing Secure Data

Implement SSL and TLS communications
SSL and TLS overview
Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are cryptographic protocols that help 
provide communications security over a computer network. SSL encryption is the most commonly used 
method of helping secure data sent across the internet. Many Azure services, including (but not limited 
to) the following, support SSL encryption:

●● Azure SQL Database

●● Azure Database for MySQL

●● Azure Storage

●● Azure Application Gateway

●● Azure App Service

TLS in Azure Storage
SSL 1.0, 2.0 and 3.0 have been found to be vulnerable, and they have been prohibited by an Internet 
Engineering Task Force (IETF) Request For Comments (RFC). Many services and clients have moved 
forward to TLS 1.0. Unfortunately, TLS 1.0 became insecure for using insecure block ciphers (Data Encryp-
tion Standard [DES] CBC and RC2 CBC) and an insecure stream cipher (RC4). The Payment Card Industry’s 
(PCI) Standards Council has recommended moving on to newer versions of TLS.

For these reasons, the Azure Storage team has determined that TLS 1.2 is the best protocol to use when 
connecting to Azure Storage accounts. To help ensure a secure and compliant connection to Azure 
Storage, you need to enable TLS 1.2 or newer on the client side before sending requests to operate the 
Azure Storage service.

To enable TLS 1.2 in Microsoft .NET, you should use the ServicePointManager class in the System.
Net namespace:

System.Net.ServicePointManager.SecurityProtocol = System.Net.SecurityProto-
colType.Tls12; 

To enable TLS 1.2 in PowerShell, you can use the same class:

[System.Net.ServicePointManager]::SecurityProtocol = [System.Net.Securi-
tyProtocolType]::Tls12; 

Note: While not recommend, TLS 1.0 and 1.1 are still supported by Azure Storage for older client applica-
tions.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Manage cryptographic keys in Azure Key Vault  127

Manage cryptographic keys in Azure Key Vault
Azure Key Vault
You have passwords, connection strings, and other pieces of information that are needed to keep your 
applications working. You want to make sure that this information is available but that it is security 
enhanced. Azure Key Vault is a cloud service that works as a security-enhanced secrets store.

Key Vault allows you to create multiple security-enhanced containers, called vaults. These vaults are 
backed by hardware security modules (HSMs). Vaults help to reduce the chance of accidentally losing 
security information by centralizing the storage of application secrets. Vaults also control and log the 
access to anything stored in them. Azure Key Vault is designed to support any type of secret, such as a 
password, database credential, API key, or certificate. Software or HSMs can help to protect these secrets. 
Azure Key Vault can handle requesting and renewing TLS certificates, providing the features required for 
a robust certificate lifecycle management solution.

Key Vault streamlines the key management process and enables you to maintain control of keys that 
access and encrypt your data. Developers can create keys for development and testing in minutes and 
then seamlessly migrate them to production keys. Security administrators can grant (and revoke) permis-
sion to keys as needed.

Accessing Key Vault in Azure CLI
To create a vault using the Azure Command-Line Interface, you need to provide some information:

●● A unique name. For this example, we will use contosovault.

●● A resource group. Here, we are using SecurityGroup.

●● A location. We will use West US.

az keyvault create --name contosovault --resource-group SecurityGroup 
--location westus 

The output of this cmdlet shows properties of the newly created vault. Take note of the two properties 
listed below:

●● Vault Name: In the example, this is contosovault. You will use this name for other Key Vault 
commands.

●● Vault URI: In the example, this is https://contosovault.vault.azure.net/. Applications that 
use your vault through its REST API must use this URI.

At this point, your Azure account is the only one authorized to perform any operations on this new vault.

To add a secret to the vault, you just need to take a couple of additional steps. This password could be 
used by an application. The password will be called DatabasePassword and will store the value of Pa5w.rd 
in it:

az keyvault secret set --vault-name contosovault --name DatabasePassword 
--value 'Pa5w.rd' 

To view the value contained in the secret as plain text:

az keyvault secret show --vault-name contosovault --name DatabasePassword  

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



128  Module 5   Module Implementing Secure Data

Review Questions
Module 5 Review Questions
Azure SQL Database encryption

You manage several SQL Server instance for your organization.

You must encrypt all data at rest.

What should you implement? How does encryption of SQL databases affect the amount of storage space 
that is used?

Suggested Answer ↓ 
TDE encrypts SQL Server, Azure SQL Database, and Azure SQL Data Warehouse data files. TDE performs 
real-time I/O encryption and decryption of the data and log files.

Always Encrypted is a new data encryption technology in Azure SQL Database and SQL Server that helps 
protect sensitive data at rest on the server, during movement between client and server, and while the 
data is in use, helping to ensure that sensitive data never appears as plaintext inside the database system. 
 

SSL and TLS overview

You manage an application in Azure.

