Microsoft
Official
Course

AZ-300T04

Creating and Deploying
Apps

AZ-300T04
Creating and Deploying Apps

diligiHOdd iSN LN3dN1S 'ATNO 1SN 1OIN

Contents

[| Module 0 StartHere .
Welcome to Creating and Deploying Apps ...

[Module 1 Module Create Azure App Service Web Apps
Azure App Service core CONCEPTS ..
Creating an Azure App Service Web App
Creating Background Tasks ..
Using Swagger to document an APl
Creating an App Service LOGIC APD ..o
Online Lab - Implementing Azure Logic Apps ..

Review Questions

Module 2 Module Creating Apps and Services Running on Service Fabric =
Understanding Azure Service Fabric ..
Creating a reliable service ..
Creating a Reliable Actors app ...
Working with Reliable Collections

Review Questions

[| Module 3 Module Using Azure Kubernetes Service
Creating an Azure Kubernetes Service Cluster
Deploy an AKS cluster ..o
Publish a container image to Azure Container Registry

Create and run container images in Azure Container Instances

Review Questions

| Module 4 Module Understanding Azure Functions

Azure FUNCHIONS OVEIVIEW .
Develop Azure Functions using Visual Studio
Implement Durable Functions

Review Questions

104

107
107
130
145
150
161

163
163
176
182
207

E—
Module 0 Start Here

Welcome to Creating and Deploying Apps
Welcome to Creating and Deploying Apps

Course Overview: Welcome to Creating and Deploying
Apps

Welcome to Creating and Deploying Apps. This course is part of a series of five courses to help students
prepare for Microsoft's Azure Solutions Architect technical certification exam AZ-300: Microsoft Azure
Architect Technologies. These courses are designed for IT professionals and developers with experience
and knowledge across various aspects of IT operations, including networking, virtualization, identity,
security, business continuity, disaster recovery, data management, budgeting, and governance.

This course teaches IT Professionals how to build Logic App solutions that integrate apps, data, systems,
and services across an organization by automating tasks and business processes as workflows. Logic
Apps is a cloud service in Azure that simplifies how you design and create scalable solutions for app
integration, data integration, system integration, enterprise application integration (EAI), and busi-
ness-to-business (B2B) communication, whether in the cloud, on premises, or both.

You will see how Azure Service Fabric is a distributed systems platform that makes it easy to package,
deploy, and manage scalable and reliable microservices and containers. Service Fabric also addresses the
significant challenges in developing and managing cloud native applications. Using Azure Service Fabric,
developers and administrators can avoid complex infrastructure problems and focus on implementing
mission-critical, demanding workloads that are scalable, reliable, and manageable. Service Fabric repre-
sents the next-generation platform for building and managing enterprise-class, tier-1, cloud-scale
applications running in containers.

You'll see how Azure Kubernetes Service (AKS) makes it simple to deploy a managed Kubernetes cluster
in Azure. AKS reduces the complexity and operational overhead of managing Kubernetes by offloading
much of that responsibility to Azure. As a hosted Kubernetes service, Azure handles critical tasks like
health monitoring and maintenance for you.

2 Module 0 Start Here

Lastly, you will get an overview of how Azure Functions are used as a solution for easily running small
pieces of code, or “functions,” in the cloud. Functions can make development even more productive, and
you can use your development language of choice, such as C#, F#, Node,js, Java, or PHP.

The course outline is as follows:
Module 1 - Creating Web Applications using PaaS

This module provides and overview of Azure App Service Web Apps for hosting web applications, REST
APls, and a mobile back end.

Topics include the following:
e Using shell commands to create an App Service Web App
e Creating Background Tasks
e Using Swagger to document an API

Also, you'll see how Logic Apps assists in building solutions that integrate apps, data, systems, and
services across enterprises or organizations by automating tasks and business processes as workflows.

Module 2 - Creating Apps and Services Running on Service Fabric

This module provides an overview of Azure Service Fabric as a distributed systems platform that makes it
easy to package, deploy, and manage scalable and reliable microservices and containers. This module
also addresses the challenges in developing and managing cloud native applications.

Additional topics include:
e Creating a reliable service
e Creating a Reliable Actors app
e Working with Reliable collections

Module 3 - Using Azure Kubernetes Service. This module focuses on the Azure Kubernetes Service (AKS)
for deploying and managing a Kubernetes cluster in Azure. Topics include how to reduce operational
overhead of managing Kubernetes by offloading much of that responsibility to Azure, such as health
monitoring and maintenance.

Additional topics include:
e Azure Container Registry
e Azure Container Instances

Module 4 - Understanding Azure Functions. Azure Functions is a solution for easily running small pieces
of code, or “functions,” in the cloud. You can write just the code you need for the problem at hand,
without worrying about a whole application or the infrastructure to run it. Functions can make develop-
ment even more productive, and you can use your development language of choice, such as C#, F#,
Node,js, Java, or PHP. Pay only for the time your code runs and trust Azure to scale as needed. Azure
Functions lets you develop serverless applications on Microsoft Azure.

This module includes:
e Azure Functions scale and hosting concepts
e Develop, Test, and Publish Azure Functions using Visual Studio

e Implement Durable Functions

Welcome to Creating and Deploying Apps 3

What You’'ll Learn:

e Use shell commands to create an App Service Web App
e Create Background Tasks

e Use Swagger to document an API

e Create a reliable service

e Create a Reliable Actors app

e Hands-on with Reliable collections

e Understand the Azure Container Registry

e Use Azure Container instances

Prerequisites:

Successful Cloud Solutions Architects begin this role with practical experience with operating systems,
virtualization, cloud infrastructure, storage structures, billing, and networking.

Module 1 Module Create Azure App Service
Web Apps

Azure App Service core concepts

Web Apps Overview

Azure App Service web apps (or just Web Apps) is a service for hosting web applications, REST APIs, and
mobile back ends. You can develop in your favorite language, be it .NET, .NET Core, Java, Ruby, Nodes,
PHP, or Python. Applications run and scale with ease on Windows-based environments.

Web Apps not only adds the power of Microsoft Azure to your application, such as security, load balanc-
ing, autoscaling, and automated management. You can also take advantage of its DevOps capabilities,
such as continuous deployment from VSTS, GitHub, Docker Hub, and other sources, package manage-
ment, staging environments, custom domain, and SSL certificates.

With App Service, you pay for the Azure compute resources you use. The compute resources you use is
determined by the App Service plan that you run your Web Apps on.

About App Service Environments

Overview

The Azure App Service Environment is an Azure App Service feature that provides
a fully isolated and dedicated environment for securely running App Service apps
at high scale. This capability can host your:

e Windows web apps

e Linux web apps (in Preview)

e Docker containers (in Preview)
e Mobile apps

e Functions

6 Module T Module Create Azure App Service Web Apps

App Service environments (ASEs) are appropriate for application workloads that
require:

e Very high scale
e Isolation and secure network access
e High memory utilization

Customers can create multiple ASEs within a single Azure region or across
multiple Azure regions. This flexibility makes ASEs ideal for horizontally
scaling stateless application tiers in support of high RPS workloads.

ASEs are isolated to running only a single customer's applications and are

always deployed into a virtual network. Customers have fine-grained control over
inbound and outbound application network traffic. Applications can establish
high-speed secure connections over VPNs to on-premises corporate resources.

e ASE comes with its own pricing tier, learn how the Isolated offering helps drive hyper-scale and
security.

e App Service Environments v2 provide a surrounding to safeguard your apps in a subnet of your
network and provides your own private deployment of Azure App Service.

e Multiple ASEs can be used to scale horizontally.

e ASEs can be used to configure security architecture, as shown in the AzureCon Deep Dive. To see how
the security architecture shown in the AzureCon Deep Dive was configured, see the article on how to
implement a layered security architecture' with App Service environments.

e Apps running on ASEs can have their access gated by upstream devices, such as web application
firewalls (WAFs).

Dedicated environment

An ASE is dedicated exclusively to a single subscription and can host 100 App
Service Plan instances. The range can span 100 instances in a single App Service plan to 100 single-in-
stance App Service plans, and everything in between.

An ASE is composed of front ends and workers. Front ends are responsible for
HTTP/HTTPS termination and automatic load balancing of app requests within an
ASE. Front ends are automatically added as the App Service plans in the ASE are scaled out.

Workers are roles that host customer apps. Workers are available in three fixed sizes:
e One vCPU/3.5 GB RAM

e Two vCPU/7 GB RAM

e Four vCPU/14 GB RAM

Customers do not need to manage front ends and workers. All infrastructure is
automatically added as customers scale out their App Service plans. As App
Service plans are created or scaled in an ASE, the required infrastructure is
added or removed as appropriate.

There is a flat monthly rate for an ASE that pays for the infrastructure and
doesn't change with the size of the ASE. In addition, there is a cost per App
Service plan vCPU. All apps hosted in an ASE are in the Isolated pricing SKU.

1 https://docs.microsoft.com/en-us/azure/app-service/environment/app-service-app-service-environment-layered-security

Azure App Service core concepts 7

For information on pricing for an ASE, see the App Service pricing® page and
review the available options for ASEs.

Key features of App Service Web Apps

Here are some key features of App Service Web Apps:

e Multiple languages and frameworks - Web Apps has first-class support for ASP.NET, ASP.NET Core,
Java, Ruby, Node,js, PHP, or Python. You can also run PowerShell and other scripts or executables as
background services.

e DevOps optimization - Set up continuous integration and deployment with Visual Studio Team
Services, GitHub, BitBucket, Docker Hub, or Azure Container Registry. Promote updates through test
and staging environments. Manage your apps in Web Apps by using Azure PowerShell or the
cross-platform command-line interface (CLI).

e Global scale with high availability - Scale up or out manually or automatically. Host your apps
anywhere in Microsoft's global datacenter infrastructure, and the App Service SLA promises high
availability.

e Connections to SaaS platforms and on-premises data - Choose from more than 50 connectors for
enterprise systems (such as SAP), Saa$ services (such as Salesforce), and internet services (such as
Facebook). Access on-premises data using Hybrid Connections and Azure Virtual Networks.

e Security and compliance - App Service is ISO, SOC, and PCI compliant. Authenticate users with Azure
Active Directory or with social login (Google, Facebook, Twitter, and Microsoft. Create IP address
restrictions and manage service identities.

e Application templates - Choose from an extensive list of application templates in the Azure Market-
place, such as WordPress, Joomla, and Drupal.

e Visual Studio integration - Dedicated tools in Visual Studio streamline the work of creating, deploy-
ing, and debugging.

e API and mobile features - Web Apps provides turn-key CORS support for RESTful API scenarios, and
simplifies mobile app scenarios by enabling authentication, offline data sync, push notifications, and
more.

e Serverless code - Run a code snippet or script on-demand without having to explicitly provision or
manage infrastructure, and pay only for the compute time your code actually uses.

Besides Web Apps in App Service, Azure offers other services that can be used for hosting websites and
web applications. For most scenarios, Web Apps is the best choice. For microservice architecture, consider
Service Fabric. If you need more control over the VMs that your code runs on, consider Azure Virtual
Machines.

Azure App Service plans

In App Service, an app runs in an App Service plan. An App Service plan defines a set of compute resourc-
es for a web app to run. These compute resources are analogous to the server farm in conventional web
hosting. One or more apps can be configured to run on the same computing resources (or in the same
App Service plan).

2 http://azure.microsoft.com/pricing/details/app-service/

8 Module T Module Create Azure App Service Web Apps

When you create an App Service plan in a certain region (for example, West Europe), a set of compute
resources is created for that plan in that region. Whatever apps you put into this App Service plan run on
these compute resources as defined by your App Service plan. Each App Service plan defines:

e Region (West US, East US, etc.)

e Number of VM instances

e Size of VM instances (Small, Medium, Large)

e Pricing tier (Free, Shared, Basic, Standard, Premium, PremiumV2, Isolated, Consumption)

The pricing tier of an App Service plan determines what App Service features you get and how much you
pay for the plan. There are a few categories of pricing tiers:

e Shared compute:Free and Shared, the two base tiers, runs an app on the same Azure VM as other
App Service apps, including apps of other customers. These tiers allocate CPU quotas to each app that
runs on the shared resources, and the resources cannot scale out.

e Dedicated compute: The Basic, Standard, Premium, and PremiumV?2 tiers run apps on dedicated
Azure VMs. Only apps in the same App Service plan share the same compute resources. The higher
the tier, the more VM instances are available to you for scale-out.

e Isolated: This tier runs dedicated Azure VMs on dedicated Azure Virtual Networks, which provides
network isolation on top of compute isolation to your apps. It provides the maximum scale-out
capabilities.

e Consumption: This tier is only available to function apps. It scales the functions dynamically depend-
ing on workload.

Note: App Service Free and Shared (preview) hosting plans are base tiers that run on the same Azure VM
as other App Service apps. Some apps may belong to other customers. These tiers are intended to be
used only for development and testing purposes.

Each tier also provides a specific subset of App Service features. These features include custom domains
and SSL certificates, autoscaling, deployment slots, backups, Traffic Manager integration, and more. The
higher the tier, the more features are available. To find out which features are supported in each pricing
tier, see App Service plan details.

How does my app run and scale?

In the Free and Shared tiers, an app receives CPU minutes on a shared VM instance and cannot scale out.
In other tiers, an app runs and scales as follows.

When you create an app in App Service, it is put into an App Service plan. When the app runs, it runs on
all the VM instances configured in the App Service plan. If multiple apps are in the same App Service
plan, they all share the same VM instances. If you have multiple deployment slots for an app, all deploy-
ment slots also run on the same VM instances. If you enable diagnostic logs, perform backups, or run
WebJobs, they also use CPU cycles and memory on these VM instances.

In this way, the App Service plan is the scale unit of the App Service apps. If the plan is configured to run
five VM instances, then all apps in the plan run on all five instances. If the plan is configured for autoscal-
ing, then all apps in the plan are scaled out together based on the autoscale settings.

Azure App Service core concepts 9

What if my app needs more capabilities or features?

Your App Service plan can be scaled up and down at any time. It is as simple as changing the pricing tier
of the plan. You can choose a lower pricing tier at first and scale up later when you need more App
Service features.

For example, you can start testing your web app in a Free App Service plan and pay nothing. When you
want to add your custom DNS name to the web app, just scale your plan up to Shared tier. Later, when
you want to add a custom SSL certificate, scale your plan up to Basic tier. When you want to have staging
environments, scale up to Standard tier. When you need more cores, memory, or storage, scale up to a
bigger VM size in the same tier.

The same works in the reverse. When you feel you no longer need the capabilities or features of a higher
tier, you can scale down to a lower tier, which saves you money.

If your app is in the same App Service plan with other apps, you may want to improve the app's perfor-
mance by isolating the compute resources. You can do it by moving the app into a separate App Service
plan.

Should | put an app in a new plan or an existing plan?

Since you pay for the computing resources your App Service plan allocates, you can potentially save
money by putting multiple apps into one App Service plan. You can continue to add apps to an existing
plan as long as the plan has enough resources to handle the load. However, keep in mind that apps in
the same App Service plan all share the same compute resources. To determine whether the new app has
the necessary resources, you need to understand the capacity of the existing App Service plan, and the
expected load for the new app. Overloading an App Service plan can potentially cause downtime for your
new and existing apps.

Isolate your app into a new App Service plan when:

e The app is resource-intensive.

e You want to scale the app independently from the other apps the existing plan.
e The app needs resource in a different geographical region.

This way you can allocate a new set of resources for your app and gain greater control of your apps.

Authentication and authorization in Azure App
Service

Azure App Service provides built-in authentication and authorization support, so you can sign in users
and access data by writing minimal or no code in your web app, API, and mobile back end, and also
Azure Functions.

Secure authentication and authorization require deep understanding of security, including federation,
encryption, JSON web tokens (JWT) management, grant types, and so on. App Service provides these util-
ities so that you can spend more time and energy on providing business value to your customer.

Note: You're not required to use App Service for authentication and authorization. Many web frameworks
are bundled with security features, and you can use them if you like. If you need more flexibility than App
Service provides, you can also write your own utilities.

10 Module T Module Create Azure App Service Web Apps

How it works

The authentication and authorization module runs in the same sandbox as your application code. When
it's enabled, every incoming HTTP request passes through it before being handled by your application

code.
I Configuration flows to the module via
. environment variables. Most of these settings
App Service Web Worke r VM(S} are read-only and some of them can be
configured by the customer via App Settings.
All authN/AuthZ logic, including Sandbox
crypto for token validation and
session management, executes in the .
worker sandbox and outside of the Environment
web app code. Identity information Web App Code WEBSITE AUTH_CLIENT ID
flows directly into the app code. WEBSITE AUTH OPENID ISSUER
[} WEBSITE_AUTH_TRACE_LEVEL
. WEBSITE_AUTH_TOKEN_STORE_ENABLED
Client(s) Aom Servi easyauth.dil WEBSITE_AUTH_DEFAULT PROVIDER
o Browser pp Service N)
+ Native App Front Ends 7 @u n= E HTTP_X_MS_CLIENT_PRINCIPAL_NAME
o [EimmE Sl HTTP_X_MS_CLIENT_PRINCIPAL_ID

v

File Server

By default, state is managed centrally on the
site’s storage volume. This includes the token
store tokens, 11S logs and application traces. | Storage Volume
It's also possible to store these additional
artifacts in other places, such as Azure
Storage.

Aop Okhuth App
Content = Tokens Logs

This module handles several things for your app:

e Authenticates users with the specified provider
e \Validates, stores, and refreshes tokens

e Manages the authenticated session

e Injects identity information into request headers

The module runs separately from your application code and is configured using app settings. No SDKSs,
specific languages, or changes to your application code are required.

User claims

For all language frameworks, App Service makes the user's claims available to your code by injecting
them into the request headers. For ASP.NET 4.6 apps, App Service populates ClaimsPrincipal.
Current with the authenticated user's claims, so you can follow the standard .NET code pattern, includ-
ing the [Authorize] attribute. Similarly, for PHP apps, App Service populates the SERVER ['REMOTE _
USER'] variable.

For Azure Functions, ClaimsPrincipal.Current is not hydrated for .NET code, but you can still find the user
claims in the request headers.

For more information, see Access user claims3.

3 https://docs.microsoft.com/en-us/azure/app-service/app-service-authentication-how-to#access-user-claims

Azure App Service core concepts 11

Token store

App Service provides a built-in token store, which is a repository of tokens that are associated with the
users of your web apps, APIs, or native mobile apps. When you enable authentication with any provider,
this token store is immediately available to your app. If your application code needs to access data from
these providers on the user's behalf, such as:

e post to the authenticated user's Facebook timeline
e read the user's corporate data from the Azure Active Directory Graph API or even the Microsoft Graph

You typically must write code to collect, store, and refresh these tokens in your application. With the
token store, you just retrieve the tokens when you need them and tell App Service to refresh them when
they become invalid.

The id tokens, access tokens, and refresh tokens cached for the authenticated session, and they're
accessible only by the associated user.

If you don't need to work with tokens in your app, you can disable the token store.

Logging and tracing

If you enable application logging, you will see authentication and authorization traces directly in your log
files. If you see an authentication error that you didn’t expect, you can conveniently find all the details by
looking in your existing application logs. If you enable failed request tracing, you can see exactly what
role the authentication and authorization module may have played in a failed request. In the trace logs,
look for references to a module named EasyAuthModule 32/64.

Identity providers

App Service uses federated identity, in which a third-party identity provider manages the user identities
and authentication flow for you. Five identity providers are available by default:

Provider Sign-in endpoint

Azure Active Directory /.auth/login/aad

Microsoft Account /.auth/login/microsoftaccount
Facebook /.auth/login/facebook

Google /.auth/login/google

Twitter /.auth/login/twitter

When you enable authentication and authorization with one of these providers, its sign-in endpoint is
available for user authentication and for validation of authentication tokens from the provider. You can
provide your users with any number of these sign-in options with ease. You can also integrate another
identity provider or your own custom identity solution.

Authentication flow

The authentication flow is the same for all providers, but differs depending on whether you want to sign
in with the provider's SDK:

e Without provider SDK: The application delegates federated sign-in to App Service. This is typically
the case with browser apps, which can present the provider's login page to the user. The server code
manages the sign-in process, so it is also called server-directed flow or server flow. This case applies to

12 Module T Module Create Azure App Service Web Apps

web apps. It also applies to native apps that sign users in using the Mobile Apps client SDK because
the SDK opens a web view to sign users in with App Service authentication.

e With provider SDK: The application signs users in to the provider manually and then submits the
authentication token to App Service for validation. This is typically the case with browser-less apps,
which can't present the provider's sign-in page to the user. The application code manages the sign-in
process, so it is also called client-directed flow or client flow. This case applies to REST APIs, Azure
Functions, and JavaScript browser clients, as well as web apps that need more flexibility in the sign-in
process. It also applies to native mobile apps that sign users in using the provider's SDK.

Note: Calls from a trusted browser app in App Service calls another REST APl in App Service or Azure
Functions can be authenticated using the server-directed flow. For more information, see Customize
authentication and authorization in App Service*.

The table below shows the steps of the authentication flow.

Step

Without provider SDK

With provider SDK

1. Sign user in

Redirects client to /.auth/
login/<provider>.

Client code signs user in directly
with provider's SDK and receives
an authentication token. For
information, see the provider's
documentation.

2. Post-authentication

Provider redirects client to
/.auth/login/<provider>/
callback.

Client code posts token from
provider to /.auth/
login/<provider> for
validation.

3. Establish authenticated session

App Service adds authenticated
cookie to response.

App Service returns its own
authentication token to client
code.

4. Serve authenticated content

Client includes authentication
cookie in subsequent requests
(automatically handled by
browser).

Client code presents authentica-
tion token in X-ZUMO-AUTH
header (automatically handled
by Mobile Apps client SDKs).

For client browsers, App Service can automatically direct all unauthenticated users to /.auth/
login/<provider>. You can also present users with one or more /.auth/login/<provider> links
to sign in to your app using their provider of choice.

Authorization behavior

In the Azure portal, you can configure App Service authorization with a number of behaviors.

Allow all requests (default)

Authentication and authorization are not managed by App Service (turned off).

Choose this option if you don't need authentication and authorization, or if you want to write your own
authentication and authorization code.

4 https://docs.microsoft.com/en-us/azure/app-service/app-service-authentication-how-to

Azure App Service core concepts 13

Allow only authenticated requests

The option is Log in with <provider>. App Service redirects all anonymous requests to /.auth/
login/<provider> for the provider you choose. If the anonymous request comes from a native mobile
app, the returned response is an HTTP 401 Unauthorized.

With this option, you don't need to write any authentication code in your app. Finer authorization, such
as role-specific authorization, can be handled by inspecting the user's claims.

Allow all requests, but validate authenticated requests

The option is Allow Anonymous requests. This option turns on authentication and authorization in App
Service, but defers authorization decisions to your application code. For authenticated requests, App
Service also passes along authentication information in the HTTP headers.

This option provides more flexibility in handling anonymous requests. For example, it lets you present
multiple sign-in providers to your users. However, you must write code.

Inbound and outbound IP addresses in Azure
App Service

Azure App Service is a multi-tenant service, except for App Service Environments. Apps that are not in an
App Service environment (not in the Isolated tier) share network infrastructure with other apps. As a
result, the inbound and outbound IP addresses of an app can be different, and can even change in certain
situations.

App Service Environments use dedicated network infrastructures, so apps running in an App Service
environment get static, dedicated IP addresses both for inbound and outbound connections.

When inbound IP changes

Regardless of the number of scaled-out instances, each app has a single inbound IP address. The inbound
IP address may change when you perform one of the following actions:

e Delete an app and recreate it in a different resource group.
e Delete the last app in a resource group and region combination and recreate it.

e Delete an existing SSL binding, such as during certificate renewal.

Get static inbound IP

Sometimes you might want a dedicated, static IP address for your app. To get a static inbound IP address,
you need to configure an IP-based SSL binding. If you don't actually need SSL functionality to secure your
app, you can even upload a self-signed certificate for this binding. In an IP-based SSL binding, the
certificate is bound to the IP address itself, so App Service provisions a static IP address to make it
happen.

When outbound IPs change

Regardless of the number of scaled-out instances, each app has a set number of outbound IP addresses
at any given time. Any outbound connection from the App Service app, such as to a back-end database,
uses one of the outbound IP addresses as the origin IP address. You can't know beforehand which IP

14 Module T Module Create Azure App Service Web Apps

address a given app instance will use to make the outbound connection, so your back-end service must
open its firewall to all the outbound IP addresses of your app.

The set of outbound IP addresses for your app changes when you scale your app between the lower tiers
(Basic, Standard, and Premium) and the Premium V2 tier.

You can find the set of all possible outbound IP addresses your app can use, regardless of pricing tiers, by
looking for the possibleOutboundIPAddresses property.

Find outbound IPs

To find the outbound IP addresses currently used by your app in the Azure portal, click Properties in your
app's left-hand navigation.

You can find the same information by running the following command in the Cloud Shell.

az webapp show —--resource-group <group name> --name <app name> --query
outboundIpAddresses --output tsv

To find all possible outbound IP addresses for your app, regardless of pricing tiers, run the following
command in the Cloud Shell.

az webapp show --resource-group <group name> --name <app name> --query
possibleOutboundIpAddresses —--output tsv

Azure App Service Hybrid Connections

Hybrid Connections is both a service in Azure and a feature in Azure App Service. As a service, it has uses
and capabilities beyond those that are used in App Service. To learn more about Hybrid Connections and
their usage outside App Service, see Azure Relay Hybrid Connections®.