The application must communicate securely with users inside the corporate network.

You have hired an outside security consultant to perform a vulnerability analysis of your application, and 
the results show a concern regarding secure communications.

What should you do Which cryptographic protocols should be enabled?

Suggested Answer ↓ 
SSL 1.0, 2.0 and 3.0 have been found to be vulnerable, and they have been prohibited by an Internet 
Engineering Task Force (IETF) Request For Comments (RFC).

For these reasons, the Azure Storage team has determined that TLS 1.2 is the best protocol to use when 
connecting to Azure Storage accounts. 
 

Azure Key Vault

You manage several applications in Azure. Each application has unique credentials to access content and 
enable communication with internal resources.

You need to ensure that all authentication information is securely stored.

What should you use to secure the information?

Suggested Answer ↓ 
Azure Key Vault is a cloud service that works as a security-enhanced secrets store. 
Key Vault allows you to create multiple security-enhanced containers, called vaults. These vaults are 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Review Questions  129

backed by hardware security modules (HSMs). Vaults help to reduce the chance of accidentally losing 
security information by centralizing the storage of application secrets. Vaults also control and log the 
access to anything stored in them. Azure Key Vault is designed to support any type of secret, such as a 
password, database credential, API key, or certificate. 
 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED





Module 6   Module Business Continuity and Re-
siliency in Azure

Business Continuity and Resiliency
Business Continuity and Resilience in Azure
NOTE: The content in this module serves as an informal checklist of considerations for sustaining busi-
ness continuity and resilience in Azure and is the result of real-world implementations.

Business continuity represents the ability to perform essential business functions during and after adverse 
conditions such as a natural disaster or a failure of a service. It covers the entire operation of the business 
including physical facilities, people, communications, transportation, and technology.

This module covers technical aspects of business continuity and it's important to remember that technol-
ogy must be considered in the context of overall business continuity strategy.

A technical strategy for business continuity helps you ensure that your internal and external applications, 
workloads, and services are resilient by remaining operational during planned downtime and unplanned 
outages. Such resiliency must also ensure that business-critical data is backed up and stored in a secure 
location, and that the data can be recovered within a reasonable amount of time when an unexpected 
incident or a disaster occurs.

Architecting for resiliency in a cloud environment focuses on failure recovery, rather than on avoiding fail-
ures. Its goal is to respond to failures in a way that avoids downtime or data loss and returns applications 
to a fully functioning state following a failure. 
 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



132  Module 6   Module Business Continuity and Resiliency in Azure

High Availability and Disaster Recovery
High Availability and Disaster Recovery
Two essential aspects of resiliency are high availability and disaster recovery:

●● High availability (HA) is the ability of the application to continue running in a healthy state despite 
localized or transient failures. Typically, high availability relies on redundancy of application compo-
nents and automatic failover.

●● Disaster recovery (DR) is the ability to recover from major incidents, such as service disruption that 
affects an entire region. Disaster recovery provisions include data backup and archiving, and may 
require manual intervention, such as restoring a database from backup.

When designing for resiliency, you must understand the availability requirements. This is partially a 
function of cost incurred due to potential downtime, which, in turn, impacts the budget allocated to 
implementing HA and DR provisions. You also have to identify what constitutes application availability. 
For example, an order processing application might be considered operational if a customer is able to 
submit an order, even if such order cannot be immediately processed. In addition, you should consider 
the frequency with which a particular type of failure might occur. 
 

Data Backup
Data backup is a critical part of DR. If the stateless components of an application fail, you can always 
redeploy them. But if data is lost, the system can't return to a previous stable state. Data must be backed 
up and, whenever possible, stored in a remote location in order to protect against regional disasters.

Backup is distinct from data replication. Data replication involves copying data in near-real-time (either 
synchronously or asynchronously), so that the system can fail over quickly to a replica. Data replication 
can reduce the time it takes to recover from an outage, by ensuring that a replica of the data is readily 
available. However, data replication should not be considered as a substitute to backups. For example, 
any data corruption will be automatically copied to the replicas, rendering their content unusable. 
Effectively, even with data replication in place, you still need to include backup in your DR strategy

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Resiliency  133

Resiliency
Identifying Requirements

Resiliency Checklist
Use the following checklist to incorporate resiliency requirements into your application throughout its 
lifecycle.

Identifying Requirements 
Identify the expected recovery time objective and recovery point objective:

●● Recovery time objective (RTO) is the maximum acceptable time that an application can be unavaila-
ble after an incident. If your RTO is 90 minutes, you must be able to restore the application to a 
running state within 90 minutes from the start of a disaster. If you have a very low RTO, you might 
keep a second deployment running in the standby mode.