Within App Service, Hybrid Connections can be used to access application resources in other networks. It
provides access from your app to an application endpoint. It does not enable an alternate capability to
access your application. As used in App Service, each Hybrid Connection correlates to a single TCP host
and port combination. This means that the Hybrid Connection endpoint can be on any operating system
and any application, provided you are accessing a TCP listening port. The Hybrid Connections feature
does not know or care what the application protocol is, or what you are accessing. It is simply providing
network access.

How it works

The Hybrid Connections feature consists of two outbound calls to Azure Service Bus Relay. There is a
connection from a library on the host where your app is running in App Service. There is also a connec-
tion from the Hybrid Connection Manager (HCM) to Service Bus Relay. The HCM is a relay service that
you deploy within the network hosting the resource you are trying to access.

Through the two joined connections, your app has a TCP tunnel to a fixed host:port combination on the
other side of the HCM. The connection uses TLS 1.2 for security and shared access signature (SAS) keys
for authentication and authorization.

5 https://docs.microsoft.com/azure/service-bus-relay/relay-hybrid-connections-protocol/

Azure App Service core concepts 15

Web App Relay hybrid 24 :
)\ connection CCDJ ﬁil—ﬂ E‘gﬁ{fﬂaion
S A | Manager

Endpoint E

When your app makes a DNS request that matches a configured Hybrid Connection endpoint, the
outbound TCP traffic will be redirected through the Hybrid Connection.

Note: This means that you should try to always use a DNS name for your Hybrid Connection. Some client
software does not do a DNS lookup if the endpoint uses an IP address instead.

App Service Hybrid Connection benefits
There are a number of benefits to the Hybrid Connections capability, including:

e Apps can access on-premises systems and services securely.

The feature does not require an internet-accessible endpoint.

e |tis quick and easy to set up.

e Each Hybrid Connection matches to a single host:port combination, helpful for security.

e [t normally does not require firewall holes. The connections are all outbound over standard web ports.

e Because the feature is network level, it is agnostic to the language used by your app and the technol-
ogy used by the endpoint.

e It can be used to provide access in multiple networks from a single app.

Things you cannot do with Hybrid Connections
Things you cannot do with Hybrid Connections include:

e Mount a drive.

e Use UDP.

e Access TCP-based services that use dynamic ports, such as FTP Passive Mode or Extended Passive
Mode.

e Support LDAP, because it can require UDP.

e Support Active Directory, because you cannot domain join an App Service worker.

Controlling App Service traffic by using Azure
Traffic Manager

You can use Azure Traffic Manager to control how requests from web clients are distributed to apps in
Azure App Service. When App Service endpoints are added to an Azure Traffic Manager profile, Azure

16 Module T Module Create Azure App Service Web Apps

Traffic Manager keeps track of the status of your App Service apps (running, stopped, or deleted) so that
it can decide which of those endpoints should receive traffic.

Routing methods

Azure Traffic Manager uses four different routing methods. These methods are described in the following
list as they pertain to Azure App Service.

e Priority: use a primary app for all traffic, and provide backups in case the primary or the backup apps
are unavailable.

e Weighted: distribute traffic across a set of apps, either evenly or according to weights, which you
define.

e Performance: when you have apps in different geographic locations, use the “closest” app in terms of
the lowest network latency.

e Geographic: direct users to specific apps based on which geographic location their DNS query
originates from.

For more information, see Traffic Manager routing methods®.

App Service and Traffic Manager Profiles

To configure the control of App Service app traffic, you create a profile in Azure Traffic Manager that uses
one of the three load balancing methods described previously, and then add the endpoints (in this case,
App Service) for which you want to control traffic to the profile. Your app status (running, stopped, or
deleted) is regularly communicated to the profile so that Azure Traffic Manager can direct traffic accord-
ingly.

When using Azure Traffic Manager with Azure, keep in mind the following points:

e For app only deployments within the same region, App Service already provides failover and
round-robin functionality without regard to app mode.

e For deployments in the same region that use App Service in conjunction with another Azure cloud
service, you can combine both types of endpoints to enable hybrid scenarios.

e You can only specify one App Service endpoint per region in a profile. When you select an app as an
endpoint for one region, the remaining apps in that region become unavailable for selection for that
profile.

e The App Service endpoints that you specify in an Azure Traffic Manager profile appears under the
Domain Names section on the Configure page for the app in the profile, but is not configurable
there.

e After you add an app to a profile, the Site URL on the Dashboard of the app's portal page displays
the custom domain URL of the app if you have set one up. Otherwise, it displays the Traffic Manager
profile URL (for example, contoso. traficmanager.net). Both the direct domain name of the app
and the Traffic Manager URL are visible on the app's Configure page under the Domain Names
section.

e Your custom domain names work as expected, but in addition to adding them to your apps, you must
also configure your DNS map to point to the Traffic Manager URL.

e You can only add apps that are in standard or premium mode to an Azure Traffic Manager profile.

6 https://docs.microsoft.com/en-us/azure/traffic-manager/traffic-manager-routing-methods

Azure App Service core concepts 17

Azure App Service Local Cache overview

Note: Local cache is not supported in Function apps or containerized App Service apps, such as on App
Service on Linux.

Azure web app content is stored on Azure Storage and is surfaced up in a durable manner as a content
share. This design is intended to work with a variety of apps and has the following attributes:

e The content is shared across multiple virtual machine (VM) instances of the web app.
e The content is durable and can be modified by running web apps.
e Log files and diagnostic data files are available under the same shared content folder.

e Publishing new content directly updates the content folder. You can immediately view the same
content through the SCM website and the running web app (typically some technologies such as ASP.
NET do initiate a web app restart on some file changes to get the latest content).

While many web apps use one or all of these features, some web apps just need a high-performance,
read-only content store that they can run from with high availability. These apps can benefit from a VM
instance of a specific local cache.

The Azure App Service Local Cache feature provides a web role view of your content. This content is a
write-but-discard cache of your storage content that is created asynchronously on-site startup. When the
cache is ready, the site is switched to run against the cached content. Web apps that run on Local Cache
have the following benefits:

e They are immune to latencies that occur when they access content on Azure Storage.

e They are immune to the planned upgrades or unplanned downtimes and any other disruptions with
Azure Storage that occur on servers that serve the content share.

e They have fewer app restarts due to storage share changes.

How the local cache changes the behavior of App Service

e D:\home points to the local cache, which is created on the VM instance when the app starts up. D:\
local continues to point to the temporary VM-specific storage.

e The local cache contains a one-time copy of the /site and /siteextensions folders of the shared content
store, at D:\home\site and D:\home\siteextensions, respectively. The files are copied to the local cache
when the app starts up. The size of the two folders for each app is limited to 300 MB by default, but
you can increase it up to 2 GB.

e The local cache is read-write. However, any modification is discarded when the app moves virtual
machines or gets restarted. Do not use the local cache for apps that store mission-critical data in the
content store.

e D:\home\LogFiles and D:\home\Data contain log files and app data. The two subfolders are stored
locally on the VM instance, and are copied to the shared content store periodically. Apps can persist
log files and data by writing them to these folders. However, the copy to the shared content store is
best-effort, so it is possible for log files and data to be lost due to a sudden crash of a VM instance.

e Log streaming is affected by the best-effort copy. You could observe up to a one-minute delay in the
streamed logs.

e In the shared content store, there is a change in the folder structure of the LogFiles and Data folders
for apps that use the local cache. There are now subfolders in them that follow the naming pattern of

18 Module T Module Create Azure App Service Web Apps

“unique identifier” + time stamp. Each of the subfolders corresponds to a VM instance where the app
is running or has run.

e Other folders in D:\home remain in the local cache and are not copied to the shared content store.

e App deployment through any supported method publishes directly to the durable shared content
store. To refresh the D:\home\site and D:\home\siteextensions folders in the local cache, the app needs
to be restarted.

e The default content view of the SCM site continues to be that of the shared content store.

MCT USE ONLY. STUDENT USE PROHIBITED

Creating an Azure App Service Web App 19

Creating an Azure App Service Web App

Using shell commands to create an App Service
Web App

Using scripts to deploy, configure, and manage Web Apps can make developing and testing Web Apps
faster and more efficient. Below are some of the current options for a shell-based experience.

Azure Cloud Shell

Azure Cloud Shell is an interactive, browser-accessible shell for managing Azure resources. It provides the
flexibility of choosing the shell experience that best suits the way you work. Linux users can opt for a Bash
experience, while Windows users can opt for PowerShell.

Cloud Shell enables access to a browser-based command-line experience built with Azure management
tasks in mind. Leverage Cloud Shell to work untethered from a local machine in a way only the cloud can
provide.

Cloud Shell is managed by Microsoft so it comes with popular command-line tools and language sup-
port. Cloud Shell also securely authenticates automatically for instant access to your resources through
the Azure CLI 2.0 or Azure PowerShell cmdlets.

View the full list of tools installed in Cloud Shell’.

Azure CLI

The Azure CLI 2.0 is Microsoft's cross-platform command line experience for managing Azure resources.
You can use it in your browser with Azure Cloud Shell, or install it on macOS, Linux, or Windows and run it
from the command line.

Azure CLI 2.0 is optimized for managing and administering Azure resources from the command line, and
for building automation scripts that work against the Azure Resource Manager. Using the Azure CLI 2.0,
you can create VMs within Azure as easily as typing the following command:

az vm create -n MyLinuxVM -g MyResourceGroup --image UbuntulLTS

Use the Cloud Shell to run the CLI in your browser, or installit on macOS, Linux, or Windows. Read the
Get Started:® article to begin using the CLI. For information about the latest release, see the release
notes’.

A detailed reference is also available that documents how to use each individual Azure CLI 2.0 com-
mand.

Azure PowerShell

Azure PowerShell provides a set of cmdlets that use the Azure Resource Manager model for managing
your Azure resources. You can use it in your browser with Azure Cloud Shell, or you can install it on your
local machine and use it in any PowerShell session.

https://docs.microsoft.com/en-us/azure/cloud-shell/features#tools
https://docs.microsoft.com/en-us/cli/azure/get-started-with-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/release-notes-azure-cli?view=azure-cli-latest

0 https://docs.microsoft.com/en-us/cli/azure/reference-index

== 0 0 N

20 Module T Module Create Azure App Service Web Apps

Use the Cloud Shell to run the Azure PowerShell in your browser, or install'" it on own computer. Then
read the Get Started'? article to begin using it. For information about the latest release, see the release
notes™.

Creating a Web App with Azure CLI

Creating an Azure Services Web App with Azure CLI follows a consistent pattern:
1. Create the resource group

2. Create the App Service Plan

3. Create the web app

4. Deploy the app

The command for the last step will change depending on the whether you are deploying with FTP,
GitHub, or some other source. There may be additional commands that are needed if you need to, for
example, set the credentials for a local Git repository.

Command Notes

az group create Creates a resource group in which all resources are
stored.

az appservice plan create Creates an App Service plan.

az webapp create Creates an Azure web app.

az webapp deployment source config Get the details for available web app
deployment profiles.

Sample script

Below is a sample script for creating a web app with a source deployment from GitHub. For more samples
please see the Azure CLI Samples' page.

#!/bin/bash

Replace the following URL with a public GitHub repo URL
gitrepo=https://github.com/Azure-Samples/php-docs-hello-world
webappname=mywebapp$RANDOM

Create a resource group.
az group create --location westeurope --name myResourceGroup

Create an App Service plan in "FREE' tier.
az appservice plan create --name $Swebappname --resource-group myResource-
Group —--sku FREE

Create a web app.
az webapp create --name $webappname --resource-group myResourceGroup --plan
Swebappname

11 https://docs.microsoft.com/en-us/powershell/azure/install-azurerm-ps?view=azurermps-6.5.0

12 https://docs.microsoft.com/en-us/powershell/azure/get-started-azureps?view=azurermps-6.5.0
13 https://docs.microsoft.com/en-us/powershell/azure/release-notes-azureps?view=azurermps-6.5.0
14 https://docs.microsoft.com/en-us/azure/app-service/app-service-cli-samples

Creating an Azure App Service Web App 21

Deploy code from a public GitHub repository.

az webapp deployment source config —-name Swebappname --resource-group
myResourceGroup \

--repo-url S$gitrepo --branch master --manual-integration

Copy the result of the following command into a browser to see the web

app.
echo http://S$webappname.azurewebsites.net

Clean up deployment

After the sample script has been run, the following command can be used to remove the resource group
and all resources associated with it.

az group delete --name myResourceGroup

Creating a Web App with Azure PowerShell

Creating an Azure Services Web App with Azure PowerShell follows a consistent pattern:
1. Create the resource group

2. Create the App Service Plan

3. Create the web app

4. Deploy the app

The command for the last step will change depending on the whether you are deploying with FTP,
GitHub, or some other source. There may be additional commands that are needed if you need to, for
example, set the credentials for a local Git repository.

Command Notes

New-AzureRmResourceGroup Creates a resource group in which all resources are
stored.

New-AzureRmAppServicePlan Creates an App Service plan.

New-AzureRmWebApp Creates an Azure web app.

Set-AzureRmResource Modifies a resource in a resource group.

Sample script

Below is a sample script for creating a web app with a source deployment from GitHub. For more samples
please see the Azure PowerShell Samples'® page.

Replace the following URL with a public GitHub repo URL
Sgitrepo="https://github.com/Azure-Samples/app-service-web-dotnet-get—-
started.git"

Swebappname="mywebapp$ (Get-Random) "

Slocation="West Europe"

Create a resource group.

15 https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-samples

22 Module T Module Create Azure App Service Web Apps

New-AzureRmResourceGroup -Name myResourceGroup -Location $location

Create an App Service plan in Free tier.
New-AzureRmAppServicePlan -Name Swebappname -Location $location -Resource-
GroupName myResourceGroup -Tier Free

Create a web app.
New-AzureRmWebApp -Name Swebappname -Location $location -AppServicePlan
Swebappname -ResourceGroupName myResourceGroup

Configure GitHub deployment from your GitHub repo and deploy once.
SPropertiesObject = @{

repoUrl = "Sgitrepo";
branch = "master";
isManualIntegration = "true";

}

Set-AzureRmResource -PropertyObject $PropertiesObject -ResourceGroupName
myResourceGroup -ResourceType Microsoft.Web/sites/sourcecontrols —-Resource-
Name S$webappname/web -ApiVersion 2015-08-01 -Force

Clean up deployment

After the script sample has been run, the following command can be used to remove the resource group,
web app, and all related resources.

Remove-AzureRmResourceGroup —-Name myResourceGroup -Force

Create a Web App by using the Azure Portal

There are several ways you can create a web app. You can use the Azure portal, the Azure CLI, a script, or
an IDE. Here, we are going to use the portal because it's a graphical experience, which makes it a great
learning tool. The portal helps you discover available features, add additional resources, and customize
existing resources.

How to create a web app

When it's time to host your own app, you visit the Azure portal and create a Web App. By creating a Web
App in the Azure portal, you are actually creating a set of hosting resources in App Service, which you
can use to host any web-based application that is supported by Azure, whether it be ASP.NET Core,
Node.js, PHP, etc. The figure below shows how easy it is to configure the framework/language used by
the app.

Creating an Azure App Service Web App 23

Home > All resources > BestBike1234 - Application settings

@ BestBike1234 - Application settings

App Service

Settings General settings

1

Application settings

NET Framework version @
Authentication / Authorizati... va.z h(
@ Application Insights PHP version @ 56 v
& Managed service identity K
o App Service supports installing newer versions of Python. Click here to learn more.
i Backups
Python version
@@ Custom domains y ° off b
O SSL settings Java version @ Off v
> Networki
etworking Java minor version @ v
7 Scale up (App Service plan)
Java web container @ v

Scale out (App Service plan)

wu WebJobs Platform @ 32-bit
Push Web sockets @ off
&5 MysQL In App
Always On @ off

" Properties

The Azure portal provides a template to create a web app. This template requires the following fields:

App name: The name of the web app.
Subscription: A valid and active subscription.

Resource group: A valid resource group. The sections below explain in detail what a resource group
is.

OS: The operating system. The options are: Windows, Linux, and Docker containers. On Windows, you
can host any type of application from a variety of technologies. The same applies to Linux hosting,
though on Linux, any ASP.NET apps must be ASP.Net Core on the .NET Core framework. The final

option is Docker containers, where you can deploy your containers directly over containers hosted
and maintained by Azure.

App Service plan/location: A valid Azure App Service plan. The sections below explain in detail what
an App Service plan is.

Applications Insights: You can turn on the Azure Application Insights option and benefit from the
monitoring and metric tools that the Azure portal offers to help you keep an eye on the performance
of your apps.

The Azure portal gives you the upper hand in managing, monitoring, and controlling your web app
through the many available tools.

Deployment slots

Using the Azure portal, you can easily add deployment slots to an App Service web app. For instance,
you can create a staging deployment slot where you can push your code to test on Azure. Once you are

24 Module T Module Create Azure App Service Web Apps

happy with your code, you can easily swap the staging deployment slot with the production slot. You do
all this with a few simple mouse clicks in the Azure portal.

Home > Allresources > BestBike1234 - Deployment slots

BestBike1234 - Deployment slots

App Service
0 « + Add Slot ";1 Swap
Deployment al

Quickstart ! NAME STATUS APP SERVICE PLAN

Deployment credentials . . i i .
bestbike1234-staging Running BestBike1234-app-service-plan

Deployment slots
&4 Deployment options

&% Deployment Center (Preview)

Continuous integration/deployment support

The Azure portal provides out-of-the-box continuous integration and deployment with Visual Studio
Team Services, GitHub, Bitbucket, Dropbox, OneDrive, or a local Git repository on your development
machine. You connect your web app with any of the above sources and App Service will do the rest for
you by auto-syncing code and any future changes on the code into the web app. Furthermore, with
Visual Studio Team Services, you can define your own build and release process that ends up compiling
your source code, running the tests, building a release, and finally pushing the release into a web app
every time you commit the code. All that happens implicitly without any need to intervene.

Creating an Azure App Service Web App 25

Home > All resources > BestBike1234 > Deployment option > Choose source

Deployment option X Choose source 1

Set up deployment option

* Choose Source S

Configure required settings Visual Studio Team Services

By Microsoft

OneDrive
By Microsoft

Local Git Repository
By Git

GitHub
By GitHub

Bitbucket
By Atlassian

Dropbox
By Dropbox

External Repository

NSO 0 &

Integrated Visual Studio publishing and FTP publishing

In addition to being able to set up continuous integration/deployment for your web app, you can always
benefit from the tight integration with Visual Studio to publish your web app to Azure via Web Deploy
technology. Also, Azure supports FTP, although you are better off not using FTP for publishing because it
lacks some capability in Web Deploy to pick and choose only those files that were changed or added, and
not just publish everything to Azure! Built-in auto scale support (automatic scale-out based on real-world
load)

Baked into the web app is the ability to scale up/down or scale out. Depending on the usage of the web
app, you can scale your app up/down by increasing/decreasing the resources of the underlying machine
that is hosting your web app. Resources can be number of cores or the amount of RAM available.

Scaling out, on the other hand, is the ability to increase the number of machine instances that are
running your web app.

What is a resource group?

A resource group is a method of grouping interdependent resources and services such as virtual ma-
chines, web apps, databases, and more for a given application and environment. Think of it as a folder, a
place to group elements of your app.

6 Module 1 Module Create Azure App Service Web Apps

Resource groups allow you to easily manage and delete resources. They also provide a way to monitor,
control access, provision, and manage billing for collections of resources that are required to run an
application or are used by a client.

MCT USE ONLY. STUDENT USE PROHIBITED

Creating Background Tasks 27

Creating Background Tasks

Overview of WebJobs

WebJobs is a feature of Azure App Service that enables you to run a program or script in the same
context as a web app, APl app, or mobile app. There is no additional cost to use WebJobs.

The Azure WebJobs SDK can be used with WebJobs to simplify many programming tasks. Azure Func-
tions provides another way to run programs and scripts. For a comparison between WebJobs and
Functions, see Choose between Flow, Logic Apps, Functions, and WebJobs'¢.

WebJob Types

There are two types of WebJobs, continuous and triggered. The following table describes the differences.

Continuous

Triggered

Starts immediately when the WebJob is created. To
keep the job from ending, the program or script
typically does its work inside an endless loop. If
the job does end, you can restart it.

Starts only when triggered manually or on a
schedule.

Runs on all instances that the web app runs on.
You can optionally restrict the WebJob to a single
instance.

Runs on a single instance that Azure selects for
load balancing.

Supports remote debugging.

Doesn't support remote debugging.

Note: A web app can time out after 20 minutes of inactivity. Only requests to the scm (deployment) site
or to the web app's pages in the portal reset the timer. Requests to the actual site don't reset the timer. If
your app runs continuous or scheduled WebJobs, enable Always On to ensure that the WebJobs run
reliably. This feature is available only in the Basic, Standard, and Premium pricing tiers.

Supported file types for scripts or programs

The following file types are supported:

e .cmd, .bat, .exe (using Windows cmd)
e .ps1 (using PowerShell)

e sh (using Bash)

e .php (using PHP)

e .py (using Python)

e js (using Node,js)

e jar (using Java)

Creating a continuous WebJob

1. In the Azure portal', go to the App Service page of your App Service web app, APl app, or mobile

app.

16 https://docs.microsoft.com/en-us/azure/azure-functions/functions-compare-logic-apps-ms-flow-webjobs

17 https://portal.azure.com/

28 Module T Module Create Azure App Service Web Apps

2. Select WebJobs.

O Search (Ctrl+)

7% Continuous Delivery (Preview)

SETTINGS
= Application settings
Authentication / Authorization
i Backups
Em Custom domains
) S5L certificates
+ Networking
7 Scale up (App Service plan)

7 Scale out {App Service plan)

o Weblobs

Bl
4. In the WebJobs page, select Add.

B Search (Ceri+/) O Refresh E| Logs [Delete v= Properties

st Weblobs
WeblJobs
Push é
£ MySQL In App WebJobs provide an easy way to run scripts or programs as background processes in the context of your app
I Properties NAME TYPE STATUS SCHEDULE
ﬂ Locks You haven't added any Weblobs. Click ADD to get started.

= Automation script

5
6. Use the Add WebJob settings as specified in the table

* Name @

| myContinucusWebJob V'|

* File Upload

| "ConscleAppl.zip”

Type @
| Continuous v |
Scale @

Multi Instance v

Creating Background Tasks 29

Setting

Sample Value

Description

Name

myContinuousWebJob

A name that is unique within an
App Service app. Must start with
a letter or a number and cannot
contain special characters other
than "-"and "_".

File Upload

ConsoleApp.zip

A .zip file that contains your
executable or script file as well as
any supporting files needed to
run the program or script. The
supported executable or script
file types are listed in Overview
of Webjobs section of this course.

Type

Continuous

Choose the type of of WebJob
you want to create, this example
uses continuous

Scale

Multi instance

Available only for Continuous
WebJobs. Determines whether
the program or script runs on all
instances or just one instance.
The option to run on multiple
instances doesn't apply to the
Free or Shared pricing tiers.

8. Click OK.

9. The new WebJob appears on the WebJobs page.

0909 - Weblobs

O Search (Ctrl+)
SETTINGS

= Application settings

i Backups
Em Custom domains

) S5L certificates
@ Networking

7 Scale up (App Service plan)
7 Scale out {App Service plan)

o Weblobs

Authentication / Authorization

+ add) Refresh ﬁ Legs

0. WebJobs
ﬁ‘-

Weblobs provide an easy way to run scripts or programs as background processes
NAME TYPE STATUS
myScheduledWe... Triggered Ready
myTriggeredWeb... Triggered Ready

myContinugusW... Continuous Pending Restart

35 Properties

SCHEDULE

D0/20****

n/a

n/a

10.

Creating a manually triggered WebJob

1. In the Azure portal'®, go to the App Service page of your App Service web app, APl app, or mobile

app.

18 https://portal.azure.com/

30 Module T Module Create Azure App Service Web Apps

2. Select WebJobs.

O Search (Ciri+/)

7% Continuous Delivery (Preview)

SETTINGS
== Application settings
Authentication / Authorization
i Backups
Em Custom domains
) S5L certificates
+ Networking
Scale up (App Service plan)

Scale out (App Service plan)

o Weblobs

Bl
4. In the WebJobs page, select Add.

B Search (Ceri+/) O Refresh E| Logs [Delete v= Properties

st Weblobs
WeblJobs
Push é
£ MySQL In App WebJobs provide an easy way to run scripts or programs as background processes in the context of your app
I Properties NAME TYPE STATUS SCHEDULE
ﬂ Locks You haven't added any Weblobs. Click ADD to get started.

= Automation script

5
6. Use the Add WebJob settings as specified in the table

Creating Background Tasks 31

* Name @

myTriggeredWeblob2 v |
* File Upload

"ConscleAppl.zip” E
Type @
| Triggered v |

I/ Calling the webhook will trigger a job execution. Use &
A webhook triggers to integrate with Azure scheduler.

Triggers @

Manual v

Setting Sample Value

Description

Name

myContinuousWebJob

A name that is unique within an
App Service app. Must start with
a letter or a number and cannot
contain special characters other
than "-"and "_".

File Upload ConsoleApp.zip

A .zip file that contains your
executable or script file as well as
any supporting files needed to
run the program or script. The
supported executable or script
file types are listed in Overview
of Webjobs section of this course.

Triggered Choose the type of of WebJob
you want to create, this example
uses Triggered.

Triggers Manual
8. Click OK.

9. The new WebJob appears on the WebJobs page.

32 Module T Module Create Azure App Service Web Apps

O Search (Ctrl+) + Add Q) Refresh ﬁ logs [0 Delete 35 Properties
SETTINGS
= Application settings ' WeblJobs

209

Weblobs provide an easy way to run scripts or programs as background processes

Authentication / Authorization

i Backups

NAME TYPE STATUS SCHEDULE
Em Custom domains

myScheduledWe... Triggered Ready oo/20***=
) S5L certificates

myTriggeredWeb... Triggered Ready n/a

+ Networking
myContinugusW... Continuous Pending Restart n/a

7 Scale up (App Service plan)
7 Scale out {App Service plan)

o Weblobs

10.

Using Swagger to document an APl 33

Using Swagger to document an API
Getting started with Swashbuckle

This section of the course focuses on Swashbuckle to generate Swagger objects in ASP.NET Core. There
are three main components to Swashbuckle:

e Swashbuckle.AspNetCore.Swagger: a Swagger object model and middleware to expose Swagg-
erDocument objects as JSON endpoints.

e Swashbuckle.AspNetCore.SwaggerGen: a Swagger generator that builds SwaggerDocument
objects directly from your routes, controllers, and models. It's typically combined with the Swagger
endpoint middleware to automatically expose Swagger JSON.

e Swashbuckle.AspNetCore.SwaggerUI: an embedded version of the Swagger Ul tool. It inter-
prets Swagger JSON to build a rich, customizable experience for describing the Web API functionality.
It includes built-in test harnesses for the public methods.

Package installation

Here's how to install the Swashbuckle.AspNetCore package in Visual studio:

e From the Package Manager Console window:

Go to View > Other Windows > Package Manager Console
Navigate to the directory in which the TodoApi.csproj file exists

Execute the following command:
Install-Package Swashbuckle.AspNetCore

e From the Manage NuGet Packages dialog:

Right-click the project in Solution Explorer > Manage NuGet Packages
Set the Package source to “nuget.org”
Enter “Swashbuckle.AspNetCore” in the search box

Select the "Swashbuckle.AspNetCore” package from the Browse tab and click Install

Add and configure Swagger middleware

Add the Swagger generator to the services collection in the Startup.ConfigureServices method:

public void ConfigureServices (IServiceCollection services)

{

services.AddDbContext<TodoContext> (opt =>
opt.UselInMemoryDatabase ("TodoList")) ;

services.AddMvc ()
.SetCompatibilityVersion (CompatibilityVersion.Version 2 1);

// Register the Swagger generator, defining 1 or more Swagger documents
services.AddSwaggerGen (c =>
{

c.SwaggerDoc ("v1l", new Info { Title = "My API", Version = "v1" });

1)

34 Module T Module Create Azure App Service Web Apps

Import the following namespace to use the Info class:

using Swashbuckle.AspNetCore.Swagger;

In the Startup.Configure method, enable the middleware for serving the generated JSON document
and the Swagger Ul:

public void Configure (IApplicationBuilder app)
{

// Enable middleware to serve generated Swagger as a JSON endpoint.
app.UseSwagger () ;

// Enable middleware to serve swagger-ui (HTML, JS, CSS, etc.),
// specifying the Swagger JSON endpoint.
app.UseSwaggerUI (c =>

{
c.SwaggerEndpoint ("/swagger/vl/swagger.json", "My API V1");

)i

app.UseMvc () ;

Launch the app, and navigate to http://localhost:<port>/swagger/vl/swagger.json. The
generated document describing the endpoints appears as shown in Swagger specification (swagger.
json)™.

The Swagger Ul can be found at http://localhost:<port>/swagger. Explore the APl via Swagger
Ul and incorporate it in other programs.

Tip: To serve the Swagger Ul at the app's root (http://localhost:<port>/), set the RoutePrefix
property to an empty string:

app.UseSwaggerUI (c =>

{
c.SwaggerEndpoint ("/swagger/v1l/swagger.json", "My API V1");
c.RoutePrefix = string.Empty;

1)

Documenting the object model - API info and
description

The configuration action passed to the AddSwaggerGen method adds information such as the author,
license, and description:

// Register the Swagger generator, defining 1 or more Swagger documents
services.AddSwaggerGen (c =>

{

19 https://docs.microsoft.com/en-us/aspnet/core/tutorials/web-api-help-pages-using-swagger?view=aspnetcore-2.1#swagger-specification-
swaggerjson

Using Swagger to document an APl 35

c.SwaggerDoc ("v1l", new Info

{

Version = "v1",

Title = "ToDo API",

Description = "A simple example ASP.NET Core Web API",
TermsOfService = "None",

Contact = new Contact
{
Name = "Shayne Boyer",
Email = string.Empty,
Url = "https://twitter.com/spboyer"
I
License = new License
{
Name = "Use under LICX",
Url = "https://example.com/license"

i1 swagger

ToDo API®

/swagger/vl/swagger.json

A simple example ASP.NET Core Web API

Terms of service

Shayne Boyer - Website
Use under LICX

Enabling XML comments

XML comments can be enabled in Visual Studio using the following approach:
e Right-click the project in Solution Explorer and select Edit <project_name>.csproj.
e Manually add the highlighted lines to the . csproj file:

<PropertyGroup>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
<NoWarn>$ (NoWarn) ; 1591</NoWarn>

</PropertyGroup>

36 Module T Module Create Azure App Service Web Apps

Enabling XML comments provides debug information for undocumented public types and members.
Undocumented types and members are indicated by the warning message. For example, the following
message indicates a violation of warning code 1591:

warning CS1591: Missing XML comment for publicly visible type or member
'TodoController.GetAll ()"

To suppress warnings project-wide, define a semicolon-delimited list of warning codes to ignore in the
project file. Appending the warning codes to $ (NoWarn); applies the C# default values too.

<PropertyGroup>
<GenerateDocumentationFile>true</GenerateDocumentationFile>
<NoWarn>$ (NoWarn) ; 1591</NoWarn>

</PropertyGroup>

To suppress warnings only for specific members, enclose the code in #pragma warning preprocessor
directives. This approach is useful for code that shouldn't be exposed via the API docs. In the following
example, warning code CS1591 is ignored for the entire Program class. Enforcement of the warning code
is restored at the close of the class definition. Specify multiple warning codes with a comma-delimited
list.

namespace TodoApi
{
#pragma warning disable CS1591
public class Program
{
public static void Main(string[] args) =>
BuildWebHost (args) .Run () ;

public static IWebHost BuildWebHost (string[] args) =>
WebHost.CreateDefaultBuilder (args)
.UseStartup<Startup> ()
.Build();
}
#pragma warning restore CS1591

}

Configure Swagger to use the generated XML file. For Linux or non-Windows operating systems, file
names and paths can be case-sensitive. For example, a TodoApi . XML file is valid on Windows but not
CentOS.

public void ConfigureServices (IServiceCollection services)
{
services.AddDbContext<TodoContext> (opt =>
opt.UseInMemoryDatabase ("TodoList")) ;
services.AddMvc ()
.SetCompatibilityVersion (CompatibilityVersion.Version 2 1);

// Register the Swagger generator, defining 1 or more Swagger documents
services.AddSwaggerGen (c =>

{

c.SwaggerDoc ("v1l", new Info

Using Swagger to document an AP|

37

Version = "v1",

Title = "ToDo API",

Description = "A simple example ASP.NET Core Web API",
TermsOfService = "None",

Contact = new Contact

{

Name = "Shayne Boyer",

FEmail = string.Empty,

Url = "https://twitter.com/spboyer"
bo
License = new License
{

Name = "Use under LICX",

Url = "https://example.com/license"

1)

// Set the comments path for the Swagger JSON and UI.

var xmlFile = $"{Assembly.GetExecutingAssembly () .GetName () .Name} .

xml";

var xmlPath = Path.Combine (AppContext.BaseDirectory, xmlFile);

c.IncludeXmlComments (xmlPath) ;

1)

In the preceding code, Reflection is used to build an XML file name matching that of the Web API project.
The AppContext.BaseDirectory property is used to construct a path to the XML file.

Adding triple-slash comments to an action enhances the Swagger Ul by adding the description to the

section header. Add a <summary> element above the Delete action:

s
/77
/77
/77

<summary>

Deletes a specific TodoItem.
</summary>

<param name="id"></param>

[HttpDelete ("{id}")]
public IActionResult Delete(long id)

{

var todo = context.TodoItems.Find(id);

if (todo == null)
{

return NotFound() ;

_context.TodoItems.Remove (todo) ;
_context.SaveChanges() ;

return NoContent () ;

38 Module T Module Create Azure App Service Web Apps

The Swagger Ul displays the inner text of the preceding code's <summary> element:

m Japi/Todo/{id} | Deletes a specific Todoltem.l

Name Description

id* required

integer

(path)

Responses Response content type | application/json ~
Code Description

The Ul is driven by the generated JSON schema:

"delete": {
"tags": [
"Todo"
I
"summary": "Deletes a specific TodoItem.",
"operationId": "ApiTodoByIdDelete",
"consumes": [],
"produces": [],
"parameters": [
{

"name": "id",

"in": "path",
"description": "",
"required": true,
"type": "integer",
"format": "inte4"

1,
"responses": {
"200": {
"description": "Success"

Add a <remarks> element to the Create action method documentation. It supplements information
specified in the <summary> element and provides a more robust Swagger Ul. The <remarks> element
content can consist of text, JSON, or XML.

Using Swagger to document an AP|

39

/// <summary>

/// Creates a TodoItem.
/// </summary>

/// <remarks>

/// Sample request:

177/
/77
/77
17/
/77
17/
177/
/77

/// </remarks>
/// <param name="item"></param>

POST /Todo

{

Hid" :
"name" :

"isComplete":

/// <returns>A newly created TodoItem</returns>

/// <response code="201">Returns the newly created item</response>

/// <response code="400">If the item is null</response>

[HttpP

[ProducesResponseType (201)]
[ProducesResponseType (400)]

ost]

public ActionResult<TodoItem> Create (TodoItem item)

{

_context.TodoItems.Add (item) ;
__context.SaveChanges () ;

return CreatedAtRoute ("GetTodo",

new { id = item.Id }, item);

Notice the Ul enhancements with these additional comments:

/api/Todo Createsa Todoltem.

POST /Todo
{
"id 1
“name" :
"isComp.

}

Sample request:

>
"Tteml™,
lete™: true

Decorating the model with attributes

Decorate the model with attributes, found in the System.ComponentModel.DataAnnotations
namespace, to help drive the Swagger Ul components.

Add the [Required] attribute to the Name property of the TodoItem class:

using System.ComponentModel;

using System.ComponentModel.DataAnnotations;

namespace TodoApi.Models

40 Module T Module Create Azure App Service Web Apps

public class TodoItem

{
public long Id { get; set; }

[Required]
public string Name { get; set; }

[DefaultValue (false)]
public bool IsComplete { get; set; }

The presence of this attribute changes the Ul behavior and alters the underlying JSON schema:

"definitions": {
"TodoItem": {
"required": [
"name"
1,
"type": "object",
"properties": {
"id": |
"format": "inte4",
"type": "integer"
br
"name": {
"type": "string"

b

"isComplete": {
"default": false,
"type": "boolean"

by

Add the [Produces ("application/json")] attribute to the API controller. Its purpose is to declare
that the controller's actions support a response content type of application/json:

[Produces ("application/Jjson")]

[Route ("api/[controller]")]

[ApiController]

public class TodoController : ControllerBase
{

private readonly TodoContext context;

The Response Content Type drop-down selects this content type as the default for the controller's GET
actions:

Using Swagger to document an APl 41

GET Japi/Todo

Parameters Try it out

No parameters

Responses Response content type application/json w

As the usage of data annotations in the Web API increases, the Ul and API help pages become more
descriptive and useful.

Describing response types

Consuming developers are most concerned with what's returned—specifically response types and error
codes (if not standard). The response types and error codes are denoted in the XML comments and data
annotations.

The Create action returns an HTTP 201 status code on success. An HTTP 400 status code is returned
when the posted request body is null. Without proper documentation in the Swagger Ul, the consumer
lacks knowledge of these expected outcomes. Fix that problem by adding the highlighted lines in the
following example:

/// <summary>

/// Creates a TodoItem.
/// </summary>

/// <remarks>

/// Sample request:

///

/// POST /Todo

/17 {

/17 "idv: 1,

/17 "name": "Iteml",
/// "isComplete": true
/// }

/17

/// </remarks>
/// <param name="item"></param>
/// <returns>A newly created TodoItem</returns>
/// <response code="201">Returns the newly created item</response>
/// <response code="400">If the item is null</response>
[HttpPost]
[ProducesResponseType (201)]
[ProducesResponseType (400)]
public ActionResult<TodoItem> Create (TodoItem item)
{
_context.TodoItems.Add (item) ;
__context.SaveChanges() ;

return CreatedAtRoute ("GetTodo", new { id = item.Id }, item);

42 Module T Module Create Azure App Service Web Apps

The Swagger Ul now clearly documents the expected HTTP response codes:

Responses Response content type l application/json v I

Code Description

20 Returns the newly created item

Example Value | Model

: "stri ng",
mplete”: false

<L If the item is null

Creating an App Service Logic App 43

Creating an App Service Logic App
Azure Logic Apps explained

Logic Apps helps you build solutions that integrate apps, data, systems, and services across enterprises or
organizations by automating tasks and business processes as workflows. Logic Apps is cloud service in
Azure that simplifies how you design and create scalable solutions for app integration, data integration,
system integration, enterprise application integration (EAI), and business-to-business (B2B) communica-
tion, whether in the cloud, on premises, or both.

For example, here are just a few workloads that you can automate with logic apps:

e Process and route orders across on-premises systems and cloud services.

e Move uploaded files from an SFTP or FTP server to Azure Storage.

e Send email notifications with Office 365 when events happen in various systems, apps, and services.

e Monitor tweets for a specific subject, analyze the sentiment, and create alerts or tasks for items that
need review.

To build integration solutions with logic apps, choose from a growing gallery that has 200+ connec-
tors?, including other Azure services such as Service Bus, Functions, and Storage; SQL, Office 365,
Dynamics, BizTalk, Salesforce, SAP, Oracle DB, file shares, and many more. These connectors provide
triggers, actions, or both for creating logic apps that securely access and process data in real time

How does Logic Apps work?

Every logic app workflow starts with a trigger, which fires when a specific event happens, or when new
available data meets specific criteria. Many triggers include basic scheduling capabilities so that you can
specify how regularly your workloads run. For more custom scheduling scenarios, start your workflows
with the Schedule trigger. Learn more about how to build schedule-based workflows.

Each time that the trigger fires, the Logic Apps engine creates a logic app instance that runs the work-
flow's actions. These actions can also include data conversions and flow controls, such as conditional
statements, switch statements, loops, and branching. For example, this logic app starts with a Dynamics
365 trigger with the built-in criteria “"When a record is updated”. If the trigger detects an event that
matches this criteria, the trigger fires and runs the workflow's actions. Here, these actions include XML
transformation, data updates, decision branching, and email notifications.

20 https://docs.microsoft.com/en-us/azure/connectors/apis-list

44 Module T Module Create Azure App Service Web Apps

'A Logic Apps Designer - ' X e
& C | & Secure

https://portal.azure.com/#resource/subscriptions/< Azure-subscription-10»/resourceGroups/<resource-group=/providers/Micro... ¥

soft Azure i 15 » Logic Apps Designer D Search resources, services & @ (@ username@co..
t Azure MonitorRecordUpdates-LA ogic App: g B e ces, ces D (@ CoNTOSO a
Logic Apps Designer » X
P Run & Codeview M Templates B Connectors 7 Help
--
. When a record is updated ++2
o] ar

Transform XML
Register in Datamart

If record requires action

f true ffalse
a . Create a new record - E Execute stored procedure
e
\d Post message
1 v
t n Send Email
* + New step

You can build your logic apps visually with the Logic Apps Designer, available in the Azure portal through
your browser and in Visual Studio. For more custom logic apps, you can create or edit logic app defini-
tions in JavaScript Object Notation (JSON) by working in “code view” mode. You can also use Azure
PowerShell commands and Azure Resource Manager templates for select tasks. Logic apps deploy and
run in the cloud on Azure. For a more detailed introduction, watch this video: Use Azure Enterprise
Integration Services to run cloud apps at scale

Connectors for Azure Logic Apps

Connectors play an integral part when you create automated workflows with Azure Logic Apps. By using
connectors in your logic apps, you expand the capabilities for your on-premises and cloud apps to
perform tasks with the data that you create and already have. Connectors are available as either built-ins
or managed connectors.

e Built-ins: These built-in actions and triggers help you create logic apps that run on custom schedules,
communicate with other endpoints, receive and respond to requests, and call Azure functions, Azure
API Apps (Web Apps), your own APls managed and published with Azure APl Management, and
nested logic apps that can receive requests. You can also use built-in actions that help you organize
and control your logic app's workflow, and also work with data.

e Managed connectors: These connectors provide triggers and actions for accessing other services and
systems. Some connectors require that you first create connections that are managed by Azure Logic
Apps. Managed connectors are organized into these groups:

Managed API connectors Create logic apps that use services such as Azure
Blob Storage, Office 365, Dynamics, Power B,

OneDrive, Salesforce, SharePoint
Online, and many more.

Creating an App Service Logic App 45

On-premises connectors After you install and set up the on-premises data
gateway, these connectors help your logic apps

access on-premises systems such as
SQL Server, SharePoint Server, Oracle DB, file
shares, and others.

Integration account connectors Available when you create and pay for an integra-
tion account, these connectors transform and
validate

XML, encode and decode flat files, and
process business-to-business (B2B) messages with
AS2, EDIFACT,

and X12 protocols.

Enterprise connectors Provide access to enterprise systems such as SAP
and IBM MQ for an additional cost.

Components of a Connector

Each connector offers a set of operations classified as ‘Actions’ and 'Triggers'. Once you connect to the
underlying service, these operations can be easily leveraged within your apps and workflows.

Actions

Actions are changes directed by a user. For example, you would use an action to look up, write, update,
or delete data in a SQL database. All actions directly map to operations defined in the Swagger.

Triggers

Several connectors provide triggers that can notify your app when specific events occur. For example, the
FTP connector has the OnUpdatedFile trigger. You can build either a Logic App or Flow that listens to
this trigger and performs an action whenever the trigger fires.

There are two types of trigger.

e Polling Triggers: These triggers call your service at a specified frequency to check for new data. When
new data is available, it causes a new run of your workflow instance with the data as input.

e Push Triggers: These triggers listen for data on an endpoint, that is, they wait for an event to occur.
The occurrence of this event causes a new run of your workflow instance.

B2B scenarios and the Enterprise Integration
Pack

For business-to-business (B2B) workflows and seamless communication with Azure Logic Apps, you can
enable enterprise integration scenarios with Microsoft's cloud-based solution, the Enterprise Integration
Pack. Organizations can exchange messages electronically, even if they use different protocols and
formats. The pack transforms different formats into a format that organizations' systems can interpret
and process. Organizations can exchange messages through industry-standard protocols, including AS2,
X12, and EDIFACT. You can also secure messages with both encryption and digital signatures.

If you are familiar with BizTalk Server or Microsoft Azure BizTalk Services, the Enterprise Integration
features are easy to use because most concepts are similar. One major difference is that Enterprise

46 Module T Module Create Azure App Service Web Apps

Integration uses integration accounts to simplify the storage and management of artifacts used in B2B
communications.

Architecturally, the Enterprise Integration Pack is based on “integration accounts”. These accounts are
cloud-based containers that store all your artifacts, like schemas, partners, certificates, maps, and agree-
ments. You can use these artifacts to design, deploy, and maintain your B2B apps and also to build B2B
workflows for logic apps. But before you can use these artifacts, you must first link your integration
account to your logic app. After that, your logic app can access your integration account's artifacts.

Why should you use enterprise integration?

e With enterprise integration, you can store all your artifacts in one place — your integration account.

e You can build B2B workflows and integrate with third-party software-as-service (SaaS) apps, on-prem-
ises apps, and custom apps by using the Azure Logic Apps engine and all its connectors.

e You can create custom code for your logic apps with Azure functions.

How to get started with enterprise integration

You can build and manage B2B apps with the Enterprise Integration Pack through the Logic App Designer
in the Azure portal. You can also manage your logic apps with PowerShell.

Here are the high-level steps you must take before you can create apps in the Azure portal:

Enterprise integration architecture

Create Logic Apps by using Visual Studio

With Azure Logic Apps and Visual Studio, you can create workflows for automating tasks and processes
that integrate apps, data, systems, and services across enterprises and organizations. This lesson shows
how you can design and build these workflows by creating logic apps in Visual Studio and deploying
those apps to Azure in the cloud. And although you can perform these tasks in the Azure portal, Visual
Studio lets you add logic apps to source control, publish different versions, and create Azure Resource
Manager templates for different deployment environments.

We'll be creating a logic app that monitors a website's RSS feed and sends email for each new item
posted on the site. When you're done, your logic app looks like this high-level workflow:

Creating an App Service Logic App 47

_ﬂl MylLeogicApp - Microsoft Visual Studic
File Edit View Project Build Debug Team Tools Test RTools Analyze Window Help
E0 - Gl ~ T - -| Debug ~ AnycCPU - b Start~| 5

LegicAppjson & %

When a feed item is published

E Send an email

N

+ New step

Prerequisites

Before you start, make sure that you have these items:

e If you don't have an Azure subscription, sign up for a free Azure account?'.
e Download and install these tools, if you don't have them already:

e Visual Studio 2017 or Visual Studio 2015 - Community edition or greater??. This section uses
Visual Studio Community 2017, which is free.

e Microsoft Azure SDK for .NET (2.9.1 or later)?® and Azure PowerShell?.
e Azure Logic Apps Tools for Visual Studio 20172 or the Visual Studio 20152 version

e An email account that's supported by Logic Apps, such as Office 365 Outlook, Outlook.com, or Gmail.
For other providers, review the connectors list here?’. This logic app uses Office 365 Outlook. If you
use a different provider, the overall steps are the same, but your Ul might slightly differ.

e Access to the web while using the embedded Logic App Designer

e The designer requires an internet connection to create resources in Azure and to read the properties
and data from connectors in your logic app. For example, if you use the Dynamics CRM Online
connector, the designer checks your CRM instance for available default and custom properties.

Create an Azure resource group project

To get started, create an Azure Resource Group project.
1. Start Visual Studio and sign in with your Azure account.

2. On the File menu, select New > Project.

21 https://azure.microsoft.com/free/

22 https://www.visualstudio.com/downloads

23 https://azure.microsoft.com/downloads/

24 https://github.com/Azure/azure-powershell#installation

25 https://marketplace.visualstudio.com/items?itemName=VinaySinghMSFT.AzureLogicAppsToolsforVisualStudio-18551
26 https://marketplace.visualstudio.com/items?itemName=VinaySinghMSFT.AzureLogicAppsToolsforVisualStudio

27 https://docs.microsoft.com/connectors/

48 Module T Module Create Azure App Service Web Apps

ﬂ Microsoft Visual Studic
File | Edit View Project Debug Team Tools Test RTools Analyze Window Help

D Ctrl+Shift=N
Open Y| File.. Ctrl+N
Start Page Project From Existing Code...
Bl
4. Under Installed, select Visual C#. Select Cloud > Azure Resource Group. Name your project, for
example:
Mew Project ? *
b Recent * Sortby: [Default Search (Ctrl+E) P
4 |nstalled o .
@ ASP.NET Core Web Application Visual cz 1ypes Visual C=
4 Visual C# This template creates an Azure Resource
Get Started < > Azure Functions Visual C# Group deployment project. The

deployment project will contain artifacts
Windows Universal ploy proj

needed to provision Azure resources using

Windows Desktop Q Service Fabric Application Visual C# Azure Resource Manager that will create
b Web an environment for your application.
b Office/SharePoint @ ASP.NET Web Application (NET... Visual C#

NET Core

.MET Standard 5 Azure WebJob (NET Framework) Visual CZ

Android

Apple TV O Azure Cloud Service Visual C#

Apple Watch

@ Azure Resource Group Visual C#

Cross-Platform
i05 Extensions
iPhone & iPad -
Mot finding what you are looking for?

Open Visual Studic Installer

MNarne:

Location: | C\Users\<your-username =\sourcelrepos ~| Browse...

Solution name: MylLogichApp Create directory for selution
Framework: |.NET Framework 7.1 ~| I:‘ Add to Source Control

5%

6. Select the Logic App template.

Select Azure Template *
Show templates from this location: Logic App
Visual Studio Templates v By: Microsoft
Search pe) Creates an empty Logic App.

VERSION: 2016-06-01

Loegic App
{ MICROSOFT

Windows Server Virtual
Machines with Load Balancer
MICROSOFT

Docker on Ubuntu Server
% CANONICAL + M5 OPEN TECH

This template creates an empty logic app that can be used to define workflows.

Windows Virtual Machine
MICROSOFT

n Ubuntu Server
o
hd RAISROGOET

Templates Found: 14

| 0K || Cancel |

7

8. After Visual Studio creates your project, Solution Explorer opens and shows your solution.

Creating an App Service Logic App 49

ﬂ MylLeogicApp - Microsoft Visual Studic
File Edit View Project Build Debug Team Tools Test RTools Analyze Window Help
- PRI - i - ~ Debug =~ AnyCPU - P Start~ | ¥

-

Solution Explorer > o x
QB o 8B K=
p -

Search Solution Explorer (Ctrl+;)

] Solution 'MyLogicApp' (1 project)
4 ¥ MylogicApp
=B References

¥oqioo] Jsaiojdig lanag

|43 Deploy-AzureResourceGroup.psl
IT LogicApp.json
IT LogicApp.parameters.json

Solution Explorer REETE=TEIE

9.

10. In your solution, the LogicApp.json file not only stores the definition for your logic app but is also an
Azure Resource Manager template that you can set up for deployment.

Create a blank Logic App

After you create your Azure Resource Group project, create and build your logic app starting from the
Blank Logic App template.