●● Recovery point objective (RPO) is the maximum duration of data loss that is acceptable during a 
disaster. For example, if you store data in a single database, with no replication to other databases, 
and perform hourly backups, you could lose up to an hour worth of data.

RTO and RPO are business requirements. Conducting a risk assessment can help you define the applica-
tion's RTO and RPO. Another common metric is mean time to recover (MTTR), which is the average time 
that it takes to restore the application after a failure. MTTR represents an empirical fact about a system. If 
MTTR exceeds the RTO, then a failure of the system represents an unacceptable business disruption, 
because the system restore time exceeds the defined RTO.

Identify the expected and the actual Service Level Agreements. In Azure, a Service Level Agreement (SLA) 
describes Microsoft’s commitments to maintain uptime and connectivity. If the SLA for a particular service 
is 99.9%, it means you should expect the service to be available 99.9% of the time. The Azure SLAs also 
include provisions for obtaining a service credit if the SLA is not met, along with specific definitions of 
"availability" for each service. That aspect of the SLA acts as an enforcement policy.

You should identify the expected target SLAs for each workload in your solution. An SLA makes it possi-
ble to evaluate whether the architecture meets the business requirements. For example, if a workload 
requires 99.99% uptime, but depends on a service with a 99.9% SLA, that service cannot be a single-point 
of failure in the system. One remedy is to have a fallback path in case the service fails, or take other 
measures to recover from a failure of that service.

See the next topic for estimating SLA downtime.

Estimating SLA Downtime
The following table shows the maximum cumulative downtime for various SLA levels.

SLA Downtime per week Downtime per month Downtime per year
99% 1.68 hours 7.2 hours 3.65 days
99.9% 10.1 minutes 43.2 minutes 8.76 hours
99.95% 5 minutes 21.6 minutes 4.38 hours
99.99% 1.01 minutes 4.32 minutes 52.56 minutes
99.999% 6 seconds 25.9 seconds 5.26 minutes

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



134  Module 6   Module Business Continuity and Resiliency in Azure

Whenever applicable, implement composite SLAs. For example, consider an App Service web app that 
writes to Azure SQL Database. As of December 2018, these Azure services have the following SLAs:

●● App Service Web Apps = 99.95%

●● SQL Database = 99.99%

If either service fails, the whole application fails. In general, the probability of each service failing is 
independent, so the composite SLA for this application is 99.95% × 99.99% = 99.94%. That's lower than 
the individual SLAs, which isn't surprising, because an application that relies on multiple services has 
more potential failure points.

Alternatively, you can improve the composite SLA by creating independent fallback paths. For example, if 
SQL Database is unavailable, you can store transactions into a queue, to be processed later. As of Decem-
ber 2018, Azure Service Bus Queues have the 99.9% availability SLA.

With this design, the application is still available even if it can't connect to the database. However, it fails 
if the database and the queue both fail at the same time. The expected percentage of time for a simulta-
neous failure is 0.0001 × 0.001, so the composite SLA for this combined path is:

●● Database OR queue = 1.0 − (0.0001 × 0.001) = 99.99999%

Effectively, the total composite SLA is:

●● Web app AND (database OR queue) = 99.95% × 99.99999% = ~99.95%

NOTE: There are tradeoffs to this approach. The application logic is more complex, you are paying for the 
queue, and there may be data consistency issues to consider.

Take into account SLAs for multi-region deployments. Another HA technique is to deploy the application 
in more than one region, and use Azure Traffic Manager to fail over if the application fails in one region.

For a two-region deployment, the composite SLA is calculated as follows:

●● Let N be the composite SLA for the application deployed in one region. The expected chance that 
the application will fail in both regions at the same time is (1 − N) × (1 − N).

●● Combined SLA for both regions = 1 − (1 − N)(1 − N) = N + (1 − N)N

●● To calculate the composite SLA, you must factor in the SLA for Traffic Manager. As of December 
2018, the SLA for Traffic Manager SLA is 99.99%:

●● Composite SLA = 99.99% × (combined SLA for both regions)

It is important to remember that Traffic Manager-based failover is not instantaneous and can result in 
some additional downtime.

NOTE: The calculated SLA number is a useful baseline, but it doesn't tell the whole story about availabili-
ty. Often, an application can degrade gracefully when a non-critical path fails. Consider an application 
that shows a catalog of books. If the application can't retrieve the thumbnail image for the cover, it might 
show a placeholder image. In that case, failing to get the image does not reduce the application's uptime, 
although it affects the user experience.

Identify the intended usage patterns. For example, a tax-filing service needs to be available before the 
filing deadline and a video streaming service must stay up during major sports events. During these 
critical periods, you might have redundant deployments across several regions, so the application could 
fail over following a failure in the primary location. However, a multi-region deployment is more expen-
sive, so during less critical times, you might run the application in a single region.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Application Design  135

Application Design
Failure Mode Analysis (FMA)
Perform a failure mode analysis (FMA) for your application. FMA is a process for building resiliency into 
an application early in the design stage. The goals of an FMA include:

●● Identify what types of failures an application might experience.