1. In Solution Explorer, open the shortcut menu for the LogicApp.json file. Select Open With Logic App
Designer.

ﬂ MylLeogicApp - Microsoft Visual Studic
File Edit View Project Build Debug Team Tools Test RTools Analyze Window Help
- PRI - i - ~ Debug =~ AnyCPU - P Start~ | ¥

-

Solution Explorer * 0 x
RE-lo-s @ F "
sion Ext e

». Solution ‘MylogicApp' (1 project)

4 &7 MylogicApp
=8 References

¥oqioo] Jsaiojdig lanag

4 Deploy-AzureResourceGroup.psl
& LogicAppjson
Q‘ LogicApp.parametersjson

c Open
Show Qutline
Open With...

|Open With Logic App Designer Ctri+L |

2.

3. For Subscription, select the Azure subscription that you to use. For Resource Group, select Create
New..., which creates a new Azure resource group.

Logic App Properties *

<company-name:
<username @domain=

Subscription:

I{Azum-strbscn"uricn -name> (<username@domain=) b

Resource group:

<Create New..>

AzureFunctions-AustraliaBast (Australia East)

OK Cancel

50 Module T Module Create Azure App Service Web Apps

5. Visual Studio needs your Azure subscription and a resource group for creating and deploying resourc-
es associated with your logic app and connections.

Setting Sample Value Description
User profile list Contoso (jamalhartnett@ By default, the account that you
contoso.com) used to sign in
Subscription Pay-As-You-Go (jamalhartnett@ | The name for your Azure
contoso.com) subscription and associated
account
Resource Group MyLogicApp-RG (West US) The Azure resource group and

location for storing and deploy-
ing resources for your logic app

Location

MyLogicApp-RG (West US) A different location if you don't
want to use the resource group
location

6. The Logic Apps Designer opens and shows a page with an introduction video and commonly used
triggers. Scroll past the video and triggers. Under Templates, select Blank Logic App.

ﬂ MylLeogicApp - Microsoft Visual Studic
File Edit View Project Build

S |elee|3-o Hdﬂ| S

LogicAppjson + X

Introducing Azure ic Apps

LIREETIT e ERVEDY <o

Start with @ common trigger

Debug Team Tools Test RToocls Analyze Window Help
- | Debug - AnycPU - b Start - | 5

Building integration solutions is easier than ever

Logic Apps brings speed and scalability into the enterprise integration
space. The ease of use of the designer, variety of available triggers and
actions, and powerful management tools make centralizing your APls
simpler than ever. As businesses move towards digitalization, Logic Apps
allows you to connect legacy and cutting-edge systems together.

= Create business processes and workflows visually
= [ntegrate with SaaS and enterprise applications
= Unlock value from on-premises and doud applications

Pick from one of the most commeonly used triggers, then orchestrate any number of actions using the rich collection of connectors

Recurrence

When a message
is received in a
Service Bus queue

Templates

When a Event Grid
event occurs

When a HTTP When a new tweet
@.\ request is received is posted

When a new email When a new file is When a file is
is received in r‘ created on a added to FTP
Outlook.com OneDrive server

Category : | Al < Sort by : | Popularity <

Choose a template below to create your Logic App.

Blank Logic App

I

Copy new Dynamics Auto tier Azure Delete old Azure
CRM Contacts to — blobs based on the — blobs

the Common Data @ last modified time.

Model

Creating an App Service Logic App 51

Build the Logic App workflow

Creating the trigger

Next, add a trigger that fires when a new RSS feed item appears. Every logic app must start with a trigger,
which fires when specific criteria is met. Each time the trigger fires, the Logic Apps engine creates a logic
app instance that runs your workflow.

1. In Logic App Designer, enter “rss” in the search box. Select this trigger: When a feed item is pub-
lished

ﬂ MylLeogicApp - Microsoft Visual Studic
File Edit View Project Build Debug Team Tools Test RTools Analyze Window Help
fo-o|B-2 @9 - | Debug | AnyCPU - b Start - | A1

LegicAppjson & %

‘/O ‘ @ 100% Q

All Built-ins Connectors Enterprise Custom = Solution ‘MyLogicApp' (1 project)
- 4 57 MyLogicApp
=8 References

= | Solution Explorer
Q& o508

xogjoo] Jauo)dig ;aases R

« Deploy-AzureResourceGroup.ps1
RSS &7 LogicAppjson
- £T LogicApp.parameters.json

Triggers Actions

When a feed item is published @
RSS

2.

3. Provide this information for your trigger as shown and described:

When a feed item is published

*The RSS feed URL http://feeds.reuters.com/reuters/topMews

How often do you want to check for items?

er',al } o
Connected to RS5. Change connection.
4.
Property Value Description
The RSS feed URL http://feeds.reuters. The link for the RSS feed that
com/reuters/topNews you want to monitor
Interval 1 The number of intervals to wait
between checks
Frequency Minute The unit of time for each interval
between checks

5. Together, the interval and frequency define the schedule for your logic app's trigger. This logic app
checks the feed every minute.

6. Save your project.

Your logic app now has a trigger, but won't actually do anything until you add an action.

52 Module T Module Create Azure App Service Web Apps

Adding an action
1. Under the When a feed item is published trigger, choose** + New step > Add an action**.

2. Use “send an email” as your filter. From the actions list, select the "send an email" action for the
provider that you want.

When a feed item is published

E Choose an action X

All Built-ins Connectors Enterprise Custom
o —
—
Office 365 AWeber Benchmark FreshBooks Gmai MailChimp Mandri

Outlook Emai

M
Triggers Actions

Send mail
| Mandiill

—
Send an email -
Office 365 Outlook -

™

Send an email from a shared mailbox (preview) -
Office 365 Outlook

Send approval email -
Office 365 Qutlook =

4. To filter the actions list to a specific app or service, you can select that app or service first:
e For Azure work or school accounts, select Office 365 Outlook.
e For personal Microsoft accounts, select Outlook.com.

5. If asked for credentials, sign in to your email account so that Logic Apps creates a connection to your
email account.

6. In the Send an email action, specify the data that you want the email to include.

7. a.In the To box, enter the recipient's email address. For testing purposes, you can use your own email
address. For now, ignore the Add dynamic content list that appears. When you click inside some edit
boxes, this list appears and shows any available parameters from the previous step that you can
include as inputs in your workflow.

8. b.In the Subject box, enter this text with a trailing blank space: New RSS item:

©

c. From the Add dynamic content list, select Feed title to include the RSS item title.

Creating an App Service Logic App

53

When a feed item is published Add dynamic content from the apps
\l/ and connectors used in this flow.
E Send an email @ - Dynamic content Expression
*To <your-email-address@ |
L search dynamic content

*Subject | Mew RSS item:| '¢-_ |

Ndd dynamic content [l When a feed item is published

*Body | Specify the body of the mail \ | .
categories - [tem
Show advanced options ™
Connected to <your-email-address@domain> Change connection. Feed gopynght '”f‘?”“a"""
- Copyright information
Feed ID
Feed ID

Feed published on

Feed published date

Feed summary

Feed item summary

Feed title
Feed title

10.

11.When you're done, the email subject looks like this example:

When a feed item is published

N

Send an email ®
*To
| <your-email-address@dom |
*Subject
‘ Mew RSS item: Feed title x ‘

12.

13.1If a "For each” loop appears on the designer, then you selected a token for an array, for example, the

categories-Item token. For these kinds of tokens, the designer automatically adds this loop around

the action that references that token. That way, your logic app performs the same action on each
array item. To remove the loop, choose the ellipses (...) on the loop's title bar, then choose Delete.

14.d. In the Body box, enter this text, and select these tokens for the email body. To add blank lines in an

edit box, press Shift + Enter.

When a feed item is published

E Send an email @
*To
*Subject
‘ New RSS item: Feed title x ‘
*Body
Title: Feed title x
Date published: Feed publishe... x
Link: Primary feed l... x

15.

54 Module T Module Create Azure App Service Web Apps

Property Description

Feed Title The item's title

Feed published on The item's publishing date and time
Primary feed link Minute

16. Save your logic app.

When you're done, your logic app looks like this example:

LogicAppjson® & X

When a feed item is published
*The RSS feed URL http://feeds.reuters.com/reuters/topMews

How often do you want to check for items?
* Interva * Frequency
1 Minute v

)

Connected to RS5. Change connection.

E Send an email

Title: Feed title x

*Body Date published: Feed published... %
Link: Primary feed link x

*Subject New RSS item: Feed title %

*To <username@domain >

Show advanced options ™
Connected to <username@domoin=. Change connection.

+ New step

Design Code View

Deploy the Logic App to Azure

Before you can run your logic app, deploy the app from Visual Studio to Azure, which just takes a few

steps.

1. In Solution Explorer, on your project's shortcut menu, select Deploy > New. If prompted, sign in with

your Azure account.

Solution Explorer > o x
@e-lo-sam| s
Search Solution Explorer (Ctrl+;) P~

T Solution 'MyLogicApp' (1 project)

=B References
Clear Recent List Validate &y Deploy-AzureResourceGroup.psl
MyLogicApp-RG &y Build &T LogicApp.json
Rebuild IT LogicApp.parameters.json
Clean

Creating an App Service Logic App 55

3. For this deployment, keep the Azure subscription, resource group, and other default settings. When
you're ready, choose Deploy.

Deploy to Resource Group *

Subscription:

<company-name=
<username @domain=

<Azure-subscription-name > (<username@domain=) v

Resource group:

<Azure-resource-group> (<resource-group-region=) ¥

Deployment template:

logicapp.jsen

Template parameters file:

logicapp.parameters,json b

Artifact storage account:

How do | deploy project artifacts with an Azure deployment template 7

4.

I Deploy I| Cancel

5. If the Edit Parameters box appears, provide the resource name for the logic app to use at deploy-
ment, then save your settings, for example:

Edit Parameters *
Verify parameters which have not been assigned values:
Parameter Name Value
logicAppMame |MyLogicApp| |
logicApplocation [rescurceGroup().location] =
rss_1_Connection_Mame rss-1
rss_1_Cennection_DisplayMame RSS
office365_1_Connection_MName office363

office365_1_Connection_DisplayMame <your-username@domain=

6.

I Save I| Cancel |

7. When deployment starts, your app's deployment status appears in the Visual Studio Output window.
If the status doesn't appear, open the Show output from list, and select your Azure resource group.

Output > @ x
Show output from: - | | | & | *a

13:18:42 - ParametersString : P

13:18:42 - Name Type Value

13:18:42 -

13:18:42 - logichApplame String MyLogiclApp

13:18:42 - logicApplocation String westus

13:18:42 - rss_1_Connection_Name String rss-1

13:18:42 - rss_1_Connection_DisplayName String RSS

13:18:42 - office365_1 Connection_Name String office365

13:18:42 - office365_1 Connection_DisplayMName String

13:18:42 - <your-username@domain>

13:18:42 - Outputs i}

13:18:42 - OutputsString

13:18:43 - Successfully deployed template "logicapp.json’ to resource group "MylogicApp-RG'. v
4 »

56 Module T Module Create Azure App Service Web Apps

9. After deployment finishes, your logic app is live in the Azure portal and checks the RSS feed based on
your specified schedule (every minute). If the RSS feed has new items, your logic app sends an email
for each new item. Otherwise, your logic app waits until the next interval before checking again.

10. For example, here are sample emails that this logic app sends. If you don't get any emails, check your
junk email folder.

Send / Receive Folder View Help Q Tell me what you want to do

ljl % {5z Ignore x D @

E;(j |(_:;>)| EMeeting ’ Deleted ltems E:;ﬂTOManager

N N 7 Clean Up ~ Delete Active | Reoly Reofy. F ; tSim - =1 Team Email +/ Done
ew ew elete Archive Re e orwar
Eel [ems= n.@_lunk © Py AITIY Efg More ~ ¢ Reply & Delete ¥ Create New -
MNew Delete Respond Quick Steps M
<
4 <username@domain> | . Search Current Mailbox
[Calendar
iz All Unread
: Drafts —
4 @ | |FOLL..| FROM SUBJECT

o] Deleted Items 4 Date: Today

4 Inbox 66 b <your name> New RSS item: Wall St. climbs, uncowed by inflation

[Community ¥ <your name> New RSS item: Multiple people injured as shooter attacks Florida high school

4 General Archive ¥ <your name> New RSS item: Zuma quits as President of South Africa

178

12. Technically, when the trigger checks the RSS feed and finds new items, the trigger fires, and the Logic
Apps engine creates an instance of your logic app workflow that runs the actions in the workflow. If
the trigger doesn't find new items, the trigger doesn't fire and “skips” instantiating the workflow.

Congratulations, you've now successfully built and deployed your logic app with Visual Studio!

Clean up resources

When no longer needed, delete the resource group that contains your logic app and related resources.
1. Sign in to the Azure portal® with the same account used to create your logic app.

2. On the main Azure menu, select Resource groups. Select the resource group for your logic app, and
then select Overview.

3. On the Overview page, choose Delete resource group. Enter the resource group name as confirma-
tion, and choose Delete.

nn

4. <img src="../.\Linked_Image_Files\M03L0206delete-resource-group.png" alt=
"Overview" > "Delete resource group”" title="">

Resource groups” >

Custom connectors overview

Without writing any code, you can build workflows and apps with Azure Logic Apps, Microsoft Flow, and
PowerApps. To help you integrate your data and business processes, these services offer 180+ connectors
- for Microsoft services and products, as well as other services, like GitHub, Salesforce, Twitter, and more.

Sometimes though, you might want to call APIs, services, and systems that aren't available as prebuilt
connectors. To support more tailored scenarios, you can build custom connectors with their own triggers
and actions. These connectors are function-based - data is returned based on calling specific functions in

28 https://portal.azure.com/

Creating an App Service Logic App 57

the underlying service. The following diagram shows a custom connector for an API that detects senti-
ment in text.

Text Analytics APl

oY

I

o [csmermeen] | Qo
loe) L7 {4
App or flow Logc app

Create a custom connector in Logic Apps

In Logic Apps, you first create a custom connector (covered in this topic), and then you define the

behavior of the connector using an OpenAPI definition or a Postman collection (covered in subsequent
topics).

1. In the Azure portal, on the main Azure menu, choose** New**. In the search box, enter “logic apps
connector” as your filter, and press Enter.

™ legic apps connector

Dashboard
Azure Marketplace Seeall Most recently created
% Al resources
| Get started | {‘9‘} Logic App
Resource groups Create
Compute

. App Services

MNetworking

2.

3. From the results list, choose Logic Apps Connector > Create.

58 Module T Module Create Azure App Service Web Apps

ops Connector

hing
Everything Y riter
Compute - -
M logic apps connector x
Networking
Results
Storage
NAME PUBLISHER CATEGORY
Web + Mobile
Logic Apps Connecter Microsoft Web + Maobile |
Databases
Legic App Microsoft Web + Maobile
Data + Analytics
Integration Account Microsoft Web + Maobile

Al + Cognitive Services
Internet of Things
Enterprise Integration

Security + Identity

4.

A custom Logic Apps Connector allows you
will be exposed within Azure Logic Apps”, "di
build and deploy custom APIs to be consumg
endpoint, including Azure Web APIs, APl Mat
created, you can open the connector editor §
postman collection), configure how it will dis
changes.

dopoEBEa

Micrasoft
Documentation

PUBLISHER
USEFUL LINKS

5. Provide details for registering your connector as described in the table. When you're done, choose Pin

to dashboard > Create.

pp custom co...
.

* Name

(m I ¢

| SentimentDemo

* Subscription

Pay-As-You-Go

* Resource group @

O Create new ® yse existing

Contoso Integration RG

Location

Brazil South

Pin to dashboard

Automation options

Property

Suggested Value

Description

Name

custom-connector—-name

"SentimentDemo"

Subscription

Azure-subscription-name

Select your Azure subscription.

Resource Group

Azure-resource-group-
name

Create or select an Azure group
for organizing your Azure
resources.

Location

deployment-region

A different location if you don't
want to use the resource group
location

7. After Azure deploys your connector, the custom connector menu opens automatically. If not, choose
your custom connector from the Azure dashboard.

Creating an App Service Logic App 59

Next Steps

Now that you've created a custom connector in Logic Apps, we'll show you how to define the behavior of
the connector using an OpenAPI definition as an example.

Import the OpenAPI definition

To create a custom connector, you must describe the APl you want to connect to so that the connector
understands the API's operations and data structures.

Prerequisites

e An OpenAPI definition?® that describes the example API. When creating a custom connector, the
OpenAPI definition must be less than 1 MB.

o An API key*° for the Cognitive Services Text Analytics API

e One of the following subscriptions:

e Azure®, if you're using Logic Apps
e Microsoft Flow?*?
e PowerApps*

You're now ready to work with the OpenAPI definition you downloaded. All the required information is
contained in the definition, and you can review and update this information as you go through the
custom connector wizard.

1. Go to the Azure portal, and open the Logic Apps connector you created in the previous section.

2. Inyour connector's menu, choose Logic Apps Connector, then choose Edit.

Contoso Resources
< Logic Apps Connector

2

O Search (Ctri+) M Delete | # Edit

Essentials ~
+a Logic Apps Connector

Resource aroun (change)

=| Activity log Contoso Integration RG
Location

Brazil South
Subscription name (changs)
& Tags Pay-As-You-Go

,-_ﬂ Access control (JAM)

Subscription ID

SETTINGS

4. Under General, choose Upload an OpenAPI file, then navigate to the OpenAPI definition that you
created.

29 https://procsi.blob.core.windows.net/docs/SentimentDemo.openapi_definition.json

30 https://docs.microsoft.com/en-us/connectors/custom-connectors/index#get-an-api-key
31 https://azure.microsoft.com/get-started/

32 https://docs.microsoft.com/flow/sign-up-sign-in

33 https://docs.microsoft.com/powerapps/signup-for-powerapps

60 Module 1 Module Create Azure App Service Web Apps

How do you want to create your connector?
I Endpoint: (@) REST

QO sowe
(@) Upload an OpenPl file

O Use an OpendPl URL O Upload Postman collection V1
‘ SentimentDemo.openapi_definition,json

Review general details

From this point, we'll show the Microsoft Flow Ul, but the steps are largely the same across all three
technologies. We'll point out any differences. In this part of the topic, we'll mostly review the Ul and show
you how the values correspond to sections of the OpenAPI file.

1. At the top of the wizard, make sure the name is set to “SentimentDemo”, then choose Create connec-
tor.

2. On the General page, review the information that was imported from the OpenAPI definition, includ-
ing the API host and the base URL for the API. The connector uses the API host and the base URL to
determine how to call the API.

General information

&

Upload connector icon
T Upload Supported file formats are PNG and JPG. (< 1MB)

lcen background color

l A color to show behind the icon (e.g.. '#007ee5’)

Description

Uses the Cognitive Services Text Analytics Sentiment API to determine whether text is
positive or negative

I:l Connect via on-premises data gateway Learn more

Scheme

@ wrres (O we

* Host

westus.api.cognitive.microsoft.com |

Base URL

B |

3%

4. The following section of the OpenAPI definition contains information for this page of the Ul:
"info": {
"version": "1.0.0",
"title": "SentimentDemo",
"description": "Uses the Cognitive Services Text Analytics Sentiment

API to determine whether text is positive or negative"

by

Creating an App Service Logic App 61

"host": "westus.api.cognitive.microsoft.com",
"basePath": "/",
"schemes": [

"https"

Review authentication type

There are several options available for authentication in custom connectors. The Cognitive Services APIs
use API key authentication, so that's what's specified in the OpenAPI definition.

On the Security page, review the authentication information for the API key.

Authentication type

Choose what authentication is implemented by your APl *

APl Key

Users will be required to provide the API Key when creating 2 connection

Parameter label Parameter name Parameter location

The label is displayed when someone first makes a connection with the custom connector; you can
choose Edit and change this value. The parameter name and location must match what the APl expects,
in this case "Ocp-Apim-Subscription-Key” and "Header".

The following section of the OpenAPI definition contains information for this page of the Ul:

"securityDefinitions": {
"api key": {
"type": "apiKey",
"in": "header",
"name": "Ocp-Apim-Subscription-Key"
}
}

Logic App deployment template overview

After a logic app has been created, you might want to create it as an Azure Resource Manager template.
This way, you can easily deploy the logic app to any environment or resource group where you might
need it. For more about Resource Manager templates, see authoring Azure Resource Manager tem-
plates34 and deploying resources by using Azure Resource Manager templates?*.

34 https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
35 https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-deploy

62 Module T Module Create Azure App Service Web Apps

A logic app has three basic components:

e Logic app resource: Contains information about things like pricing plan, location, and the workflow
definition.

e Workflow definition: Describes your logic app's workflow steps and how the Logic Apps engine
should execute the workflow. You can view this definition in your logic app's Code View window. In
the logic app resource, you can find this definition in the definition property.

e Connections: Refers to separate resources that securely store metadata about any connector connec-
tions, such as a connection string and an access token. In the logic app resource, your logic app
references these resources in the parameters section.

You can view all these pieces of existing logic apps by using a tool like Azure Resource Explorer.

To make a template for a logic app to use with resource group deployments, you must define the
resources and parameterize as needed. For example, if you're deploying to a development, test, and
production environment, you likely want to use different connection strings to a SQL database in each
environment. Or, you might want to deploy within different subscriptions or resource groups.

Create a Logic App deployment template

The easiest way to have a valid logic app deployment template is to use the Visual Studio Tools for Logic
Apps. The Visual Studio tools generate a valid deployment template that can be used across any sub-
scription or location.

A few other tools can assist you as you create a logic app deployment template. You can author by hand,
that is, by using the resources already discussed here to create parameters as needed. Another option is
to use a logic app template creator3® PowerShell module. This open-source module first evaluates the
logic app and any connections that it is using, and then generates template resources with the necessary
parameters for deployment. For example, if you have a logic app that receives a message from an Azure
Service Bus queue and adds data to an Azure SQL database, the tool preserves all the orchestration logic
and parameterizes the SQL and Service Bus connection strings so that they can be set at deployment.

Note: Connections must be within the same resource group as the logic app.

Install the logic app template PowerShell module

The easiest way to install the module is via the PowerShell Gallery, by using the command In-
stall-Module -Name LogicAppTemplate

For the module to work with any tenant and subscription access token, we recommend that you use it
with the ARMClient?” command-line tool. This blog post®® discusses ARMClient in more detail.

Generate a logic app template by using PowerShell
After PowerShell is installed, you can generate a template by using the following command:

armclient token $SubscriptionId | Get-LogicAppTemplate -LogicApp MyApp
-ResourceGroup MyRG -SubscriptionId $SubscriptionId -Verbose | Out-File C:\
template.json

36 https://github.com/jeffhollan/LogicAppTemplateCreator
37 https://github.com/projectkudu/ARMClient
38 http://blog.davidebbo.com/2015/01/azure-resource-manager-client.html

Creating an App Service Logic App 63

$SubscriptionId is the Azure subscription ID. This line first gets an access token via ARMClient, then
pipes it through to the PowerShell script, and then creates the template in a JSON file.

Add parameters to a Logic App template

After you create your logic app template, you can continue to add or modify parameters that you might
need. For example, if your definition includes a resource ID to an Azure function or nested workflow that
you plan to deploy in a single deployment, you can add more resources to your template and parameter-
ize IDs as needed. The same applies to any references to custom APIs or Swagger endpoints you expect
to deploy with each resource group.

Add references for dependent resources to Visual Studio
deployment templates

When you want your logic app to reference dependent resources, you can use Azure Resource Manager
template functions® in your logic app deployment template. For example, you might want your logic
app to reference an Azure Function or integration account that you want to deploy alongside your logic
app. Follow these guidelines about how to use parameters in your deployment template so that the Logic
App Designer renders correctly.

You can use logic app parameters in these kinds of triggers and actions:
e Child workflow

e Function app

e APIM call

e API connection runtime URL

e API connection path

And you can use template functions such as parameters, variables, resourceld, concat, etc. For example,
here's how you can replace the Azure Function resource ID:

"parameters": {
"functionName": {
"type":"string",
"minLength":1,
"defaultValue":"<FunctionName>"

by

And where you would use parameters:

"MyFunction": {
"type": "Function",
"inputs": {
"body":{},
"function":{
"id":" [resourceid ('Microsoft.Web/sites/functions', 'function-
App',parameters ('functionName'))]"

}

39 https://docs.microsoft.com/azure/azure-resource-manager/resource-group-template-functions

64 Module T Module Create Azure App Service Web Apps

by

"runAfter":{}

As another example you can parameterize the Service Bus send message operation:

"Send message": {
"type": "ApiConnection",
"inputs": {
"host": {
"connection": {
"name": "@parameters ('S$Sconnections') ['servicebus']
['connectionId']"
}
by
"method": "post",
"path": "[concat ('/Q{encodeURIComponent (''', parameters ('queue-
uname'), ''')}/messages')]",
"body": {
"ContentData": "@{baseb64 (triggerBody()) }"
by
"queries": {

"systemProperties": "None"

b
"runAfter": {}

Note: host.runtimeUrl is optional and can be removed from your template if present.

For the Logic App Designer to work when you use parameters, you must provide default values, for
example:

"parameters": {
"IntegrationAccount": {
"type":"string",
"minLength":1,
"defaultValue":"/subscriptions/<subscriptionID>/resourceGroups/<re-

sourceGroupName>/providers/Microsoft.Logic/integrationAccounts/<integra-
tionAccountName>"

}
by

Adding your Logic App to an existing Resource
Group

If you have an existing Resource Group project, you can add your logic app to that project in the JSON
Outline window. You can also add another logic app alongside the app you previously created.

1. Open the <template>.json file.

Creating an App Service Logic App 65

2. To open the JSON Outline window, go to View > Other Windows > JSON Outline.

3. To add a resource to the template file, click Add Resource at the top of the JSON Outline window. Or
in the JSON Outline window, right-click resources, and select Add New Resource.

JSON Outline
SO

» ¢ param

variab

resour

!', 4] Logi |"ﬂ'ﬁ Add MNew Resource |
(&) Logid

o outputs W Delete

4.
5. In the Add Resource dialog box, find and select Logic App. Name your logic app, and choose Add.

Add Resource *
Search R Logic App

n Creates a new empty Logic App.
=3, CDN Endpoint

=, CDN Profile

1 MName:

Custom Script for Linux Extension

1 Custom Script for Linux VMSS
Extension

1 Custom Script for Windows
Extension

1 Custom Script for Windows VMSS
Extension

Logic App

1 Microsoft Azure Diagnostics
Extension

Add Cancel

Deploy a logic app template

You can deploy your template by using any tools like PowerShell, REST API, Visual Studio Team Services
Release Management, and template deployment through the Azure portal. Also, to store the values for
parameters, we recommend that you create a parameter file. Learn how to deploy resources with Azure
Resource Manager templates and PowerShell or deploy resources with Azure Resource Manager tem-
plates and the Azure portal.

66 Module T Module Create Azure App Service Web Apps

Authorize OAuth connections

After deployment, the logic app works end-to-end with valid parameters. However, you must still author-
ize OAuth connections to generate a valid access token. To authorize OAuth connections, open the logic
app in the Logic Apps Designer, and authorize these connections. Or for automated deployment, you can
use a script to consent to each OAuth connection. There's an example script on GitHub under the
LogicAppConnectionAuth project.

Online Lab - Implementing Azure Logic Apps

67

Online Lab - Implementing Azure Logic Apps
Lab Steps

Online Lab: Implementing Azure Logic Apps

NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario

Adatum Corporation wants to implement custom monitoring of changes to a resource group.

40

Objectives
After completing this lab, you will be able to:
e Create an Azure logic app

e Configure integration of an Azure logic app and an Azure event grid

411

Lab Setup

Estimated Time: 45 minutes
User Name: Student

Password: Pa55w.rd

42

Exercise 1: Set up the lab environment that consists of an
Azure storage account and an Azure logic app

The main tasks for this exercise are as follows:

1. Create an Azure storage account

2. Create an Azure logic app

3. Create an Azure AD service principal

40 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300704_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#objectives

41 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300704_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#lab-setup

42 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300704_Lab_Mod01_

Implementing%20Azure%20Logic%20Apps.md#exercise-1-set-up-the-lab-environment-that-consists-of-an-azure-storage-account-and-

an-azure-logic-app

68 Module T Module Create Azure App Service Web Apps

4.
5

43

Assign the Reader role to the Azure AD service principal

Register the Microsoft.EventGrid resource provider

Task 1: Create a storage account in Azure

1

44

From the lab virtual machine, start Microsoft Edge and browse to the Azure portal at http://portal.
azure.com and sign in by using the Microsoft account that has the Owner role in the target Azure
subscription.

From Azure Portal, create a new storage account with the following settings:
e Subscription: the name of the target Azure subscription
e Resource group: a new resource group named az3000701-LabRG

e Storage account name: any valid, unique name between 3 and 24 characters consisting of lower-
case letters and digits

e Location: the name of the Azure region that is available in your subscription and which is closest to
the lab location

e Performance: Standard

e Account kind: Storage (general purpose v1)
e Replication: Locally-redundant storage (LRS)
e Secure transfer required: Enabled

e \Virtual network: All networks

e Hierarchical namespace: Disabled

Note: Do not wait for the deployment to complete but instead proceed to the next task.

Task 2: Create an Azure logic app

1

2.

43

44

From Azure Portal, create an instance of Logic App with the following settings:

e Name: logicapp3000701

e Subscription: the name of the target Azure subscription

e Resource group: the name of a new resource group az3000702-LabRG

e Location: the same Azure region into which you deployed the storage account in the previous task
e Log Analytics: Off

Wait until the vault is provisioned. This will take about a minute.

https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_

Implementing%20Azure%20Logic%20Apps.md#task-1-create-a-storage-account-in-azure
https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#task-2-create-an-azure-logic-app

Online Lab - Implementing Azure Logic Apps 69

45

Task 3: Create an Azure AD service principal

1.
2.

In the Azure portal, in the Microsoft Edge window, start a PowerShell session within the Cloud Shell.

If you are presented with the You have no storage mounted message, configure storage using the
following settings:

e Subsciption: the name of the target Azure subscription

e Cloud Shell region: the name of the Azure region that is available in your subscription and which is
closest to the lab location

e Resource group: the name of a new resource group az3000700-LabRG
e Storage account: a name of a new storage account
e File share: a name of a new file share

From the Cloud Shell pane, run the following to create a new Azure AD application that you will
associate with the service principal you create in the subsequent steps of this task:

Spassword = 'Pa55w.rd1234"

$SsecurePassword = ConvertTo-SecureString -Force -AsPlainText -String S$Spass-—
word

SaadApp30007 = New-AzADApplication -DisplayName 'aadApp30007' -HomePage
'http://aadApp30007' -IdentifierUris 'http://aadApp30007' -Password $secure-—
Password

From the Cloud Shell pane, run the following to create a new Azure AD service principal associated
with the application you created in the previous step:

New-AzADServicePrincipal -ApplicationId $aadApp30007.ApplicationId.Guid

In the output of the New-AzureRmADServicePrincipal command, note the value of the Applica-
tionld property. You will need this in the next exercise of this lab.

From the Cloud Shell pane, run the following to identify the value of the Id property of the current Az-
ure subscription and the value of the Tenantld property of the Azure AD tenant associated with that
subscription (you will also need them in the next exercise of this lab):

Get-AzSubscription

Close the Cloud Shell pane.

45 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300704_Lab_Mod01_

Implementing%20Azure%20Logic%20Apps.md#task-3-create-an-azure-ad-service-principal

70 Module 1 Module Create Azure App Service Web Apps

46

Task 4: Assign the Reader role to the Azure AD service prin-
cipal

1. In the Azure portal, navigate to the blade displaying properties of your Azure subscription.

2. On the Azure subscription blade, click Access control (IAM).

3. Assign the Reader role within the scope of the Azure subscription to the aadApp30007 service princi-
pal.

47

Task 5: Register the Microsoft.EventGrid resource provider

1. In the Azure portal, in the Microsoft Edge window, reopen the PowerShell session within the Cloud
Shell.

2. From the Cloud Shell pane, run the following to register the Microsoft.EventGrid resource provider:

Register-AzResourceProvider -ProviderNamespace Microsoft.EventGrid

3. Close the Cloud Shell pane.

Result: After you completed this exercise, you have created a storage account, a logic app that you will
configure in the next exercise of this lab, and an Azure AD service principal that you will reference during
that configuration.

48

Exercise 2: Configure Azure logic app to monitor changes
to a resource group.
The main tasks for this exercise are as follows:
1. Add a trigger to the Azure logic app
. Add an action to the Azure logic app

2
3. Identify the callback URL of the Azure logic app
4. Configure an event subscription

5

. Test the logic app

46 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#task-4-assign-the-reader-role-to-the-azure-ad-service-principal

47 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#task-5-register-the-microsofteventgrid-resource-provider

48 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#exercise-2-configure-azure-logic-app-to-monitor-changes-to-a-resource-group

Online Lab - Implementing Azure Logic Apps

71

49

Task 1: Add a trigger to the Azure logic app

1.

50

In the the Azure portal, navigate to the Logic App Designer blade of the newly provisioned Azure
logic app.

Click Blank Logic App. This will create a blank designer workspace and display a list of connectors
and triggers to add to the workspace.

Search for Event Grid triggers and, in the list of results, click the When a resource event occurs
(preview) Azure Event Grid trigger to add it to the designer workspace.

In the Azure Event Grid tile, click the Connect with Service Principal link, specify the following
values, and click Create:

e Connection Name: egc30007

e Client ID: the Applicationld property you identified in the previous exercise

e Client Secret: Pa55w.rd1234

e Tenant: the Tenantld property you identified in the previous exercise

In the When a resource event occurs tile, specify the following values:

e Subscription: the subscription Id property you identified in the previous exercise
e Resource Type: Microsoft.Resources.resourceGroups

e Resource Name: /subscriptions/subscriptionid/resourceGroups/az3000701-LabRG, where
subscriptionld is the subscription Id property you identified in the previous exercise

e Event Type Item - 1: Microsoft.Resources.ResourceWriteSuccess

e Event Type Item - 2: Microsoft.Resources.ResourceDeleteSuccess

Click add parameter and select Subscription Name (Then left-mouse click in the blank area next to

the add new item button)

In the Subscription Name text box, type event-subscription-az3000701 and click Save.

Task 2: Add an action to the Azure logic app

1.

vk W

49 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300704_Lab_Mod01_

50 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_

In the the Azure portal, on the Logic App Designer blade of the newly provisioned Azure logic app,
click + New step.

In the Choose an action pane, in the Search connectors and actions text box, type Outlook.
In the list of results, click Outlook.com.
In the list of actions for Outlook.com, click Outlook.com - Send an email.

In the Outlook.com pane, click Sign in.

Implementing%20Azure%20Logic%20Apps.md#task-1-add-a-trigger-to-the-azure-logic-app

Implementing%20Azure%20Logic%20Apps.md#task-2-add-an-action-to-the-azure-logic-app

72 Module 1 Module Create Azure App Service Web Apps

6. When prompted, authenticate by using the Microsoft Account you are using in this lab.

7. When prompted for the consent to grant Azure Logic App permissions to access Outlook resources,
click Yes.

8. In the Send an email pane, specify the following settings and click Save:
e To: the name of your Microsoft Account

e Subject: type Resource updated: and, in the Dynamic Content column to the right of the Send
an email pane, click Subject.

e Body: in the Dynamic Content column to the right of the Send an email pane, click See more.
Next, type Resource group:, in the Dynamic Content column to the right of the Send an email
pane, click Topic, type Event type:, in the Dynamic Content column to the right of the Send an
email pane, click Event Type, type Event ID:, in the Dynamic Content column to the right of the
Send an email pane, click Event ID, type Event Time:, and in the Dynamic Content column to
the right of the Send an email pane, click Event Time.

51

Task 3: Identify the callback URL of the Azure logic app

1. In the Azure portal, navigate to the logicapp3000701 blade and, in the Summary section, click See
trigger history.

2. On the When_a_resource_event_occurs blade, copy the value of the Callback url [POST] text box.

52

Task 4: Configure an event subscription

1. In the Azure portal, navigate to the az3000701-LabRG resource group and, in the vertical menu, click
Events.

2. On the az3000701-LabRG - Events blade, click Web Hook.

3. On the Create Event Subscription blade, clear the Subscribe to all event types checkbox and, in the
Defined Event Types drop down list, ensure that only the checkboxes next to the Resource Write
Success and Resource Delete Success are selected.

4. In the Endpoint Type drop down list, ensure that Web Hook is selected and click the Select an
endpoint link.

5. On the Select Web Hook blade, in the Subscriber Endpoint, paste the value of the Callback url
[POST] of the Azure logic app you copied in the previous task and click Confirm Selection.

6. In the Name text box within the EVENT SUBSCRIPTION DETAILS section, type event-subscrip-
tion-az3000701.

7. Click Create.

51 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#task-3-identify-the-callback-url-of-the-azure-logic-app

52 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_
Implementing%20Azure%20Logic%20Apps.md#task-4-configure-an-event-subscription

Online Lab - Implementing Azure Logic Apps 73

53

Task 5: Test the logic app

1.

vk W

In the Azure portal, navigate to the az3000701-LabRG resource group and, in the vertical menu, click
Overview.

In the list of resources, click the Azure storage account you created in the first exercise.
On the storage account blade, in the vertical menu, click Configuration.
On the configuration blade, set the Secure transfer required setting to Disabled

Navigate to the logicapp3000701 blade, click Refresh, and note that the Runs history includes the
entry corresponding to configuration change of the Azure storage account.

Navigate to the inbox of the email account you configured in this exercise and verify that includes an
email generated by the logic app.

Result: After you completed this exercise, you have configured an Azure logic app to monitor changes to
a resource group.

53 https://github.com/MicrosoftLearning/AZ-300-MicrosoftAzureArchitectTechnologies/blob/master/Instructions/AZ-300T04_Lab_Mod01_

Implementing%20Azure%20Logic%20Apps.md#task-5-test-the-logic-app

74 Module 1 Module Create Azure App Service Web Apps

Review Questions

Module 1 Review Questions

App Service Environments

You have web applications that periodically require additional resources. At other times, the applications
are idle. You plan to deploy the web applications to an Azure App Service Environment (ASE).

How many App Service plans and instances can you run in your subscription? What benefits can you
realize by using Azure ASE?

Suggested Answer |

An App Service environment (ASE) is dedicated exclusively to a single subscription and can host 100 App
Service Plan instances. The range can span 100 instances in a single App Service plan to 100 single-in-
stance App Service plans, and everything in between.

ASEs are appropriate for application workloads that require:

* Very high scale
« Isolation and secure network access
« High memory utilization

Azure Cloud Shell

You have web applications that periodically require additional resources. At other times, the applications
are idle. You plan to deploy the web applications to an Azure App Service Environment (ASE).

You need to manage the ASE from the command line. What tool should you use?

Suggested Answer |

Azure Cloud Shell is an interactive, browser-accessible shell for managing Azure resources. It provides the
flexibility of choosing the shell experience that best suits the way you work. Linux users can opt for a Bash
experience, while Windows users can opt for PowerShell.

Cloud Shell enables access to a browser-based command-line experience built with Azure management
tasks in mind.

App Service Environments

You develop a web application that queries a database on a daily schedule and produces a report. You
decide that a WebJob will produce the desired result.

What type of WebJob is required? Can you remotely debug the WebJob?

Review Questions

Suggested Answer |

There are two types of WebJobs, continuous and triggered. Continuous WebJobs start as soon as you
create the WebJob and runs on all instances that the web application runs on. Continuous WebJobs
support remote debugging.

In contrast, you must manually start triggered WebJobs or run them on a schedule. Triggered WebJobs
run on a single instance (selected by Azure) and do not support remote debugging.

=
N
-]
C
2
m
O
<
<
Vs
-]
3
O
m
<
-]
=
2
m
U
7
O
E
E
-]
m
O

Module 2 Module Creating Apps and Services
Running on Service Fabric

Understanding Azure Service Fabric

Azure Service Fabric overview

Azure Service Fabric is a distributed systems platform that makes it easy to package, deploy, and manage
scalable and reliable microservices and containers. Service Fabric also addresses the significant challenges
in developing and managing cloud native applications. Developers and administrators can avoid complex
infrastructure problems and focus on implementing mission-critical, demanding workloads that are
scalable, reliable, and manageable. Service Fabric represents the next-generation platform for building
and managing these enterprise-class, tier-1, cloud-scale applications running in containers.

Applications composed of microservices

Service Fabric enables you to build and manage scalable and reliable applications composed of microser-
vices that run at high density on a shared pool of machines, which is referred to as a cluster. It provides a
sophisticated, lightweight runtime to build distributed, scalable, stateless, and stateful microservices
running in containers. It also provides comprehensive application management capabilities to provision,
deploy, monitor, upgrade/patch, and delete deployed applications including containerized services.

Service Fabric powers many Microsoft services today, including Azure SQL Database, Azure Cosmos DB,
Cortana, Microsoft Power Bl, Microsoft Intune, Azure Event Hubs, Azure loT Hub, Dynamics 365, Skype for
Business, and many core Azure services.

Service Fabric is tailored to create cloud native services that can start small, as needed, and grow to
massive scale with hundreds or thousands of machines.

Today's Internet-scale services are built of microservices. Examples of microservices include protocol
gateways, user profiles, shopping carts, inventory processing, queues, and caches. Service Fabric is a
microservices platform that gives every microservice (or container) a unique name that can be either
stateless or stateful.

Service Fabric provides comprehensive runtime and lifecycle management capabilities to applications that
are composed of these microservices. It hosts microservices inside containers that are deployed and

78 Module 2 Module Creating Apps and Services Running on Service Fabric

activated across the Service Fabric cluster. A move from virtual machines to containers makes possible an
order-of-magnitude increase in density. Similarly, another order of magnitude in density becomes
possible when you move from containers to microservices in these containers. For example, a single
cluster for Azure SQL Database comprises hundreds of machines running tens of thousands of containers
that host a total of hundreds of thousands of databases. Each database is a Service Fabric stateful
microservice.

Container deployment and orchestration

Service Fabric is Microsoft's container orchestrator deploying microservices across a cluster of machines.
Microservices can be developed in many ways from using the Service Fabric programming models, ASP.

NET Core, to deploying any code of your choice. Importantly, you can mix both services in processes and
services in containers in the same application. If you just want to deploy and manage containers, Service
Fabric is a perfect choice as a container orchestrator.

Stateless and stateful microservices for Service Fabric

Service Fabric enables you to build applications that consist of microservices or containers. Stateless
microservices (such as protocol gateways and web proxies) do not maintain a mutable state outside a
request and its response from the service. Azure Cloud Services worker roles are an example of a stateless
service. Stateful microservices (such as user accounts, databases, devices, shopping carts, and queues)
maintain a mutable, authoritative state beyond the request and its response. Today's Internet-scale
applications consist of a combination of stateless and stateful microservices.

A key differentiation with Service Fabric is its strong focus on building stateful services, either with the
built-in programming models or with containerized stateful services.

Service Fabric app scenarios

Azure Service Fabric offers a reliable and flexible platform that enables you to write and run many types
of business applications and services. These applications and microservices can be stateless or stateful,
and they are resource-balanced across virtual machines to maximize efficiency. The unique architecture
of Service Fabric enables you to perform near real-time data analysis, in-memory computation, parallel
transactions, and event processing in your applications. You can easily scale your applications up or down
(really in or out), depending on your changing resource requirements.

Design applications composed of stateless and stateful
microservices

Building applications with Azure Cloud Service worker roles is an example of a stateless service. In
contrast, stateful microservices maintain their authoritative state beyond the request and its response.
This provides high availability and consistency of the state through simple APIs that provide transactional
guarantees backed by replication. Service Fabric's stateful services democratize high availability, bringing
it to all types of applications, not just databases and other data stores. This is a natural progression.
Applications have already moved from using purely relational databases for high availability to NoSQL
databases. Now the applications themselves can have their "hot” state and data managed within them for
additional performance gains without sacrificing reliability, consistency, or availability.

When building applications consisting of microservices, you typically have a combination of stateless web
apps (ASP.NET, Nodejs, etc.) calling onto stateless and stateful business middle-tier services, all deployed
into the same Service Fabric cluster using the Service Fabric deployment commands. Each of these

Understanding Azure Service Fabric 79

services is independent with regard to scale, reliability, and resource usage, greatly improving agility in
development and lifecycle management.

Stateful microservices simplify application designs because they remove the need for the additional
queues and caches that have traditionally been required to address the availability and latency require-
ments of purely stateless applications. Since stateful services are naturally highly available and low
latency, this means that there are fewer moving parts to manage in your application as a whole. The
diagrams below illustrate the differences between designing an application that is stateless and one that
is stateful. By taking advantage of the Reliable Services and Reliable Actors programming models, stateful
services reduce application complexity while achieving high throughput and low latency.

Load Balancer

= Scale with partitioned /
storage Front End
(Stateless @ @
Web)
caches Stateless
Middle-tier
: @ t
+ Write your own lock S
managers for state
consistency -
- Many moving parts each

managed differently
Queuet Storage i

An application built using stateless services

P

+ Increase reliability with
queues

» Reduce read latency with

An application built using stateful services

80 Module 2 Module Creating Apps and Services Running on Service Fabric

Load Balancer

+ Application state lives in /‘

the compute tier FrontEnd - - -
(Stateless @ @ @
Web)
» Low Latency reads and \ \ \

writes
data stores used for analytics and disaster recovery

- Partitions are first class for
scale-out Stateful
Middle-tier

Compute

» Builtinlock managers
based on primary election

- Fewer moving parts

Reliable Services concepts

An Azure Service Fabric application contains one or more services that run your code. This section of the
course shows you how to create both stateless and stateful Service Fabric applications with Reliable
Services.

Basic concepts
To get started with Reliable Services, you only need to understand a few basic concepts:

e Service type: This is your service implementation. It is defined by the class you write that extends
StatelessService and any other code or dependencies used therein, along with a name and a version
number.

e Named service instance: To run your service, you create named instances of your service type, much
like you create object instances of a class type. A service instance has a name in the form of a URI
using the "fabric:;/" scheme, such as "fabric;/MyApp/MyService".

e Service host: The named service instances you create need to run inside a host process. The service
host is just a process where instances of your service can run.

e Service registration: Registration brings everything together. The service type must be registered
with the Service Fabric runtime in a service host to allow Service Fabric to create instances of it to run.

Preparing your development environments on Windows

To build and run Azure Service Fabric applications on your Windows development machine, install the
Service Fabric runtime, SDK, and tools. You also need to enable execution of the Windows PowerShell
scripts included in the SDK.

Understanding Azure Service Fabric 81

Prerequisites

The following operating system versions are supported for development:
e Windows 7

e Windows 8/Windows 8.1

e Windows Server 2012 R2

e Windows Server 2016

e Windows 10

Windows 7 support:

e Windows 7 only includes Windows PowerShell 2.0 by default. Service Fabric PowerShell cmdlets
requires PowerShell 3.0 or higher. You can download Windows PowerShell 5.0" from the Microsoft
Download Center.

e Service Fabric Reverse Proxy is not available on Windows 7.

Install the SDK and tools

The Service Fabric Tools are part of the Azure Development workload in Visual Studio 2017. Enable this
workload as part of your Visual Studio installation. In addition, you need to install the Microsoft Azure
Service Fabric SDK and runtime using Web Platform Installer.

e Install the Microsoft Azure Service Fabric SDK?

For Visual Studio 2015, the Service Fabric tools are installed together with the SDK and runtime using the
Web Platform Installer:

o Install the Microsoft Azure Service Fabric SDK and Tools?
If you only need the SDK, you can install this package:

e Install the Microsoft Azure Service Fabric SDK*

Enable PowerShell script execution

Service Fabric uses Windows PowerShell scripts for creating a local development cluster and for deploy-
ing applications from Visual Studio. By default, Windows blocks these scripts from running. To enable
them, you must modify your PowerShell execution policy. Open PowerShell as an administrator and enter
the following command:

Set-ExecutionPolicy -ExecutionPolicy Unrestricted -Force -Scope CurrentUser

https://www.microsoft.com/en-us/download/details.aspx?id=50395
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-VS2015
http://www.microsoft.com/web/handlers/webpi.ashx?command=getinstallerredirect&appid=MicrosoftAzure-ServiceFabric-CoreSDK

B WN=

82 Module 2 Module Creating Apps and Services Running on Service Fabric

Creating a reliable service

Creating a stateless service in Visual Studio

A stateless service is a type of service that is currently the norm in cloud applications. It is considered
stateless because the service itself does not contain data that needs to be stored reliably or made highly
available. If an instance of a stateless service shuts down, all of its internal state is lost. In this type of
service, state must be persisted to an external store, such as Azure Tables or a SQL database, for it to be

made highly available and reliable.

Launch Visual Studio 2015 or Visual Studio 2017 as an administrator, and create a new Service Fabric

application project named HelloWorld:

I Azure Data Lake
b Stream Analytics
b Other Project Types

Mew Project
P Recent Sort by: | Default -] i
4 |nstalled
@ ASP.MET Core Web Application
4 Visual C# 2
Windows Classic Desktop < > Azure Functions
P Web
MET Core @ Service Fabric Application
.MET Standard
Cloud @E ASP.MET Web Application (MET Framewaork)
Test
b Visual Basic @ﬁ Azure Weblob (MET Framework)
I Visual F#
SQOL Server O Azure Cloud Service
O

Azure Resource Group

I Online

Mot finding what you are looking for?

Open Visual Studic Installer

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

Visual C#

MNarne: HelloWorld
Location: |c:\users\user\documents\\risual studic 2017\Projects '|
Solution name: HelloWorld

Framework: MET Framework 4.6.1 =

7 X

Search (Ctrl+E) o~

Type: Visual C#

A project template for creating an always-
on, scalable, distributed application with
Microsoft Azure Service Fabric,

Browse...

Create directory for solution
D Add to Source Control

Cancel

Then create a stateless service project using .Net Core 2.0 named HelloWorldStateless:

Creating a reliable service 83

Mew Service Fabric Service

Select a Template:

-Net Core 2.0

© RefERe IR,

coiood Stateful Actor Service Stateless
Service Service ASP.MET
Core

Hosted Containers and Applications

T @

Guest Container
Executable

.Net Framework

T 0 ¢

Stateless Stateful Actor Service Stateless
Service Service ASP.MET
Core

Service Mame: | HelloWerldStateless

Subfolder:

184

Stateful
ASPMET
Core

@

Stateful
ASPMET
Core

A project template for creating a stateless reliable
service with MNET Core. Use a stateless service if your
service has no persistent state or if you intend to
manage state in an external store, such as Azure
DocumentDB or a SOL database. Reliable services
support a variety of communication stacks such as Web
APl and Windows Communication Foundation (WCF).

Leamn More

Getting Started Sample

Additional Samples

0K Cancel

Your solution now contains two projects:

e HelloWorld. This is the application project that contains your services. It also contains the application
manifest that describes the application, as well as a number of PowerShell scripts that help you to

deploy your application.

e HelloWorldStateless. This is the service project. It contains the stateless service implementation.

Implement the service

Open the HelloWorldStateless.cs file in the service project. In Service Fabric, a service can run any
business logic. The service API provides two entry points for your code:

e An open-ended entry point method, called RunAsync, where you can begin executing any workloads,
including long-running compute workloads.

protected override async Task RunAsync (CancellationToken cancellationToken)

{

e A communication entry point where you can plug in your communication stack of choice, such as ASP.
NET Core. This is where you can start receiving requests from users and other services.

protected override IEnumerable<ServiceInstancelistener> CreateServiceln-

stancelListeners ()

{

84 Module 2 Module Creating Apps and Services Running on Service Fabric

We will be focusing on the RunAsync () entry point method. This is where you can immediately start
running your code. The project template includes a sample implementation of RunAsync () that incre-
ments a rolling count.