●● Capture the potential effects and impact of each type of failure on the application.

●● Identify recovery strategies.

For example, for calls to an external web service / API, you could consider the following points of failure:

Failure mode Detection strategy
Service is unavailable HTTP 5xx 
Throttling HTTP 429 (Too Many Requests) 
Authentication HTTP 401 (Unauthorized) 
Slow response Request times out 

Avoiding a Single Point of Failure

Avoiding a Single Point of Failure for Applications
Avoid any single point of failure. All components, services, resources, and compute instances should be 
deployed as multiple instances to prevent a single point of failure from affecting availability. This includes 
authentication mechanisms. Design the application to be configurable to use multiple instances, and to 
automatically detect failures and redirect requests to non-failed instances where the platform does not 
do this automatically.

Azure has a number of features to make an application redundant at every level of failure, from an 
individual VM to an entire region.

●● Single VM. Azure provides an uptime SLA for individual VMs, as long as all disks of these VMs are 
configured to use Premium Storage. Although you can get a higher SLA by running two or more 
VMs, a single VM may be reliable enough for some workloads. For production workloads, we 
recommend using two or more VMs for redundancy.

●● Availability sets. To protect against localized hardware failures, such as a power unit or a network 
switch failing, deploy two or more VMs in an availability set. An availability set consists of two or 
more fault domains, each of which uses a separate power source and network switch. VMs in an 
availability set are distributed across the fault domains, so localized a hardware failure affects only 
one fault domain.

●● Availability zones. An Availability Zone is a separate physical datacenter within an Azure region. 
Each Availability Zone has a distinct power source, network, and cooling. Deploying VMs across 
availability zones helps to protect an application against datacenter-wide failures.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



136  Module 6   Module Business Continuity and Resiliency in Azure

●● Azure Site Recovery. Replicate Azure virtual machines to another Azure region for business 
continuity and disaster recovery needs. You can conduct periodic DR drills to ensure you meet the 
compliance needs. The VM will be replicated with the specified settings to the selected region so 
that you can recover your applications in the event of outages in the source region.

●● Paired regions. Each Azure region is paired with another region. With the exception of Brazil 
South, regional pairs are located within the same geography in order to meet data residency 
requirements for tax and law enforcement jurisdiction purposes.

Auto Scaling and Load Balancing

Azure Autoscaling and Load Balancing
Use autoscaling to respond to increases in load. If your application is not configured to scale out auto-
matically as load increases, it's possible that your application's services will fail if they become saturated 
with user requests. When implementing Azure App Service, use the Standard, Premium, or Isolated tier.

Load balance across instances. For scalability, a cloud application should be able to scale out by adding 
more instances. This approach also improves resiliency, because unhealthy instances can be removed 
from rotation. Some of the more common examples of this approach include:

●● Placing two or more VMs behind a load balancer. The load balancer distributes traffic to all the 
VMs. If you choose Azure Application Gateway, remember that you need to provision two or more 
Application Gateway instances to qualify for the availability SLA.

●● Scaling out an Azure App Service app to multiple instances. App Service automatically balances 
load across instances.

●● Using Azure Traffic Manager to distribute traffic across a set of endpoints.

Multi-Region Deployment
Consider deploying your application across multiple regions. A multi-region deployment can use an 
active-active pattern (distributing requests across multiple active instances) or an active-passive pattern 
(keeping a "warm" instance in reserve, in case the primary instance fails).

Use Azure Traffic Manager to route your application's traffic to different regions. Azure Traffic Manager 
performs load balancing at the DNS level and will route traffic to different regions based on the traffic 
routing method you specify and the health of your application's endpoints.

Configure and test health probes for your load balancers and traffic managers. Ensure that your health 
logic checks the critical parts of the system and responds appropriately to health probes. The health 
probes for Azure Traffic Manager and Azure Load Balancer serve a specific function. For Traffic Manager, 
the health probe determines whether to fail over to another region. For a load balancer, it determines 
whether to remove a VM from rotation.

  Availability Set Availability Zone Azure Site Recovery/
Paired region

Scope of failure Rack Datacenter Region 
Request routing Load Balancer Cross-zone Load 

Balancer
Traffic Manager, Azure 
Front Door

Network latency Very low Low Mid to high 
Virtual network VNet VNet Cross-region VNet 

peering 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Application Design  137

Workload Service-Level Objectives
Configure workloads by service-level objectives. If a service is composed of critical and less-critical 
workloads, manage them differently and specify the service features and number of instances to meet 
their availability requirements. The term "workload" means a discrete capability or computing task, which 
can be logically separated from other tasks, in terms of business logic and data storage requirements.

For example, an e-commerce app might include the following workloads:

●● Browse and search a product catalog.

●● Create and track orders.

●● View recommendations.

These workloads might have different requirements for availability, scalability, data consistency, and 
disaster recovery. These requirements should be driven based on their business relevance.

For Azure App Service, separate web apps from web APIs. If your solution has both a web front-end and a 
web API, consider decomposing them into separate App Service apps. This way you can run the web app 
and the API in separate App Service plans, so they can be scaled independently.

Minimize and understand service dependencies. Minimize the number of different services used where 
possible, and ensure you understand all of the feature and service dependencies that exist in the system. 
This includes the nature of these dependencies, and the impact of failure or reduced performance in each 
one on the overall application.

Design tasks and messages to be idempotent where possible. An operation is idempotent if it can be 
repeated multiple times and produce the same result. For example, in messaging scenarios, consumers 
and the operations they carry out should be idempotent so that repeating a previously executed opera-
tion does not render the results invalid. This may mean detecting duplicated messages, or ensuring 
consistency by using an optimistic approach to handling conflicts.

Enhancing Security
Enhancing security

Ensure application-level protection against distributed denial of service (DDoS) attacks. Azure 
services are protected against DDoS attacks at the network layer. However, Azure cannot protect against 
application-layer attacks, because it is difficult to distinguish between true user requests from malicious 
user requests.

Adhere to the principle of least privilege for access to the application's resources. The default for 
access to the application's resources should be as restrictive as possible. Grant higher level permissions 
on an approval basis. Granting overly permissive access to your application's resources by default can 
result in someone purposely or accidentally deleting resources. Azure provides role-based access control 
to manage user privileges, but it's important to verify least privilege permissions for other resources that 
have their own permissions systems such as SQL Server. 
 

Additional Resiliency Tips
Use a message broker that implements high availability for critical transactions. Many cloud 
applications use messaging to initiate tasks that are performed asynchronously. To guarantee delivery of 
messages, the messaging system should provide high availability. Azure Service Bus Messaging imple-
ments at least once semantics. This means that a message posted to a queue will not be lost, although 

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



138  Module 6   Module Business Continuity and Resiliency in Azure

duplicate copies may be delivered under certain circumstances. To account for duplicates, ensure that 
message processing is idempotent.

Design applications to gracefully degrade. The load on an application may exceed the capacity of one 
or more of its parts, causing reduced availability and failed connections. Scaling can help to alleviate this, 
but it may reach a limit imposed by other factors, such as resource availability or cost. When an applica-
tion reaches a resource limit, it should take appropriate action to minimize the impact for the user. For 
example, in an ecommerce system, if the order-processing subsystem is under strain or fails, it can be 
temporarily disabled while allowing other functionality, such as browsing the product catalog. It might be 
appropriate to postpone requests to a failing subsystem, for example still enabling customers to submit 
orders but saving them for later processing, when the orders subsystem is available again.

Throttle high-volume users. Sometimes a small number of users create excessive load. That can have an 
impact on other users, reducing the overall availability of your application. When a single client makes an 
excessive number of requests, the application might throttle the client for a certain period of time. During 
the throttling period, the application refuses some or all of the requests from that client (depending on 
the exact throttling strategy). The threshold for throttling might depend on the customer's service tier. 
Throttling does not necessarily imply that the client was acting maliciously, only that it exceeded its 
service quota. If consumers consistently exceed their quota or otherwise behave badly, you might 
consider blocking access by applying an API key-based protection or IP address range filtering.

Use load leveling to smooth spikes in traffic. Applications may experience sudden spikes in traffic, 
which can overwhelm services on the backend. If a backend service cannot respond to requests quickly 
enough, it may cause requests to queue or cause the service to throttle the application. To avoid this, you 
can use a queue as a buffer that smooths out peaks in the load. When there is a new work item, instead 
of calling the backend service immediately, the application queues a work item to run asynchronously.

Monitor third-party services. If your application has dependencies on third-party services, identify 
where and how these third-party services can fail and what effect those failures will have on your applica-
tion. A third-party service may not include monitoring and diagnostics, so it's important to log your 
invocations of them and correlate them with your application's health and diagnostic logging using a 
unique identifier.

Implement resiliency patterns for remote operations where appropriate. If your application depends 
on communication between remote services, follow design patterns for dealing with transient failures, 
such as the Retry pattern and the Circuit Breaker pattern.

●● Retry pattern. Transient failures can be caused by momentary loss of network connectivity, a 
dropped database connection, or a timeout when a service is busy. Often, a transient failure can be 
resolved simply by retrying the request. For many Azure services, the client SDK implements 
automatic retries, in a way that is transparent to the caller. Each retry attempt increases the total 
latency. Additionally, too many failed requests can cause a bottleneck, as pending requests 
accumulate in the queue. These blocked requests might hold critical system resources such as 
memory, threads, database connections, and so on, which can cause cascading failures. To avoid 
this, increase the delay between each retry attempt, and limit the total number of failed requests.