Note: For details about how to work with a communication stack, see Service Fabric Web API services
with OWIN self-hosting®

RunAsync

protected override async Task RunAsync (CancellationToken cancellationToken)
{
// TODO: Replace the following sample code with your own logic

// or remove this RunAsync override if it's not needed in your
service.
long iterations = 0;

while (true)
{

cancellationToken.ThrowIfCancellationRequested() ;

ServiceEventSource.Current.ServiceMessage (this.Context, "Work-
ing-{0}", ++iterations);

await Task.Delay (TimeSpan.FromSeconds (1), cancellationToken);

The platform calls this method when an instance of a service is placed and ready to execute. For a
stateless service, that simply means when the service instance is opened. A cancellation token is provided
to coordinate when your service instance needs to be closed. In Service Fabric, this open/close cycle of a
service instance can occur many times over the lifetime of the service as a whole. This can happen for
various reasons, including:

e The system moves your service instances for resource balancing.

e Faults occur in your code.

e The application or system is upgraded.

e The underlying hardware experiences an outage.

This orchestration is managed by the system to keep your service highly available and properly balanced.

RunAsync () should not block synchronously. Your implementation of RunAsync should return a Task or
await on any long-running or blocking operations to allow the runtime to continue. Note in the

while (true) loop in the previous example, a Task-returning await Task.Delay () is used. If your
workload must block synchronously, you should schedule a new Task with Task.Run () in your RunA-
sync implementation.

Cancellation of your workload is a cooperative effort orchestrated by the provided cancellation token.
The system will wait for your task to end (by successful completion, cancellation, or fault) before it moves

5 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication-webapi

Creating a reliable service 85

on. It is important to honor the cancellation token, finish any work, and exit RunAsync () as quickly as
possible when the system requests cancellation.

In this stateless service example, the count is stored in a local variable. But because this is a stateless
service, the value that's stored exists only for the current lifecycle of its service instance. When the service
moves or restarts, the value is lost.

Creating a stateful service in Visual Studio

Service Fabric introduces a new kind of service that is stateful. A stateful service can maintain state
reliably within the service itself, co-located with the code that's using it. State is made highly available by
Service Fabric without the need to persist state to an external store.

To convert a counter value from stateless to highly available and persistent, even when the service moves
or restarts, you need a stateful service.

In the same HelloWorld application, you can add a new service by right-clicking on the Services referenc-
es in the application project and selecting Add -> New Service Fabric Service.

Ml Solution Explorer

: @ o-cam £

A | Search Solution Explorer (Ctrl+
fa] Solution 'HelloWorld' (2 projects)

4 5% HelloWorld

(1 |
New Service Fabric Service... Add '
Existing Service Fabric Service in Solution... Scope to This

4 g New Solution Explorer View
b Scripts
4 HelloWorldStateless
b Properties
p =B References
b PackageRoot
¢ App.config
b c# HelloWorldStateless.cs
¢) packages.config
b € Program.cs

b c©* ServiceEventSource.cs

Select .Net Core 2.0 -> Stateful Service and name it HelloWorldStateful. Click OK.

86 Module 2 Module Creating Apps and Services Running on Service Fabric

Mew Service Fabric Service X

Select a Template:

| & project template for creating a stateful reliable service
with MET Core. Use a stateful senvice when you want to

manage your persistent state within the service using
Q 0 Q Q reliable collections fi k. State can be partitioned

for scale and is replicated across the cluster for
Stateless | el Actor Service Stateless Stateful

-Net Core 2.0

reliability. Reliable services support a variety of

Service Service ASB.NET ASP.NET communication stacks such as Web APl and Windows
Care Core Communication Feundation (WCF).
Hosted Containers and Applications Leam More

T @

Guest Container
Executable

.Net Framework

T T ¢ Q

Stateless Stateful Actor Service Stateless Stateful
Service Service ASP.MET ASPJMET
Core Core

Getting Started Sample

| Addrtional Samples

Service Mame: | HelleWeorldStateful

Subfolder:

0K Cancel

Your application should now have two services: the stateless service HelloWorldStateless and the stateful
service HelloWorldStateful.

A stateful service has the same entry points as a stateless service. The main difference is the availability of
a state provider that can store state reliably. Service Fabric comes with a state provider implementation
called Reliable Collections, which lets you create replicated data structures through the Reliable State
Manager. A stateful Reliable Service uses this state provider by default.

Open HelloWorldStateful.cs in HelloWorldStateful, which contains the following RunAsync method:

protected override async Task RunAsync (CancellationToken cancellationToken)
{

// TODO: Replace the following sample code with your own logic

// or remove this RunAsync override if it's not needed in your
service.

var myDictionary = await this.StateManager.GetOrAddAsync<IReliableDic-
tionary<string, long>>("myDictionary"):;

while (true)
{

cancellationToken.ThrowIfCancellationRequested() ;

using (var tx = this.StateManager.CreateTransaction())
{
var result = await myDictionary.TryGetValueAsync (tx, "Coun-
ter");

ServiceEventSource.Current.ServiceMessage (this.Context, "Cur-
rent Counter Value: {0}",
result.HasValue ? result.Value.ToString() : "Value does not
exist.");

Creating a reliable service 87

await myDictionary.AddOrUpdateAsync (tx, "Counter", 0, (key,
value) => ++value);

// If an exception is thrown before calling CommitAsync, the
transaction aborts, all

// changes are discarded, and nothing is saved to the secondary
replicas.

await tx.CommitAsync () ;

await Task.Delay(TimeSpan.FromSeconds(l), cancellationToken) ;

RunAsync

RunAsync () operates similarly in stateful and stateless services. However, in a stateful service, the
platform performs additional work on your behalf before it executes RunAsync (). This work can include
ensuring that the Reliable State Manager and Reliable Collections are ready to use.

Reliable Collections and the Reliable State Manager

var myDictionary = await this.StateManager.GetOrAddAsync<IReliableDiction-
ary<string, long>>("myDictionary");

IReliableDictionary is a dictionary implementation that you can use to reliably store state in the service.
With Service Fabric and Reliable Collections, you can store data directly in your service without the need
for an external persistent store. Reliable Collections make your data highly available. Service Fabric
accomplishes this by creating and managing multiple replicas of your service for you. It also provides an
API that abstracts away the complexities of managing those replicas and their state transitions.

Reliable Collections can store any .NET type, including your custom types, with a couple of caveats:

e Service Fabric makes your state highly available by replicating state across nodes, and Reliable
Collections store your data to local disk on each replica. This means that everything that is stored in
Reliable Collections must be serializable. By default, Reliable Collections use DataContract for serializa-
tion, so it's important to make sure that your types are supported by the Data Contract Serializer
when you use the default serializer.

e Objects are replicated for high availability when you commit transactions on Reliable Collections.
Objects stored in Reliable Collections are kept in local memory in your service. This means that you
have a local reference to the object.

e |tis important that you do not mutate local instances of those objects without performing an update
operation on the reliable collection in a transaction. This is because changes to local instances of
objects will not be replicated automatically. You must re-insert the object back into the dictionary or
use one of the update methods on the dictionary.

The Reliable State Manager manages Reliable Collections for you. You can simply ask the Reliable State
Manager for a reliable collection by name at any time and at any place in your service. The Reliable State
Manager ensures that you get a reference back. We don't recommended that you save references to
reliable collection instances in class member variables or properties. Special care must be taken to ensure

88 Module 2 Module Creating Apps and Services Running on Service Fabric

that the reference is set to an instance at all times in the service lifecycle. The Reliable State Manager
handles this work for you, and it's optimized for repeat visits.

Transactional and asynchronous operations

using (ITransaction tx = this.StateManager.CreateTransaction())

{

var result = await myDictionary.TryGetValueAsync (tx, "Counter-1");
await myDictionary.AddOrUpdateAsync (tx, "Counter-1", 0, (k, v) => ++v);

await tx.CommitAsync () ;

Reliable Collections have many of the same operations that their System.Collections.Generic and
System.Collections.Concurrent counterparts do, except LINQ. Operations on Reliable Collections
are asynchronous. This is because write operations with Reliable Collections perform 1/O operations to
replicate and persist data to disk.

Reliable Collection operations are transactional, so that you can keep state consistent across multiple
Reliable Collections and operations. For example, you may dequeue a work item from a Reliable Queue,
perform an operation on it, and save the result in a Reliable Dictionary, all within a single transaction. This
is treated as an atomic operation, and it guarantees that either the entire operation will succeed or the
entire operation will roll back. If an error occurs after you dequeue the item but before you save the
result, the entire transaction is rolled back and the item remains in the queue for processing.

Run the application

We now return to the HelloWorld application. You can now build and deploy your services. When you
press F5, your application will be built and deployed to your local cluster.

After the services start running, you can view the generated Event Tracing for Windows (ETW) events in a
Diagnostic Events window. Note that the events displayed are from both the stateless service and the
stateful service in the application. You can pause the stream by clicking the Pause button. You can then
examine the details of a message by expanding that message.

Note: Before you run the application, make sure that you have a local development cluster running.

Creating a reliable service

21:56:49.378 ServiceMessage
21:56:49.351 A

ync has been invoked for a stateless service instance. Application Type Name: HelloWorldType, Application Name: fabric:/HelloWerld, Service Type Name: HelloWorld

21:56:48.563 ServiceTypeRegistered
21:56:48.090 ServiceTypeRegistered
21:56:44.865 CM
21:56:44.706 FM
21:56:44.644 FM

s e [
Listening...

Timestamp Event Name Message

b 21:57:06.800 ServiceMessage Working-17

b 21:57.05734 ServiceMessage Working-16

b 21:57.05380 ServiceTypeRegistered Service host process 4984 regi fice type b

b 21:57:05368 ServiceTypeRegistered Service host process 5636 reg jice type b

P 21:57.04.769 ServiceMessage Working-13

P 21:57.03.758 ServiceMessage Working-14

b 2155702534 ServiceMessage Working-13

b 215701519 ServiceMessage Working-12

b 21:57:00.503 ServiceMessage Working-11

b 21:56:50488 ServiceMessage Working-10

b 21:56:58.486 ServiceMessage Working-9

P 21:56:57.484 ServiceMessage Working-8

D 21:56:56.468 ServiceMessage Working-7

P 21:56:55.452 ServiceMessage Working-6

P 21:56:54437 ServiceMessage Working-5

b 21:56:53.421 ServiceMessage Working-4

b 21:56:52.419 ServiceMessage Working-3

b 21:56:51.405 ServiceMessage Working-2

b 21:56:50387 ServiceMessage Working-1

3 Working-0

4

4

3

4

4

3

Shawing 26 of 26 events

Senvice host process 3004 regis type
Senvice host process 5416 regis ice type b
Application created: on fabrici/t Created: ApplicationType = } i ion = 1.00.0.

Service Created: Service fabric:/HelloWorld/HelloWorldStateless partition 0d53bbe5-f098-4b49-b24f-6b4d86fcfc3a of ServiceType reated in A
Service Created: Service fabric:/HelloWorld/HelloWorldStateful partition b8h172f0-bd95-43ca-37c8-e71d40f33b56 of ServiceType HelloWorldStatefulType created in Application fab

diligaiHOdd 3SN LN3dNLS 'ATNO iSNn 1DOIN

90 Module 2 Module Creating Apps and Services Running on Service Fabric

Creating a Reliable Actors app

Introduction to Service Fabric Reliable Actors

Reliable Actors is a Service Fabric application framework based on the Virtual Actor® pattern. The
Reliable Actors API provides a single-threaded programming model built on the scalability and reliability
guarantees provided by Service Fabric.

What are Actors?

An actor is an isolated, independent unit of compute and state with single-threaded execution. The actor
pattern is a computational model for concurrent or distributed systems in which a large number of these
actors can execute simultaneously and independently of each other. Actors can communicate with each
other and they can create more actors.

When to use Reliable Actors

Service Fabric Reliable Actors is an implementation of the actor design pattern. As with any software
design pattern, the decision whether to use a specific pattern is made based on whether or not a soft-
ware design problem fits the pattern.

Although the actor design pattern can be a good fit to a number of distributed systems problems and
scenarios, careful consideration of the constraints of the pattern and the framework implementing it must
be made. As general guidance, consider the actor pattern to model your problem or scenario if:

e Your problem space involves a large number (thousands or more) of small, independent, and isolated
units of state and logic.

e You want to work with single-threaded objects that do not require significant interaction from
external components, including querying state across a set of actors.

e Your actor instances won't block callers with unpredictable delays by issuing 1/O operations.

Actors in Service Fabric

In Service Fabric, actors are implemented in the Reliable Actors framework: An actor-pattern-based
application framework built on top of Service Fabric Reliable Services. Each Reliable Actor service you
write is actually a partitioned, stateful Reliable Service.

Every actor is defined as an instance of an actor type, identical to the way a .NET object is an instance of a
.NET type. For example, there may be an actor type that implements the functionality of a calculator and
there could be many actors of that type that are distributed on various nodes across a cluster. Each such
actor is uniquely identified by an actor ID.

Actor Lifetime

Service Fabric actors are virtual, meaning that their lifetime is not tied to their in-memory representation.
As a result, they do not need to be explicitly created or destroyed. The Reliable Actors runtime automati-
cally activates an actor the first time it receives a request for that actor ID. If an actor is not used for a
period of time, the Reliable Actors runtime garbage-collects the in-memory object. It will also maintain

6 http://research.microsoft.com/en-us/projects/orleans/

Creating a Reliable Actors app 91

k
li
-

nowledge of the actor's existence should it need to be reactivated later. For more details, see Actor
fecycle and garbage collection’.

his virtual actor lifetime abstraction carries some caveats as a result of the virtual actor model, and in

fact the Reliable Actors implementation deviates at times from this model.

An actor is automatically activated (causing an actor object to be constructed) the first time a mes-
sage is sent to its actor ID. After some period of time, the actor object is garbage collected. In the
future, using the actor ID again, causes a new actor object to be constructed. An actor's state outlives
the object's lifetime when stored in the state manager.

Calling any actor method for an actor ID activates that actor. For this reason, actor types have their
constructor called implicitly by the runtime. Therefore, client code cannot pass parameters to the
actor type's constructor, although parameters may be passed to the actor's constructor by the service
itself. The result is that actors may be constructed in a partially-initialized state by the time other
methods are called on it, if the actor requires initialization parameters from the client. There is no
single entry point for the activation of an actor from the client.

Although Reliable Actors implicitly create actor objects; you do have the ability to explicitly delete an
actor and its state.

Creating the project in Visual Studio

Launch Visual Studio 2015 or later as an administrator, and then create a new Service Fabric Application

project:
MNew Project I/ *
b Recent © [INET Framework 46,1 | Sort by: [Default -] & [i=] | search (ctrl+B) p-
4 |nstalled o)
@ ASP.NET Core Web Application Visual C# Type: Visual G2
A project template for creating an always-
Windows Classic Desktop < > Azure Functions Visual C2# on, scalable, dlStrIbLIT.:Ed Epp|.ICEtIDI’1 with
Microsoft Azure Service Fabric.
Web
.MET Core @ Service Fabric Application Visual C#
.NET Standard
@' | ASP.NET Web Application (NET Framework) Visual C#
Test
WCF 5 Azure Weblob (MNET Framework) Visual C&#
I Visual Basic
SOL Server O Azure Cloud Service Visual C2
I Azure Data Lake
I+ Stream Analytics Q Azure Resource Group Visual C#
b Other Draiect Tunes -
Mot finding what you are looking for?
Open Visual Studic Installer
MName: MyApplication
Location: [e\sre ~| Browse...
Solution name: MyApplication Create directory for selution
I:‘ Add to Source Control

In the next dialog box, choose Actor Service under .Net Core 2.0 and enter a name for the service.

7

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-lifecycle

92 Module 2 Module Creating Apps and Services Running on Service Fabric

Mew Service Fabric Service X

Select a Template:

A project template for creating a Reliable Actor service
MNet Core 2.0 with MET Core. Reliable Actors allow you to build

application using the Virtual Actor pattern. Use Reliable
Q Q @ Q Q Actors when you need to create a large number of
independent, single-threaded objects with a small
Stateless Stateful LIGIEENEY Stateless Stateful

! - amount of logic and state.
Service Service ASELNET ASPINET

Core Core Learn More

Hosted Containers and Applications

T @

Guest Container
Executable

.Net Framework

T T ¢ Q

Stateless Stateful Actor Service Stateless Stateful
Service Service ASP.MET ASPJMET
Core Core

Getting Started Sample

Additional Samples

Service Name: | HelloWorld

Subfolder:

0K Cancel

The created project shows the following structure:

Solution Explorer
@dE-lo-s a|p-

Search Solution Explorer (Ctrl+;) P~

&7 Solution 'MyApplication’ (3 projects)
4 HelloWeorld
& Properties
=B References
PackageRoot
c# ActorEventSource.cs
¥ App.config
P o HelloWorld.cs
¢ packages.config
P o Program.cs
4 HelloWorld.Interfaces
b Properties
[P =B References
P o |HelloWorld.cs
¢ packages.config
4 B MyApplication
P =B Services

4
4
4
4

3 ApplicationPackageRoot
ApplicationParameters
PublishProfiles
Scripts

¢ packages.config

Solution Explorer

- v v

Examine the solution
The solution contains three projects:

e The application project (MyApplication). This project packages all of the services together for
deployment. It contains the ApplicationManifest.xml and PowerShell scripts for managing the applica-
tion.

Creating a Reliable Actors app 93

e The interface project (HelloWorld.Interfaces). This project contains the interface definition for the
actor. Actor interfaces can be defined in any project with any name. The interface defines the actor
contract that is shared by the actor implementation and the clients calling the actor. Because client
projects may depend on it, it typically makes sense to define it in an assembly that is separate from
the actor implementation.

e The actor service project (HelloWorld). This project defines the Service Fabric service that is going
to host the actor. It contains the implementation of the actor, HellowWorld.cs. An actor implementa-
tion is a class that derives from the base type Actor and implements the interfaces defined in the
MyActor.Interfaces project. An actor class must also implement a constructor that accepts an Actor-
Service instance and an ActorId and passes them to the base Actor class.

e This project also contains Program.cs, which registers actor classes with the Service Fabric runtime
using ActorRuntime.RegisterActorAsync<T> (). The HelloWorld class is already registered.
Any additional actor implementations added to the project must also be registered in the Main ()
method.

Customzing the actor

The project template defines some methods in the THelloWorld interface and implements them in the
HelloWorld actor implementation. Replace those methods so the actor service returns a simple “Hello
World" string.

In the HelloWorld.Interfaces project, in the IHelloWorld.cs file, replace the interface definition as follows:

public interface IHelloWorld : IActor
{
Task<string> GetHelloWorldAsync () ;

In the HelloWorld project, in HelloWorld.cs, replace the entire class definition as follows:

[StatePersistence (StatePersistence.Persisted)]
internal class HelloWorld : Actor, IHelloWorld
{
public HelloWorld(ActorService actorService, ActorId actorId)
base (actorService, actorId)

public Task<string> GetHelloWorldAsync ()
{

return Task.FromResult ("Hello from my reliable actor!");

Press Ctrl-Shift-B to build the project and make sure everything compiles.

Adding a client

Create a simple console application to call the actor service.

1. Right-click on the solution in Solution Explorer > Add > New Project....

94 Module 2 Module Creating Apps and Services Running on Service Fabric

2. Under the .NET Core project types, choose Console App (.NET Core). Name the project ActorClient.

Add Mew Project

b Recent [.NET Framework 4.6.1 ~| Sort by: | Defauit -

Search (Ctrl+E) P~

Type: Visual C#

4 |nstalled

Console App (.MET Core) Visual C#

4 Visual C#
Windows Classic Desktop
Web
.MET Core
.MET Standard
Cloud
Test
WCF
I+ Visual Basic
SOL Server
I Azure Data Lake
I Stream Analytics
Dependency Validation

A project for creating a command-line

Class Lib NET C Visual C# application that can run on .NET Core on
ass Library (ore) sua Windows, Linux and MacOS.

n
#*

Unit Test Project (NET Core) Visual C&#

n
#*

xlnit Test Project (.NET Core) Visual C&#

=18 2z
L

D

ASP.NET Core Web Application Visual C#

P Online

Mot finding what you are looking for?
Open Visual Studio Installer

MName: ActorClient

Location: |e\sre\MyApplication ~| Browse...

3.

4. Note: A console application is not the type of app you would typically use as a client in Service Fabric,
but it makes a convenient example for debugging and testing using the local Service Fabric cluster.

5. The console application must be a 64-bit application to maintain compatibility with the interface
project and other dependencies. In Solution Explorer, right-click the ActorClient project, and then
click Properties. On the Build tab, set Platform target to x64.

ActorClient™ + X il Ned IHelloWorld.cs Program.cs Service Fabric proj...eps | Microsoft Docs
Application) . - :
Configuration: | Active (Debug) R Platform: | Active (Any CPU) R
Build Events General
Package .. i
Conditional compilation symbols: |NETCOREAPPZ 0
Debu
g Define DEBUG constant

Signin

gning Define TRACE constant
Resources

Platform target: xb4 ~

[] Allow unsafe code
[Optimize code

Frrars and warninns

6.

7. The client project requires the reliable actors NuGet package. Click Tools > NuGet Package Manager
> Package Manager Console. In the Package Manager Console, enter the following command:

Install-Package Microsoft.ServiceFabric.Actors -IncludePrerelease -Project-
Name ActorClient

8. The NuGet package and all its dependencies are installed in the ActorClient project.

Creating a Reliable Actors app 95

9. The client project also requires a reference to the interfaces project. In the ActorClient project,
right-click Dependencies and then click Add reference.... Select Projects > Solution (if not already
selected), and then tick the checkbox next to HelloWorld.Interfaces. Click OK.

Reference Manager - ActorClient

4 Projects Search (Ctrl+E) P~
Solution MName Path Name:
- [] HelloWaorld chsrc\MyApplication\HelloWorld\HelloWorl... HelloWerld
b Shared Projects I HelloWorld.Interfaces chsrc\MyApplication\HelloWorld. Interfaces... I
b Browse MyApplication chsrc\MyApplication\MyApplication\MyAp...
| Browse... ||| oK ||| Cancel |

10.
11.1n the ActorClient project, replace the entire contents of Program.cs with the following code:

using System;

using System.Threading.Tasks;

using Microsoft.ServiceFabric.Actors;

using Microsoft.ServiceFabric.Actors.Client;
using HelloWorld.Interfaces;

namespace ActorClient
{
class Program
{
static void Main(string[] args)
{
IHelloWorld actor = ActorProxy.Create<IHelloWorld> (ActorId.
CreateRandom (), new Uri ("fabric:/MyApplication/HelloWorldActorService")) ;
Task<string> retval = actor.GetHelloWorldAsync();
Console.Write (retval.Result);
Console.ReadLine () ;

Running and debugging

Press F5 to build, deploy, and run the application locally in the Service Fabric development cluster. During
the deployment process, you can see the progress in the Output window.

96 Module2 Module Creating Apps and Services Running on Service Fabric

Output

Show output fram: Service Fabric Tools - €& x| ¥ M
IJEIVILE DLdLUus;

fabric:/MyApplication/HelloWorldActorService is not ready, 1 partitions remaining.

Service Status:
fabric:/MyApplication/HelloWorldActorService is not ready, 1 partitions remaining.

Service Status:
fabric:/MyApplication/HelloWorldActorService is ready.

The application is ready.
Get-ServiceFabricApplicationStatus'.

Time elapsed: 88:88:35.8229598
The application URL is not set or is not an HTTP/HTTPS URL so the browser will not be openec

When the output contains the text, The application is ready, it's possible to test the service using the
ActorClient application. In Solution Explorer, right-click on the ActorClient project, then click Debug >
Start new instance. The command line application should display the output from the actor service.

[N C:\Program Files\dotnet\dotnet.exe

Hello from my reliable actor!

The Service Fabric Actors runtime emits some events and performance counters related to actor
methods?. They are useful in diagnostics and performance monitoring.

8 https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-diagnostics#actor-method-events-and-performance-
counters

Working with Reliable Collections 97

Working with Reliable Collections

Reliable Collections overview

Reliable Collections enable you to write highly available, scalable, and low-latency cloud applications as
though you were writing single computer applications. The classes in the Microsoft.ServiceFabric.Data.
Collections namespace provide a set of collections that automatically make your state highly available.
Developers need to program only to the Reliable Collection APIs and let Reliable Collections manage the
replicated and local state.

The key difference between Reliable Collections and other high-availability technologies (such as Redis,
Azure Table service, and Azure Queue service) is that the state is kept locally in the service instance while
also being made highly available. This means that:

e All reads are local, which results in low latency and high-throughput reads.

e All writes incur the minimum number of network 10s, which results in low latency and high-through-
put writes.

Reliable

i Collections
: Concurrent
Collections Collections * Multi-Node
: ¢ Replicated (HA)
¢ Single Threaded * Multi-Threaded B P tion

e Asynchronous
* Transactional

Reliable Collections can be thought of as the natural evolution of the System.Collections classes: a new
set of collections that are designed for the cloud and multi-computer applications without increasing
complexity for the developer. As such, Reliable Collections are:

e Replicated: State changes are replicated for high availability.

e Persisted: Data is persisted to disk for durability against large-scale outages (for example, a datacenter
power outage).

e Asynchronous: APIs are asynchronous to ensure that threads are not blocked when incurring 10.

e Transactional: APIs utilize the abstraction of transactions so you can manage multiple Reliable Collec-
tions within a service easily.