●● Circuit Breaker pattern. The Circuit Breaker pattern can prevent an application from repeatedly 
trying an operation that is likely to fail. The circuit breaker wraps calls to a service and tracks the 
number of recent failures. If the failure count exceeds a threshold, the circuit breaker starts 
returning an error code without calling the service. This gives the service time to recover.

Implement asynchronous operations whenever possible. Synchronous operations can monopolize 
resources and block other operations while the caller waits for the process to complete. Design each part 
of your application to allow for asynchronous operations whenever possible.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Application Design  139

Apply compensating transactions. A compensating transaction is a transaction that undoes the effects 
of another completed transaction. In a distributed system, it can be very difficult to achieve strong 
transactional consistency. Compensating transactions are a way to achieve consistency by using a series 
of smaller, individual transactions that can be undone at each step. For example, to book a trip, a custom-
er might reserve a car, a hotel room, and a flight. If any of these steps fails, the entire operation fails. 
Instead of trying to use a single distributed transaction for the entire operation, you can define a com-
pensating transaction for each step. For example, to undo a car reservation, you cancel the reservation. In 
order to complete the whole operation, a coordinator executes each step. If any step fails, the coordina-
tor applies compensating transactions to undo any steps that were completed.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



140  Module 6   Module Business Continuity and Resiliency in Azure

Testing, Deployment, and Maintenance
Deployment and Maintenance Tasks
Automate and test deployment and maintenance tasks. Distributed applications consist of multiple 
parts that must work together. The deployment process should be predictable and repeatable. In Azure, 
this process might include provisioning Azure resources, deploying application code, and applying 
configuration settings:

●●  Use Azure Resource Manager templates to automate provisioning of Azure resources.

●● Use Azure Automation Desired State Configuration (DSC) to configure VMs.

●● Use an automated deployment process for application code.

For App Service deployments, store configuration as app settings. Define the settings in your 
Resource Manager templates, or by using PowerShell, so that you can apply them as part of an automat-
ed deployment / update process, which is more reliable.

Give resources meaningful names. Giving resources meaningful names makes it easier to locate a 
specific resource and understand its role.

Organize resource groups by function and lifecycle. In general, a resource group should contain 
resources that share the same lifecycle. This makes it easier to manage deployments, delete test deploy-
ments, and assign access rights, reducing the chance that a production deployment is accidentally 
deleted or modified. Create separate resource groups for production, development, and test environ-
ments. In a multi-region deployment, put resources for each region into separate resource groups. This 
makes it easier to redeploy one region without affecting the other region(s).

Infrastructure as Code and Immutable Infra-
structure
Below are summaries forthe principles of infrastructure as code and immutable infrastructure:

●● Infrastructure as code is the practice of using code to provision and configure infrastructure. 
Infrastructure as code may use a declarative approach or an imperative approach (or a combina-
tion of both). Resource Manager templates constitute an example of a declarative approach. 
PowerShell scripts constitute an example of an imperative approach.

●● Immutable infrastructure is the principle that you shouldn’t modify infrastructure after it’s 
deployed to production. Otherwise, you can get into a state where ad hoc changes have been 
applied, so it's hard to know exactly what changed, and hard to reason about the system.

Use staging and production features of the platform. For example, Standard, Premium, and Isolated tiers 
of Azure App Service support deployment slots, which you can use to stage a deployment before swap-
ping it to production. Azure Service Fabric supports rolling upgrades to application services.

Maximize Application Availability
Design your release process to maximize application availability. If your release process requires services 
to go offline during deployment, your application will be unavailable until they come back online. Use the 
blue/green or canary release deployment technique to deploy your application to production. Both of 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Testing, Deployment, and Maintenance  141

these techniques involve deploying your release code alongside production code so users of release code 
can be redirected to production code in the event of a failure:

●● Blue-green deployment is a technique where an update is deployed into a production environ-
ment separate from the live application. After you validate the deployment, switch the traffic 
routing to the updated version. For example, Azure App Service Web Apps enables this with 
staging slots.

●● Canary releases are similar to blue-green deployments. Instead of switching all traffic to the 
updated version, you roll out the update to a small percentage of users, by routing a portion of 
the traffic to the new deployment. If there is a problem, back off and revert to the old deployment. 
Otherwise, route more of the traffic to the new version, until it gets 100% of the traffic.

Additional Considerations for Testing, Deployment, and 
Maintenance
Have a rollback plan for deployment. It's possible that your application deployment could fail and 
cause your application to become unavailable. Design a rollback process to go back to a last known good 
version and minimize downtime.

Ensure that your application does not run up against Azure subscription limits. Azure subscriptions 
have limits on certain resource types, such as number of resource groups, number of cores, and number 
of storage accounts. If your application requirements exceed Azure subscription limits, create another 
Azure subscription and provision sufficient resources there.

Ensure that your application does not run up against per-service limits. Individual Azure services 
have consumption limits — for example, limits on storage, throughput, number of connections, requests 
per second, and other metrics. Your application will fail if it attempts to use resources beyond these limits. 
This will result in service throttling and possible downtime for affected users. Depending on the specific 
service and your application requirements, you can often avoid these limits by scaling up (for example, 
choosing another pricing tier) or scaling out (adding new instances).

Perform fault injection testing of your applications. Test the resiliency of the system during failures, 
either by triggering actual failures or by simulating them. Your application can fail for many different 
reasons, such as certificate expiration, exhaustion of system resources in a VM, or storage failures. Test 
your application in an environment as close as possible to production, by simulating or triggering real 
failures. For example, delete certificates, artificially consume system resources, or delete a storage source. 
Verify your application's ability to recover from all types of faults, alone and in combination. Check that 
failures are not propagating or cascading through your system.

Perform load testing of your applications. Load testing is crucial for identifying failures that only 
happen under load, such as the backend database being overwhelmed or service throttling. Test for peak 
load, using production data or synthetic data that is as close to production data as possible. The goal is 
to see how the application behaves under real-world conditions.

Run tests in production using both synthetic and real user data. Test and production are rarely 
identical, so it's important to use blue/green or a canary deployment and test your application in produc-
tion. This allows you to test your application in production under real load and ensure it will function as 
expected when fully deployed.

Establish a process for interacting with Azure support. If the process for contacting Azure support is 
not set before the need to contact support arises, downtime will be prolonged as the support process is 
navigated for the first time. Include the process for contacting support and escalating issues as part of 
your application's resiliency from the outset.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



142  Module 6   Module Business Continuity and Resiliency in Azure

Use resource locks for critical resources, such as VMs. Resource locks prevent an operator from 
accidentally deleting a resource.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Data Management  143

Data Management
Replicating Data

Data Management
Replicating data is a general strategy for handling non-transient failures in a data store. Many storage 
technologies provide built-in replication. It's important to consider both the read and write paths. 
Depending on the storage technology, you might have multiple writable replicas, or a single writable 
replica and multiple read-only replicas. To maximize availability, replicas can be placed in multiple 
regions. However, this increases the latency when replicating the data. Typically, replicating across regions 
is done asynchronously, which implies an eventual consistency model and potential data loss if a replica 
fails.

●● Geo-replicate databases. Azure SQL Database and Azure Cosmos DB both support geo-replica-
tion, which enables you to configure secondary database replicas in other regions. Secondary 
databases are available for querying and for failover in the case of a data center outage or the 
inability to connect to the primary database. With Azure SQL Database, you can create au-
to-failover groups, which facilitate automatic failover. Azure Cosmos DB additionally supports 
multi-master configuration, with multiple write regions and customizable conflict resolution 
mechanism.

●● Geo-replicate data in Azure Storage. Data in Azure Storage is automatically replicated within a 
datacenter. For higher availability, use Read-access geo-redundant storage (RA-GRS), which 
replicates your data to a secondary region and provides read-only access to the data in that 
region. The data is durable even in the case of a complete regional outage or a disaster.

●● For VMs, do not rely on RA-GRS replication to restore the VM disks (VHD files). Instead, use 
Azure Backup. In addition, consider using managed disks. Managed disks provide enhanced 
resiliency for VMs in an availability set, because the disks are sufficiently isolated from each other 
to avoid single points of failure. In addition, managed disks eliminate the need to account for the 
storage account-level IOPS limits.

Additional Data Management Considerations
Below are additional considerations for managing data.

●● Sharding. Consider using sharding to partition a database horizontally. Sharding can provide fault 
isolation and eliminate constraints imposed by database size limits.

●● Optimistic concurrency and eventual consistency. Transactions that block access to resources 
through locking (pessimistic concurrency) can cause poor performance and considerably reduce 
availability. These problems can become especially acute in distributed systems. In many cases, 
careful design and techniques such as partitioning can minimize the chances of conflicting up-
dates. Where data is replicated, or is read from a separately updated store, the data will only be 
eventually consistent. But the advantages usually far outweigh the impact on availability of using 
transactions to ensure immediate consistency.

●● Document data source fail over and fail back processes, and then test it. In the case where 
your data source fails catastrophically, a human operator will have to follow a set of documented 
instructions to fail over to a new data source. Regularly test the instruction steps to verify that an 
operator following them is able to successfully fail over and fail back the data source.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



144  Module 6   Module Business Continuity and Resiliency in Azure

●● Periodic backup and point-in-time restore. Regularly and automatically back up data and verify 
you can reliably restore both the data and the application. Ensure that backups meet your Recov-
ery Point Objective (RPO). The backup process must be secure to protect the data in transit and at 
rest.