Reliable Collections provide strong consistency guarantees out of the box to make reasoning about
application state easier. Strong consistency is achieved by ensuring transaction commits finish only after
the entire transaction has been logged on a majority quorum of replicas, including the primary. To
achieve weaker consistency, applications can acknowledge back to the client/requester before the
asynchronous commit returns.

98 Module 2 Module Creating Apps and Services Running on Service Fabric

The Reliable Collections APIs are an evolution of concurrent collections APIs (found in the System.
Collections.Concurrent namespace):

Asynchronous: Returns a task since, unlike concurrent collections, the operations are replicated and
persisted.

No out parameters: Uses ConditionalValue<T> to return a bool and a value instead of out
parameters. ConditionalValue<T> is like Nullable<T> but does not require T to be a struct.

Transactions: Uses a transaction object to enable the user to group actions on multiple Reliable
Collections in a transaction.

Today, Microsoft.ServiceFabric.Data.Collections contains three collections:

Reliable Dictionary: Represents a replicated, transactional, and asynchronous collection of key/value
pairs. Similar to ConcurrentDictionary, both the key and the value can be of any type.

Reliable Queue: Represents a replicated, transactional, and asynchronous strict first-in, first-out (FIFO)
queue. Similar to ConcurrentQueue, the value can be of any type.

Reliable Concurrent Queue: Represents a replicated, transactional, and asynchronous best effort
ordering queue for high throughput. Similar to the ConcurrentQueue, the value can be of any type.

Working with Reliable Collections

Service Fabric offers a stateful programming model available to .NET developers via Reliable Collections.
Specifically, Service Fabric provides reliable dictionary and reliable queue classes. When you use these
classes, your state is partitioned (for scalability), replicated (for availability), and transacted within a
partition (for ACID semantics). Let’s look at a typical usage of a reliable dictionary object and see what its
actually doing.

///retry:

try {

// Create a new Transaction object for this partition

using (ITransaction tx = base.StateManager.CreateTransaction()) {
// AddAsync takes key's write lock; if >4 secs, TimeoutException
// Key & value put in temp dictionary (read your own writes),
// serialized, redo/undo record is logged & sent to
// secondary replicas
await m dic.AddAsync(tx, key, value, cancellationToken);

// CommitAsync sends Commit record to log & secondary replicas
// After quorum responds, all locks released
await tx.CommitAsync();
}
// If CommitAsync not called, Dispose sends Abort
// record to log & all locks released
}
catch (TimeoutException) {
await Task.Delay (100, cancellationToken); goto retry;

All operations on reliable dictionary objects (except for ClearAsync which is not undoable), require an
ITransaction object. This object has associated with it any and all changes you're attempting to make

Working with Reliable Collections 99

to any reliable dictionary and/or reliable queue objects within a single partition. You acquire an ITrans-
action object by calling the partition’s StateManager’s CreateTransaction method.

In the code above, the ITransaction object is passed to a reliable dictionary’s AddAsync method.
Internally, dictionary methods that accepts a key take a reader/writer lock associated with the key. If the
method modifies the key's value, the method takes a write lock on the key and if the method only reads
from the key’s value, then a read lock is taken on the key. Since AddAsync modifies the key's value to the
new, passed-in value, the key's write lock is taken. So, if 2 (or more) threads attempt to add values with
the same key at the same time, one thread will acquire the write lock and the other threads will block. By
default, methods block for up to 4 seconds to acquire the lock; after 4 seconds, the methods throw a
TimeoutException. Method overloads exist allowing you to pass an explicit timeout value if you'd prefer.

Usually, you write your code to react to a TimeoutException by catching it and retrying the entire opera-
tion (as shown in the code above). In the sample code, we're just calling Task.Delay passing 100
milliseconds each time. But, in reality, you might be better off using some kind of exponential back-off
delay instead.

Once the lock is acquired, AddAsync adds the key and value object references to an internal temporary
dictionary associated with the ITransaction object. This is done to provide you with read-your-own-writes
semantics. That is, after you call AddAsync, a later call to TryGetValueAsync (using the same ITransaction
object) will return the value even if you have not yet committed the transaction. Next, AddAsync serializ-
es your key and value objects to byte arrays and appends these byte arrays to a log file on the local node.
Finally, AddAsync sends the byte arrays to all the secondary replicas so they have the same key/value
information. Even though the key/value information has been written to a log file, the information is not
considered part of the dictionary until the transaction that they are associated with has been committed.

In the code above, the call to CommitAsync commits all of the transaction’s operations. Specifically, it
appends commit information to the log file on the local node and also sends the commit record to all the
secondary replicas. Once a quorum (majority) of the replicas has replied, all data changes are considered
permanent and any locks associated with keys that were manipulated via the ITransaction object are
released so other threads/transactions can manipulate the same keys and their values.

If CommitAsync is not called (usually due to an exception being thrown), then the ITransaction
object gets disposed. When disposing an uncommitted ITransaction object, Service Fabric appends abort
information to the local node's log file and nothing needs to be sent to any of the secondary replicas.
And then, any locks associated with keys that were manipulated via the transaction are released.

Common pitfalls and how to avoid them

Now that you understand how the reliable collections work internally, let’s take a look at some common
misuses of them. See the code below:

using (ITransaction tx = StateManager.CreateTransaction()) {
// AddAsync serializes the name/user, logs the bytes,
// & sends the bytes to the secondary replicas.
await m dic.AddAsync(tx, name, user);

// The line below updates the property’s value in memory only; the
// new value is NOT serialized, logged, & sent to secondary replicas.

user.LastLogin = DateTime.UtcNow; // Corruption!

await tx.CommitAsync () ;

100 Module 2 Module Creating Apps and Services Running on Service Fabric

When working with a regular .NET dictionary, you can add a key/value to the dictionary and then change
the value of a property (such as LastLogin). However, this code will not work correctly with a reliable
dictionary. Remember from the earlier discussion, the call to AddAsync serializes the key/value objects to
byte arrays and then saves the arrays to a local file and also sends them to the secondary replicas. If you
later change a property, this changes the property’s value in memory only; it does not impact the local
file or the data sent to the replicas. If the process crashes, what's in memory is thrown away. When a new
process starts or if another replica becomes primary, then the old property value is what is available.

The correct way to write the code is simply to reverse the two lines:

using (ITransaction tx = StateManager.CreateTransaction()) {
user.LastLogin = DateTime.UtcNow; // Do this BEFORE calling AddAsync
await m _dic.AddAsync (tx, name, user);
await tx.CommitAsync();

Here is another example showing a common mistake:

using (ITransaction tx = StateManager.CreateTransaction()) {
// Use the user’s name to look up their data
ConditionalValue<User> user =

await m dic.TryGetValueAsync (tx, name);

// The user exists in the dictionary, update one of their properties.
if (user.HasValue) {
// The line below updates the property’s value in memory only; the
// new value i1s NOT serialized, logged, & sent to secondary replicas.
user.Value.LastLogin = DateTime.UtcNow; // Corruption!
await tx.CommitAsync () ;

Again, with regular .NET dictionaries, the code above works fine and is a common pattern: the developer
uses a key to look up a value. If the value exists, the developer changes a property’s value. However, with
reliable collections, this code exhibits the same problem as already discussed: you MUST not modify an
object once you have given it to a reliable collection.

The correct way to update a value in a reliable collection, is to get a reference to the existing value and
consider the object referred to by this reference immutable. Then, create a new object which is an exact
copy of the original object. Now, you can modify the state of this new object and write the new object
into the collection so that it gets serialized to byte arrays, appended to the local file and sent to the

replicas. After committing the change(s), the in-memory objects, the local file, and all the replicas have
the same exact state. All is good!

The code below shows the correct way to update a value in a reliable collection:

using (ITransaction tx = StateManager.CreateTransaction()) {
// Use the user’s name to look up their data
ConditionalValue<User> currentUser =
await m dic.TryGetValueAsync (tx, name);

// The user exists in the dictionary, update one of their properties.
if (currentUser.HasValue) {

// Create new user object with the same state as the current user

Working with Reliable Collections 101

object.

// NOTE: This must be a deep copy; not a shallow copy. Specifically,
only

// immutable state can be shared by currentUser & updatedUser object
graphs.

User updatedUser = new User (currentUser);

// In the new object, modify any properties you desire
updatedUser.LastLogin = DateTime.UtcNow;

// Update the key’s value to the updateUser info
await m dic.SetValue (tx, name, updatedUser);

await tx.CommitAsync () ;

Define immutable data types to prevent programmer er-
ror

Ideally, we'd like the compiler to report errors when you accidentally produce code that mutates state of
an object that you are supposed to consider immutable. But, the C# compiler does not have the ability to
do this. So, to avoid potential programmer bugs, we highly recommend that you define the types you use
with reliable collections to be immutable types. Specifically, this means that you stick to core value types
(such as numbers [Int32, UInt64, etc.], DateTime, Guid, TimeSpan, and the like). And, of course, you can
also use String. It is best to avoid collection properties as serializing and deserializing them can frequently
can hurt performance. However, if you want to use collection properties, we highly recommend the use of
.NET's immutable collections library (System.Collections.Immutable). This library is available for
download from http://nuget.org. We also recommend sealing your classes and making fields read-only
whenever possible.

The UserInfo type below demonstrates how to define an immutable type taking advantage of aforemen-
tioned recommendations.

[DataContract]
// If you don’t seal, you must ensure that any derived classes are also
immutable
public sealed class UserInfo {
private static readonly IEnumerable<ItemId> NoBids = ImmutablelList<Item-

Id>.Empty;

public UserInfo(String email, IEnumerable<ItemId> itemsBidding = null) {
Email = email;
ItemsBidding = (itemsBidding == null) ? NoBids : itemsBidding.ToIm-
mutablelList () ;
}

[OnDeserialized]

private void OnDeserialized(StreamingContext context) {
// Convert the deserialized collection to an immutable collection
ItemsBidding = ItemsBidding.ToImmutableList () ;

102 Module 2 Module Creating Apps and Services Running on Service Fabric

[DataMember]
public readonly String Email;

// Ideally, this would be a readonly field but it can't be because OnDe-
serialized

// has to set it. So instead, the getter is public and the setter is
private.

[DataMember]

public IEnumerable<ItemId> ItemsBidding { get; private set; }

// Since each UserInfo object is immutable, we add a new ItemId to the

ItemsBidding
// collection by creating a new immutable UserInfo object with the added
ItemId.
public UserInfo AddItemBidding (ItemId itemId) {
return new UserInfo(Email, ((ImmutableList<ItemId>)ItemsBidding).

Add (itemId)) ;
}

The ItemId type is also an immutable type as shown here:

[DataContract]
public struct ItemId ({

[DataMember] public readonly String Seller;
[DataMember] public readonly String ItemName;
public ItemId(String seller, String itemName) {
Seller = seller;
ItemName = itemName;

Schema versioning (upgrades)

Internally, Reliable Collections serialize your objects using .NET's DataContractSerializer. The serialized
objects are persisted to the primary replica’s local disk and are also transmitted to the secondary replicas.
As your service matures, it's likely you'll want to change the kind of data (schema) your service requires.
You must approach versioning of your data with great care. First and foremost, you must always be able
to deserialize old data. Specifically, this means your deserialization code must be infinitely backward
compatible: Version 333 of your service code must be able to operate on data placed in a reliable
collection by version 1 of your service code 5 years ago.

Furthermore, service code is upgraded one upgrade domain at a time. So, during an upgrade, you have
two different versions of your service code running simultaneously. You must avoid having the new
version of your service code use the new schema as old versions of your service code might not be able
to handle the new schema. When possible, you should design each version of your service to be forward
compatible by 1 version. Specifically, this means that V1 of your service code should be able to simply

Working with Reliable Collections 103

ignore any schema elements it does not explicitly handle. However, it must be able to save any data it
doesn't explicitly know about and simply write it back out when updating a dictionary key or value.

Warning: While you can modify the schema of a key, you must ensure that your key's hash code and
equals algorithms are stable. If you change how either of these algorithms operate, you will not be able
to look up the key within the reliable dictionary ever again.

Alternatively, you can perform what is typically referred to as a 2-phase upgrade. With a 2-phase up-
grade, you upgrade your service from V1 to V2: V2 contains the code that knows how to deal with the
new schema change but this code doesn’t execute. When the V2 code reads V1 data, it operates on it and
writes V1 data. Then, after the upgrade is complete across all upgrade domains, you can somehow signal
to the running V2 instances that the upgrade is complete. (One way to signal this is to roll out a configu-
ration upgrade; this is what makes this a 2-phase upgrade.) Now, the V2 instances can read V1 data,
convert it to V2 data, operate on it, and write it out as V2 data. When other instances read V2 data, they
do not need to convert it, they just operate on it, and write out V2 data.

104 Module 2 Module Creating Apps and Services Running on Service Fabric

Review Questions

Module 2 Review Questions

Service Fabric

You manage a customer facing web application for your company. The web application was originally
deployed in an Azure virtual machine (VM). As demand for the application grew, your development team
created containers for increased performance.

The application must now serve even more users.

What should you consider next?

Suggested Answer |

Service Fabric is tailored to create cloud native services that can start small, as needed, and grow to
massive scale with hundreds or thousands of machines.

Service Fabric is a microservices platform that gives every microservice (or container) a unique name that
can be either stateless or stateful.

Service Fabric provides comprehensive runtime and lifecycle management capabilities to applications that
are composed of these microservices. It hosts microservices inside containers that are deployed and
activated across the Service Fabric cluster.

Stateful Microservices in Service Fabric

You are designing a customer-facing web application for your company. The web application uses Azure
Service Fabric.

The application must be highly available. You decide to use a stateful microservices design.

What is the benefit of using this type of design?

Suggested Answer |

Stateful microservices maintain their authoritative state beyond the request and its response. This
provides high availability and consistency of the state through simple APIs that provide transactional
guarantees backed by replication. Service Fabric's stateful services democratize high availability, bringing
it to all types of applications, not just databases and other data stores.

Stateful microservices simplify application designs because they remove the need for the additional
queues and caches that have traditionally been required to address the availability and latency require-
ments of purely stateless applications. Since stateful services are naturally highly available and low
latency, this means that there are fewer moving parts to manage in your application as a whole.

Stateless Microservice

You are designing a customer-facing web application for your company. The web application uses Azure
Service Fabric.

You decide to use a stateful microservices design.

Review Questions

What happens with data in the application if the service is restarted or interrupted?

Suggested Answer |

In a stateless service the data is stored in a local variable. The value that is stored exists only for the
current lifecycle of its service instance.

=
@)
-
=
2
m
O
z
<
Ty
-]
=
O
m
<
-]
-
N
m
U
A
O
=
E
-]
m
O

Module 3 Module Using Azure Kubernetes
Service

Creating an Azure Kubernetes Service Cluster

What is Azure Kubernetes Service?

Kubernetes is a rapidly evolving platform that manages container-based applications and their associated
networking and storage components. The focus is on the application workloads, not the underlying
infrastructure components. Kubernetes provides a declarative approach to deployments, backed by a
robust set of APIs for management operations.

You can build and run modern, portable, microservices-based applications that benefit from Kubernetes
orchestrating and managing the availability of those application components. Kubernetes supports both
stateless and stateful applications as teams progress through the adoption of microservices-based
applications.

As an open platform, Kubernetes allows you to build your applications with your preferred programming
language, OS, libraries, or messaging bus. Existing continuous integration and continuous delivery (Cl/
CD) tools can integrate with Kubernetes to schedule and deploy releases.

Azure Kubernetes Service (AKS) provides a managed Kubernetes service that reduces the complexity for
deployment and core management tasks, including coordinating upgrades. The AKS cluster masters are
managed by the Azure platform, and you only pay for the AKS nodes that run your applications. AKS is
built on top of the open-source Azure Container Service Engine (acs-engine).

Kubernetes cluster architecture
A Kubernetes cluster is divided into two components:
e Cluster master nodes provide the core Kubernetes services and orchestration of application workloads.

e Nodes run your application workloads.

108 Module 3 Module Using Azure Kubernetes Service

Azure-managed Customer-managed
Cluster master Node |
API Server Scheduler Node
L f o Container
_) + » kubelet +—» o

— . etcd I
. Controller

kube-proxy Container
manager 1 .

Cluster master

When you create an AKS cluster, a cluster master is automatically created and configured. This cluster
master is provided as a managed Azure resource abstracted from the user. There is no cost for the cluster
master, only the nodes that are part of the AKS cluster.

The cluster master includes the following core Kubernetes components:

o kube-apiserver - The API server is how the underlying Kubernetes APIs are exposed. This component
provides the interaction for management tools, such as kubectl or the Kubernetes dashboard.

e etcd - To maintain the state of your Kubernetes cluster and configuration, the highly available etcd is a
key value store within Kubernetes.

o kube-scheduler - When you create or scale applications, the Scheduler determines what nodes can
run the workload and starts them.

e kube-controller-manager - The Controller Manager oversees a number of smaller Controllers that
perform actions such as replicating pods and handling node operations.

AKS provides a single-tenant cluster master, with a dedicated API server, Scheduler, etc. You define the
number and size of the nodes, and the Azure platform configures the secure communication between the
cluster master and nodes. Interaction with the cluster master occurs through Kubernetes APIs, such as
kubectl or the Kubernetes dashboard.

This managed cluster master means that you do not need to configure components like a highly available
etcd store, but it also means that you cannot access the cluster master directly. Upgrades to Kubernetes
are orchestrated through the Azure CLI or Azure portal, which upgrades the cluster master and then the
nodes. To troubleshoot possible issues, you can review the cluster master logs through Azure Log
Analytics.

If you need to configure the cluster master in a particular way or need direct access to them, you can
deploy your own Kubernetes cluster using aks-engine.

Nodes and node pools

To run your applications and supporting services, you need a Kubernetes node. An AKS cluster has one or
more nodes, which is an Azure virtual machine (VM) that runs the Kubernetes node components and con-
tainer runtime:

e The kubelet is the Kubernetes agent that processes the orchestration requests from the cluster
master and scheduling of running the requested containers.

e Virtual networking is handled by the kube-proxy on each node. The proxy routes network traffic and
manages IP addressing for services and pods.

Creating an Azure Kubernetes Service Cluster 109

e The container runtime is the component that allows containerized applications to run and interact
with additional resources such as the virtual network and storage. In AKS, Docker is used as the
container runtime.

T
[
| runtime
[
[

ey g !
re virtua .
: network interface Container
Soestosteien '
1 1
| /

The Azure VM size for your nodes defines how many CPUs, how much memory, and the size and type of
storage available (such as high-performance SSD or regular HDD). If you anticipate a need for applica-
tions that require large amounts of CPU and memory or high-performance storage, plan the node size
accordingly. You can also scale up the number of nodes in your AKS cluster to meet demand.

In AKS, the VM image for the nodes in your cluster is currently based on Ubuntu Linux. When you create
an AKS cluster or scale up the number of nodes, the Azure platform creates the requested number of
VMs and configures them. There is no manual configuration for you to perform.

If you need to use a different host OS, container runtime, or include custom packages, you can deploy
your own Kubernetes cluster using aks-engine. The upstream aks-engine releases features and
provide configuration options before they are officially supported in AKS clusters. For example, if you
wish to use Windows containers or a container runtime other than Docker, you can use aks-engine to
configure and deploy a Kubernetes cluster that meets your current needs.

Resource reservations

You don't need to manage the core Kubernetes components on each node, such as the kubelet, kube-
proxy, and kube-dns, but they do consume some of the available compute resources. To maintain node
performance and functionality, the following compute resources are reserved on each node:

e CPU -60ms
e Memory - 20% up to 4 GiB

These reservations mean that the amount of available CPU and memory for your applications may appear
less than the node itself contains. If there are resource constraints due to the number of applications that
you run, these reservations ensure CPU and memory remains available for the core Kubernetes compo-
nents. The resource reservations cannot be changed.

For example:
e Standard DS2 v2 node size contains 2 vCPU and 7 GiB memory
e 20% of 7 GiB memory = 1.4 GiB
e Atotal of (7 - 1.4) = 5.6 GiB memory is available for the node
e Standard E4s v3 node size contains 4 vCPU and 32 GiB memory
e 20% of 32 GiB memory = 6.4 GiB, but AKS only reserves a maximum of 4 GiB
e A total of (32 - 4) = 28 GiB is available for the node

The underlying node OS also requires some amount of CPU and memory resources to complete its own
core functions.

110 Module 3 Module Using Azure Kubernetes Service

Node pools

Nodes of the same configuration are grouped together into node pools. A Kubernetes cluster contains
one or more node pools. The initial number of nodes and size are defined when you create an AKS
cluster, which creates a default node pool. This default node pool in AKS contains the underlying VMs that
run your agent nodes.

When you scale or upgrade an AKS cluster, the action is performed against the default node pool. For
upgrade operations, running containers are scheduled on other nodes in the node pool until all the
nodes are successfully upgraded.

Pods

Kubernetes uses pods to run an instance of your application. A pod represents a single instance of your
application. Pods typically have a 1:1 mapping with a container, although there are advanced scenarios
where a pod may contain multiple containers. These multi-container pods are scheduled together on the
same node, and allow containers to share related resources.

When you create a pod, you can define resource limits to request a certain amount of CPU or memory
resources. The Kubernetes Scheduler tries to schedule the pods to run on a node with available resources
to meet the request. You can also specify maximum resource limits that prevent a given pod from
consuming too much compute resource from the underlying node. A best practice is to include resource
limits for all pods to help the Kubernetes Scheduler understand what resources are needed and permit-
ted.

A pod is a logical resource, but the container(s) are where the application workloads run. Pods are typical-
ly ephemeral, disposable resources, and individually scheduled pods miss some of the high availability
and redundancy features Kubernetes provides. Instead, pods are usually deployed and managed by
Kubernetes Controllers, such as the Deployment Controller.

Deployments and YAML manifests

A deployment represents one or more identical pods, managed by the Kubernetes Deployment Control-
ler. A deployment defines the number of replicas (pods) to create, and the Kubernetes Scheduler ensures
that if pods or nodes encounter problems, additional pods are scheduled on healthy nodes.

You can update deployments to change the configuration of pods, container image used, or attached
storage. The Deployment Controller drains and terminates a given number of replicas, creates replicas
from the new deployment definition, and continues the process until all replicas in the deployment are
updated.

Most stateless applications in AKS should use the deployment model rather than scheduling individual
pods. Kubernetes can monitor the health and status of deployments to ensure that the required number
of replicas run within the cluster. When you only schedule individual pods, the pods are not restarted if
they encounter a problem, and are not rescheduled on healthy nodes if their current node encounters a
problem.

If an application requires a quorum of instances to always be available for management decisions to be
made, you don't want an update process to disrupt that ability. Pod Disruption Budgets can be used to
define how many replicas in a deployment can be taken down during an update or node upgrade. For
example, if you have 5 replicas in your deployment, you can define a pod disruption of 4 to only permit
one replica from being deleted/rescheduled at a time. As with pod resource limits, a best practice is to
define pod disruption budgets on applications that require a minimum number of replicas to always be
present.

Creating an Azure Kubernetes Service Cluster 111

Deployments are typically created and managed with kubectl create or kubectl apply. To create

a deployment, you define a manifest file in the YAML (YAML Ain't Markup Language) format. The follow-

ing example creates a basic deployment of the NGINX web server. The deployment specifies 3 replicas to
be created, and that port 80 be open on the container. Resource requests and limits are also defined for

CPU and memory.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nhginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.15.2
ports:
- containerPort: 80

resources:
requests:
cpu: 250m
memory: 64Mi
limits:
cpu: 500m

memory: 256Mi

More complex applications can be created by also including services such as load balancers within the
YAML manifest.

Package management with Helm

A common approach to managing applications in Kubernetes is with Helm. You can build and use
existing public Helm charts that contain a packaged version of application code and Kubernetes YAML
manifests to deploy resources. These Helm charts can be stored locally, or often in a remote repository,
such as an Azure Container Registry Helm chart repo.

To use Helm, a server component called Tiller is installed in your Kubernetes cluster. The Tiller manages
the installation of charts within the cluster. The Helm client itself is installed locally on your computer, or
can be used within the Azure Cloud Shell. You can search for or create Helm charts with the client, and
then install them to your Kubernetes cluster.

112 Module 3 Module Using Azure Kubernetes Service

AKS cluster
Helm client —————— Tiller —_— Service
Install Deploy resources
chart l
Pod

For more information, see Install applications with Helm in Azure Kubernetes Service (AKS)'.

StatefulSets and DaemonSets

The Deployment Controller uses the Kubernetes Scheduler to run a given number of replicas on any
available node with available resources. This approach of using deployments may be sufficient for
stateless applications, but not for applications that require a persistent naming convention or storage. For
applications that require a replica to exist on each node, or selected nodes, within a cluster, the Deploy-
ment Controller doesn't look at how replicas are distributed across the nodes.

There are two Kubernetes resources that let you manage these types of applications:
e StatefulSets - Maintain the state of applications beyond an individual pod lifecycle, such as storage.

e DaemonSets - Ensure a running instance on each node, early in the Kubernetes bootstrap process.

StatefulSets

Modern application development often aims for stateless applications, but StatefulSets can be used for
stateful applications, such as applications that include database components. A StatefulSet is similar to a
deployment in that one or more identical pods are created and managed. Replicas in a StatefulSet follow
a graceful, sequential approach to deployment, scale, upgrades, and terminations. With a StatefulSet, the
naming convention, network names, and storage persist as replicas are rescheduled.

You define the application in YAML format using kind: StatefulSet, and the StatefulSet Controller
then handles the deployment and management of the required replicas. Data is written to persistent
storage, provided by Azure Managed Disks or Azure Files. With StatefulSets, the underlying persistent
storage remains even when the StatefulSet is deleted.