●● Ensure that no single user account has access to both production and backup data. Your data 
backups are compromised if one single user account has permission to write to both production 
and backup sources. A malicious user could purposely delete all your data, while a regular user 
could accidentally delete it. Design your application to limit the permissions of each user account 
so that only the users that require write access have write access and it's only to either production 
or backup, but not both.

●● Validate your data backups. Regularly verify that your backup data is what you expect by running 
a script to validate data integrity, schema, and queries. There's no point having a backup if it's not 
useful to restore your data sources. Log and report any inconsistencies so the backup service can 
be repaired. 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED



Monitoring and Disaster Recovery  145

Monitoring and Disaster Recovery
Best Practices for Monitoring and Alerting Ap-
plications
Without proper monitoring, diagnostics, and alerting, there is no way to detect a failure in your applica-
tion or alert an operator to resolve the failure. Below is a list best practices for monitoring and alerting 
applications:

Implement best practices for monitoring and alerting in your application. Without proper monitor-
ing, diagnostics, and alerting, there is no way to detect failures in your application and alert an operator 
to fix them.

Measure remote call statistics and make the information available to the application team. If you 
don't track and report remote call statistics in real time and provide an easy way to review this informa-
tion, the operations team will not have an instantaneous view into the health of your application. And if 
you only measure average remote call time, you will not have enough information to reveal issues in the 
services. Summarize remote call metrics such as latency, throughput, and errors in the 99 and 95 percen-
tiles. Perform statistical analysis on the metrics to uncover errors that occur within each percentile.

Track the number of transient exceptions and retries over an appropriate timeframe. If you don't 
track and monitor transient exceptions and retry attempts over time, it's possible that an issue or failure 
could be hidden by your application's retry logic.

Track the progress of long-running workflows and retry on failure. Long-running workflows are often 
composed of multiple steps. Ensure that each step is independent and can be retried to minimize the 
chance that the entire workflow will need to be rolled back, or that multiple compensating transactions 
need to be executed. Monitor and manage the progress of long-running workflows by implementing a 
pattern such as Scheduler Agent Supervisor pattern.

Implement an early warning system that alerts an operator. Identify the key performance indicators 
of your application's health, such as transient exceptions and remote call latency, and set appropriate 
threshold values for each of them. Send an alert to operations when the threshold value is reached. Set 
these thresholds at levels that identify issues before they become critical and require a recovery response.

Implement application logging. Application logs are an important source of diagnostics data. The 
recommended practices for application logging include:

●● Log in production.

●● Log events at service boundaries. Include a correlation ID that flows across service boundaries. If a 
transaction flows through multiple services and one of them fails, the correlation ID will help you 
pinpoint why the transaction failed.

●● Use semantic logging, also known as structured logging. Unstructured logs make it hard to 
automate the consumption and analysis of the log data, which is needed at cloud scale.

●● Use asynchronous logging. With synchronous logging, the logging system might cause the 
application to fail, as incoming requests are blocked while waiting for log writes.

Implement logging using an asynchronous pattern. If logging operations are synchronous, they might 
block your application code. Ensure that your logging operations are implemented as asynchronous 
operations.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED



146  Module 6   Module Business Continuity and Resiliency in Azure

Test the Monitoring Systems
Automated failover and fallback systems, and manual visualization of system health and performance by 
using dashboards, all depend on monitoring and instrumentation functioning correctly. If these elements 
fail, miss critical information, or report inaccurate data, an operator might not realize that the system is 
unhealthy or failing.

Plan for and test disaster recovery. Create an accepted, fully-tested plan for recovery from any type of 
failure that may affect system availability. Choose a multi-site disaster recovery architecture for any 
mission-critical applications. Identify a specific owner of the disaster recovery plan, including automation 
and testing. Ensure the plan is well-documented, and automate the process as much as possible. Estab-
lish a backup strategy for all reference and transactional data, and test the restoration of these backups 
regularly. Train operations staff to execute the plan, and perform regular disaster simulations to validate 
and improve the plan. If you are using Azure Site Recovery to replicate VMs, create a fully automated 
recovery plan to failover the entire application within minutes.

Implement operational readiness testing. If your application fails over to a secondary region, you 
should perform an operational readiness test before you fail back to the primary region. The test should 
verify that the primary region is healthy and ready to receive traffic again.

Perform data consistency checks. If a failure happens in a data store, there may be data inconsistencies 
when the store becomes available again, especially if the data was replicated. 
 

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T 

U
SE

 P
RO

H
IB

IT
ED