Replicas in a StatefulSet are scheduled and run across any available node in an AKS cluster. If you need to
ensure that at least one pod in your Set runs on a node, you can instead use a DaemonSet.

DaemonSets

For specific log collection or monitoring needs, you may need to run a given pod on all, or selected,
nodes. A DaemonSet is again used to deploy one or more identical pods, but the DaemonSet Controller
ensures that each node specified runs an instance of the pod.

The DaemonSet Controller can schedule pods on nodes early in the cluster boot process, before the
default Kubernetes scheduler has started. This ability ensures that the pods in a DaemonSet are started
before traditional pods in a Deployment or StatefulSet are scheduled.

Like StatefulSets, a DaemonSet is defined as part of a YAML definition using kind: DaemonSet.

1 https://docs.microsoft.com/en-us/azure/aks/kubernetes-helm

Creating an Azure Kubernetes Service Cluster 113

Namespaces

Kubernetes resources, such as pods and Deployments, are logically grouped into a namespace. These
groupings provide a way to logically divide an AKS cluster and restrict access to create, view, or manage
resources. You can create namespaces to separate business groups, for example. Users can only interact
with resources within their assigned namespaces.

"

AKS cluster
Admin @ Engineenng
users [] users
| D BN | * B
kube-system namespace engineering namespace
kube-dns Blog service
kube-proxy l l
kube-dashboard Pod Pod

When you create an AKS cluster, the following namespaces are available:

e default - This namespace is where pods and deployments are created by default when none is
provided. In smaller environments, you can deploy applications directly into the default namespace
without creating additional logical separations. When you interact with the Kubernetes API, such as
with kubectl get pods, the default namespace is used when none is specified.

e kube-system - This namespace is where core resources exist, such as network features like DNS and
proxy, or the Kubernetes dashboard. You typically don't deploy your own applications into this
namespace.

e kube-public - This namespace is typically not used, but can be used for resources to be visible across
the whole cluster, and can viewed by any users.

AKS access and identity

There are different ways to authenticate with and secure Kubernetes clusters. Using role-based access
controls (RBAC), you can grant users or groups access to only the resources they need. With Azure
Kubernetes Service (AKS), you can further enhance the security and permissions structure by using Azure
Active Directory. These approaches help you secure your application workloads and customer data.

This section introduces the core concepts that help you authenticate and assign permissions in AKS:
e Kubernetes service accounts

e Azure Active Directory integration

e Role-based access controls (RBAC)

e Roles and ClusterRoles

e RoleBindings and ClusterRoleBindings

Kubernetes service accounts

One of the primary user types in Kubernetes is a service account. A service account exists in, and is
managed by, the Kubernetes API. The credentials for service accounts are stored as Kubernetes secrets,

114 Module 3 Module Using Azure Kubernetes Service

which allows them to be used by authorized pods to communicate with the API Server. Most API requests
provide an authentication token for a service account or a normal user account.

Normal user accounts allow more traditional access for human administrators or developers, not just
services and processes. Kubernetes itself does not provide an identity management solution where
regular user accounts and passwords are stored. Instead, external identity solutions can be integrated
into Kubernetes. For AKS clusters, this integrated identity solution is Azure Active Directory.

Azure Active Directory integration

The security of AKS clusters can be enhanced with the integration of Azure Active Directory (AD). Built on
decades of enterprise identity management, Azure AD is a multi-tenant, cloud-based directory, and
identity management service that combines core directory services, application access management, and
identity protection. With Azure AD, you can integrate on-premises identities into AKS clusters to provide
a single source for account management and security.

Access to Kubemetes

Authentication Cluster master resources can then be
prompt on first scoped based on
1) kubecti connection API Server Azure Active Directory Node
of session User or groups Container
u: » -+ » kubelet +—» runtime
Engineering
user
Credentials verified against Container
Azure Active Directory and .
token issued
Azure Active
Directory

With Azure AD-integrated AKS clusters, you can grant users or groups access to Kubernetes resources
within a namespace or across the cluster. To obtain a kubect1 configuration context, a user can run the
az aks get-credentials command. When a user then interacts with the AKS cluster with kubect1,
they are prompted to sign in with their Azure AD credentials. This approach provides a single source for
user account management and password credentials. The user can only access the resources as defined
by the cluster administrator.

Azure AD authentication in AKS clusters uses OpenID Connect, an identity layer built on top of the OAuth
2.0 protocol. OAuth 2.0 defines mechanisms to obtain and use access tokens to access protected resourc-
es, and OpenlID Connect implements authentication as an extension to the OAuth 2.0 authorization
process. For more information on OpenID Connect, see the Open ID Connect documentation?. To verify
the authentication tokens obtained from Azure AD through OpenID Connect, AKS clusters use Kuber-
netes Webhook Token Authentication. For more information, see the Webhook Token Authentication
documentation?.

Role-based access controls (RBAC)

To provide granular filtering of the actions that users can perform, Kubernetes uses role-based access
controls (RBAC). This control mechanism lets you assign users, or groups of users, permission to do
things like create or modify resources, or view logs from running application workloads. These permis-
sions can be scoped to a single namespace, or granted across the entire AKS cluster. With Kubernetes
RBAC, you create roles to define permissions, and then assign those roles to users with role bindings.

2 https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code
3 https://kubernetes.io/docs/reference/access-authn-authz/authentication/#webhook-token-authentication

Creating an Azure Kubernetes Service Cluster 115

Azure role-based access controls (RBAQC)

One additional mechanism for controlling access to resources is Azure role-based access controls (RBAC).
Kubernetes RBAC is designed to work on resources within your AKS cluster, and Azure RBAC is designed
to work on resources within your Azure subscription. With Azure RBAC, you create a role definition that
outlines the permissions to be applied. A user or group is then assigned this role definition for a particu-
lar scope, which could be an individual resource, a resource group, or across the subscription.

Roles and ClusterRoles

Before you assign permissions to users with Kubernetes RBAC, you first define those permissions as a
Role. Kubernetes roles grant permissions. There is no concept of a deny permission.

Roles are used to grant permissions within a namespace. If you need to grant permissions across the
entire cluster, or to cluster resources outside a given namespace, you can instead use ClusterRoles.

A ClusterRole works in the same way to grant permissions to resources, but can be applied to resources
across the entire cluster, not a specific namespace.

RoleBindings and ClusterRoleBindings

Once roles are defined to grant permissions to resources, you assign those Kubernetes RBAC permissions
with a RoleBinding. If your AKS cluster integrates with Azure Active Directory, bindings are how those
Azure AD users are granted permissions to perform actions within the cluster.

Role bindings are used to assign roles for a given namespace. This approach lets you logically segregate
a single AKS cluster, with users only able to access the application resources in their assigned namespace.
If you need to bind roles across the entire cluster, or to cluster resources outside a given namespace, you
can instead use ClusterRoleBindings.

A ClusterRoleBinding works in the same way to bind roles to users, but can be applied to resources across
the entire cluster, not a specific namespace. This approach lets you grant administrators or support
engineers access to all resources in the AKS cluster.

AKS security concepts for apps and clusters

To protect your customer data as you run application workloads in Azure Kubernetes Service (AKS), the
security of your cluster is a key consideration. Kubernetes includes security components such as network
policies and Secrets. Azure then adds in components such as network security groups and orchestrated
cluster upgrades. These security components are combined to keep your AKS cluster running the latest
OS security updates and Kubernetes releases, and with secure pod traffic and access to sensitive creden-
tials.

This section introduces the core concepts that secure your applications in AKS:
e Master components security

e Node security

e Cluster upgrades

e Network security

e Kubernetes Secrets

116 Module 3 Module Using Azure Kubernetes Service

Master security

In AKS, the Kubernetes master components are part of the managed service provided my Microsoft. Each
AKS cluster has their own single-tenanted, dedicated Kubernetes master to provide the API Server,
Scheduler, etc. This master is managed and maintained by Microsoft

By default, the Kubernetes API server uses a public IP address and with fully qualified domain name
(FQDN). You can control access to the API server using Kubernetes role-based access controls and Azure
Active Directory.

Node security

AKS nodes are Azure virtual machines that you manage and maintain. The nodes run an optimized
Ubuntu Linux distribution with the Docker container runtime. When an AKS cluster is created or scaled
up, the nodes are automatically deployed with the latest OS security updates and configurations.

The Azure platform automatically applies OS security patches to the nodes on a nightly basis. If an OS
security update requires a host reboot, that reboot is not automatically performed. You can manually
reboot the nodes, or a common approach is to use Kured?, an open-source reboot daemon for Kuber-
netes. Kured runs as a [DaemonSet][aks-daemonset] and monitors each node for the presence of a file
indicating that a reboot is required. Reboots are managed across the cluster using the same cordon and
drain process as a cluster upgrade.

Nodes are deployed into a private virtual network subnet, with no public IP addresses assigned. For
troubleshooting and management purposes, SSH is enabled by default. This SSH access is only available
using the internal IP address. Azure network security group rules can be used to further restrict IP range
access to the AKS nodes. Deleting the default network security group SSH rule and disabling the SSH
service on the nodes prevents the Azure platform from performing maintenance tasks.

To provide storage, the nodes use Azure Managed Disks. For most VM node sizes, these are Premium
disks backed by high-performance SSDs. The data stored on managed disks is automatically encrypted at
rest within the Azure platform. To improve redundancy, these disks are also securely replicated within the
Azure datacenter.

Cluster upgrades

For security and compliance, or to use the latest features, Azure provides tools to orchestrate the up-
grade of an AKS cluster and components. This upgrade orchestration includes both the Kubernetes
master and agent components. You can view a list of available Kubernetes versions for your AKS cluster.
To start the upgrade process, you specify one of these available versions. Azure then safely cordons and
drains each AKS node and performs the upgrade.

Cordon and drain

During the upgrade process, AKS nodes are individually cordoned from the cluster so new pods are not
scheduled on them. The nodes are then drained and upgraded as follows:

e Existing pods are gracefully terminated and scheduled on remaining nodes.

e The node is rebooted, the upgrade process completed, and then joins back into the AKS cluster.

Pods are scheduled to run on them again.

»

https://github.com/weaveworks/kured

Creating an Azure Kubernetes Service Cluster 117

e The next node in the cluster is cordoned and drained using the same process until all nodes are
successfully upgraded.

Network security

For connectivity and security with on-premises networks, you can deploy your AKS cluster into existing
Azure virtual network subnets. These virtual networks may have an Azure Site-to-Site VPN or Express
Route connection back to your on-premises network. Kubernetes ingress controllers can be defined with
private, internal IP addresses so services are only accessible over this internal network connection.

Azure network security groups

To filter the flow of traffic in virtual networks, Azure uses network security group rules. These rules define
the source and destination IP ranges, ports, and protocols that are allowed or denied access to resources.
Default rules are created to allow TLS traffic to the Kubernetes API server and for SSH access to the
nodes. As you create services with load balancers, port mappings, or ingress routes, AKS automatically
modifies the network security group for traffic to flow appropriately.

Kubernetes Secrets

A Kubernetes Secret is used to inject sensitive data into pods, such as access credentials or keys. You first
create a Secret using the Kubernetes API. When you define your pod or deployment, a specific Secret can
be requested. Secrets are only provided to nodes that have a scheduled pod that requires it, and the
Secret is stored in tmpfs, not written to disk. When the last pod on a node that requires a Secret is
deleted, the Secret is deleted from the node's tmpfs. Secrets are stored within a given namespace and
can only be accessed by pods within the same namespace.

The use of Secrets reduces the sensitive information that is defined in the pod or service YAML manifest.
Instead, you request the Secret stored in Kubernetes API Server as part of your YAML manifest. This
approach only provides the specific pod access to the Secret.

Network concepts for apps in AKS

In a container-based microservices approach to application development, application components must
work together to process their tasks. Kubernetes provides various resources that enable this application
communication. You can connect to and expose applications internally or externally. To build highly
available applications, you can load balance your applications. More complex applications may require
configuration of ingress traffic for SSL/TLS termination or routing of multiple components. For security
reasons, you may also need to restrict the flow of network traffic into or between pods and nodes.

This section introduces the core concepts that provide networking to your applications in AKS:
e Services

e Azure virtual networks

e Ingress controllers

e Network policies

Kubernetes basics

To allow access to your applications, or for application components to communicate with each other,
Kubernetes provides an abstraction layer to virtual networking. Kubernetes nodes are connected to a

118 Module 3 Module Using Azure Kubernetes Service

virtual network, and can provide inbound and outbound connectivity for pods. The kube-proxy compo-
nent runs on each node to provide these network features.

In Kubernetes, Services logically group pods to allow for direct access via an IP address or DNS name and
on a specific port. You can also distribute traffic using a load balancer. More complex routing of applica-
tion traffic can also be achieved with Ingress Controllers. Security and filtering of the network traffic for
pods is possible with Kubernetes network policies.

The Azure platform also helps to simplify virtual networking for AKS clusters. When you create a Kuber-
netes load balancer, the underlying Azure load balancer resource is created and configured. As you open
network ports to pods, the corresponding Azure network security group rules are configured. For HTTP
application routing, Azure can also configure external DNS as new ingress routes are configured.

Services

To simplify the network configuration for application workloads, Kubernetes uses Services to logically
group a set of pods together and provide network connectivity. The following Service types are available:

e Cluster IP - Creates an internal IP address for use within the AKS cluster. Good for internal-only
applications that support other workloads within the cluster.

Port 80

Internal
traffic

e NodePort - Creates a port mapping on the underlying node that allows the application to be ac-
cessed directly with the node IP address and port.

Port 31000 Port 80
’—b AKS node —l ’—b

" : Port 31000 Port 80

ncoming 5 AKS node NodePort ——» Pod

traffic

Port 31000 Port 80
AKS node

e LoadBalancer - Creates an Azure load balancer resource, configures an external IP address, and
connects the requested pods to the load balancer backend pool. To allow customers traffic to reach
the application, load balancing rules are created on the desired ports.

Load

Balancer AKS node —l
Port 80 Port 80

Incoming "~ AKSnode ———» Pod

traffic

Port 80
AKSnode ———* Pod

[]
e For additional control and routing of the inbound traffic, you may instead use an Ingress controller.
e ExternalName - Creates a specific DNS entry for easier application access.

The IP address for load balancers and services can be dynamically assigned, or you can specify an existing
static IP address to use. Both internal and external static IP addresses can be assigned. This existing static
IP address is often tied to a DNS entry.

Both internal and external load balancers can be created. Internal load balancers are only assigned a
private IP address, so can't be accessed from the Internet.

Creating an Azure Kubernetes Service Cluster 119

Azure virtual networks
In AKS, you can deploy a cluster that uses one of the following two network models:
e Basic networking - The network resources are created and configured as the AKS cluster is deployed.

e Advanced networking - The AKS cluster is connected to existing virtual network resources and config-
urations.

Basic networking

The basic networking option is the default configuration for AKS cluster creation. The Azure platform
manages the network configuration of the cluster and pods. Basic networking is appropriate for deploy-
ments that do not require custom virtual network configuration. With basic networking, you can't define
network configuration such as subnet names or the IP address ranges assigned to the AKS cluster.

Nodes in an AKS cluster configured for basic networking use the kubenet Kubernetes plugin.
Basic networking provides the following features:
e Expose a Kubernetes service externally or internally through the Azure Load Balancer.

e Pods can access resources on the public Internet.

Advanced networking

Advanced networking places your pods in an Azure virtual network that you configure. This virtual
network provides automatic connectivity to other Azure resources and integration with a rich set of
capabilities. Advanced networking is appropriate for deployments that require specific virtual network
configurations, such as to use an existing subnet and connectivity. With advanced networking, you can
define these subnet names and IP address ranges.

Nodes in an AKS cluster configured for advanced networking use the Azure Container Networking
Interface (CNI) Kubernetes plugin.

Node 1 Node 2

Pod Pod Pod Pod Pod Pod

o Jo o Jo o Jo o Jo o Jo o Jo
[eipde OpOpde OeORE [eipde OpOpde OeORE

L L L L L L

Advanced networking provides the following features over basic networking:

e Deploy your AKS cluster into an existing Azure virtual network, or create a new virtual network and
subnet for your cluster.

e Every pod in the cluster is assigned an IP address in the virtual network. The pods can directly com-
municate with other pods in the cluster, and other nodes in the virtual network.

e A pod can connect to other services in a peered virtual network, including to on-premises networks
over ExpressRoute and site-to-site (S2S) VPN connections. Pods are also reachable from on-premises.

e Pods in a subnet that have service endpoints enabled can securely connect to Azure services, such as
Azure Storage and SQL DB.

120 Module 3 Module Using Azure Kubernetes Service

e You can create user-defined routes (UDR) to route traffic from pods to a Network Virtual Appliance.

For more information, see Configure advanced network for an AKS cluster®.

Ingress controllers

When you create a LoadBalancer type Service, an underlying Azure load balancer resource is created. The
load balancer is configured to distribute traffic to the pods in your Service on a given port. The LoadBal-
ancer only works at layer 4 - the Service is unaware of the actual applications, and can't make any
additional routing considerations.

Ingress controllers work at layer 7, and can use more intelligent rules to distribute application traffic. A
common use of an Ingress controller is to route HTTP traffic to different applications based on the

inbound URL.
Port 80
Ingress
Incoming ; myapp.com/blog Blog service ﬂ

traffic

myapp.com/store Store service ———»
Port 80

Port 80

g e E

In AKS, you can create an Ingress resource using something like NGINX, or use the AKS HTTP application
routing feature. When you enable HTTP application routing for an AKS cluster, the Azure platform creates
the Ingress controller and an External-DNS controller. As new Ingress resources are created in Kuber-
netes, the required DNS A records are created in a cluster-specific DNS zone.

Another common feature of Ingress is SSL/TLS termination. On large web applications accessed via
HTTPS, the TLS termination can be handled by the Ingress resource rather than within the application
itself. To provide automatic TLS certification generation and configuration, you can configure the Ingress
resource to use providers such as Let's Encrypt.

Network security groups

A network security group filter traffic for VMs, such as the AKS nodes. As you create Services, such as a
LoadBalancer, the Azure platform automatically configures any network security group rules that are
needed. Don't manually configure network security group rules to filter traffic for pods in an AKS cluster.
Define any required ports and forwarding as part of your Kubernetes Service manifests, and let the Azure
platform create or update the appropriate rules.

Default network security group rules exist for traffic such as SSH. These default rules are for cluster
management and troubleshooting access. Deleting these default rules can cause problems with AKS
management, and breaks the service level objective (SLO).

Storage options for apps in AKS

Applications that run in Azure Kubernetes Service (AKS) may need to store and retrieve data. For some
application workloads, this data storage can use local, fast storage on the node that is no longer needed
when the pods are deleted. Other application workloads may require storage that persists on more
regular data volumes within the Azure platform. Multiple pods may need to share the same data volumes,

5 https://docs.microsoft.com/en-us/azure/aks/configure-advanced-networking

Creating an Azure Kubernetes Service Cluster 121

or reattach data volumes if the pod is rescheduled on a different node. Finally, you may need to inject
sensitive data or application configuration information into pods.

-

Azure Kubernetes Service (AKS) cluster
Cluster Master Node
AP| Server Pod
Persistent Volume
Bl Claim
Lb Persistent Volume J

Azure Managed Disk @ Azure Files
(Premium Storage) (Standard Storage)

This section introduces the core concepts that provide storage to your applications in AKS:
e \Volumes

e Persistent volumes

e Storage classes

e Persistent volume claims

Volumes

Applications often need to be able to store and retrieve data. As Kubernetes typically treats individual
pods as ephemeral, disposable resources, different approaches are available for applications use and
persist data as necessary. A volume represents a way to store, retrieve, and persist data across pods and
through the application lifecycle.

Traditional volumes to store and retrieve data are created as Kubernetes resources backed by Azure
Storage. You can manually create these data volumes to be assigned to pods directly, or have Kubernetes
automatically create them. These data volumes can use Azure Disks or Azure Files:

e Azure Disks can be used to create a Kubernetes DataDisk resource. Disks can use Azure Premium
storage, backed by high-performance SSDs, or Azure Standard storage, backed by regular HDDs. For
most production and development workloads, use Premium storage. Azure Disks are mounted as
ReadWriteOnce, so are only available to a single node. For storage volumes that can be accessed by
multiple nodes simultaneously, use Azure Files.

e Azure Files can be used to mount an SMB 3.0 share backed by an Azure Storage account to pods. Files
let you share data across multiple nodes and pods. Currently, Files can only use Azure Standard
storage backed by regular HDDs.

In Kubernetes, volumes can represent more than just a traditional disk where information can be stored
and retrieved. Kubernetes volumes can also be used as a way to inject data into a pod for use by the
containers. Common additional volume types in Kubernetes include:

e emptyDir - This volume is commonly used as temporary space for a pod. All containers within a pod
can access the data on the volume. Data written to this volume type persists only for the lifespan of
the pod - when the pod is deleted, the volume is deleted. This volume typically uses the underlying
local node disk storage, though can also exist only in the node's memory.

e secret - This volume is used to inject sensitive data into pods, such as passwords. You first create a
Secret using the Kubernetes API. When you define your pod or deployment, a specific Secret can be

122 Module 3 Module Using Azure Kubernetes Service

requested. Secrets are only provided to nodes that have a scheduled pod that requires it, and the
Secret is stored in tmpfs, not written to disk. When the last pod on a node that requires a Secret is
deleted, the Secret is deleted from the node's tmpfs. Secrets are stored within a given namespace and
can only be accessed by pods within the same namespace.

e configMap - This volume type is used to inject key-value pair properties into pods, such as application
configuration information. Rather than defining application configuration information within a
container image, you can define it as a Kubernetes resource that can be easily updated and applied to
new instances of pods as they are deployed. Like using a Secret, you first create a ConfigMap using
the Kubernetes API. This ConfigMap can then be requested when you define a pod or deployment.
ConfigMaps are stored within a given namespace and can only be accessed by pods within the same
namespace.

Persistent volumes

Volumes are defined and created as part of the pod lifecycle only exist until the pod is deleted. Pods
often expect their storage to remain if a pod is rescheduled on a different host during a maintenance
event, especially in StatefulSets. A persistent volume (PV) is a storage resource created and managed by
the Kubernetes API that can exist beyond the lifetime of an individual pod.

Azure Disks or Files are used to provide the PersistentVolume. As noted in the previous section on
Volumes, the choice of Disks or Files is often determined by the need for concurrent access to the data or
the performance tier.

Single node/pod
9 access P AKS cluster

Azure Managed Disk
{Premium or Standard

R ¢ P Persistent

@ Azure Files - Volume i
(Standard Storage) i

Multiple concurrent
node/pod access

A PersistentVolume can be statically created by a cluster administrator, or dynamically created by the
Kubernetes API server. If a pod is scheduled and requests storage that is not currently available, Kuber-
netes can create the underlying Azure Disk or Files storage and attach it to the pod. Dynamic provision-
ing uses a StorageClass to identify what type of Azure storage needs to be created.

Storage classes

To define different tiers of storage, such as Premium and Standard, you can create a StorageClass. The
StorageClass also defines the reclaimPolicy. This reclaimPolicy controls the behavior of the underlying
Azure storage resource when the pod is deleted and the persistent volume may no longer be required.
The underlying storage resource can be deleted, or retained for use with a future pod.

In AKS, two initial StorageClasses are created:

e default - Uses Azure Standard storage to create a Managed Disk. The reclaim policy indicates that the
underlying Azure Disk is deleted when the pod that used it is deleted.

e managed-premium - Uses Azure Premium storage to create Managed Disk. The reclaim policy again
indicates that the underlying Azure Disk is deleted when the pod that used it is deleted.

If no StorageClass is specified for a persistent volume, the default StorageClass is used. Take care when
requesting persistent volumes so that they use the appropriate storage you need. You can create a

Creating an Azure Kubernetes Service Cluster 123

StorageClass for additional needs using kubect1. The following example uses Premium Managed Disks
and specifies that the underlying Azure Disk should be retained when the pod is deleted:

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: managed-premium-retain
provisioner: kubernetes.io/azure-disk
reclaimPolicy: Retain
parameters:
storageaccounttype: Premium LRS
kind: Managed

Persistent volume claims

A PersistentVolumeClaim requests either Disk or File storage of a particular StorageClass, access mode,
and size. The Kubernetes API server can dynamically provision the underlying storage resource in Azure if
there is no existing resource to fulfill the claim based on the defined StorageClass. The pod definition
includes the volume mount once the volume has been connected to the pod.

Single node/pod
9 access P AKS cluster

Azure Managed Disk
{Premium or Standard

R ¢ P Persistent

@ Azure Files - Volume i
(Standard Storage) J

Multiple concurrent
node/pod access

A PersistentVolume is bound to a PersistentVolumeClaim once an available storage resource has been
assigned to the pod requesting it. There is a 1:1 mapping of persistent volumes to claims.

The following example YAML manifest shows a persistent volume claim that uses the managed-premium
StorageClass and requests a Disk 5Gi in size:

apiVersion: vl
kind: PersistentVolumeClaim
metadata:
name: azure-managed-disk
spec:
accessModes:
- ReadWriteOnce
storageClassName: managed-premium
resources:
requests:
storage: 5Gi

When you create a pod definition, the persistent volume claim is specified to request the desired storage.
You also then specify the volumeMount for your applications to read and write data. The following
example YAML manifest shows how the previous persistent volume claim can be used to mount a volume
at /mnt/azure:

kind: Pod
apiVersion: vl

124 Module 3 Module Using Azure Kubernetes Service

metadata:
name: nginx
spec:
containers:
- name: myfrontend
image: nginx
volumeMounts:
- mountPath: "/mnt/azure"
name: volume
volumes:
- name: volume
persistentVolumeClaim:
claimName: azure-managed-disk

Scaling options for apps in AKS

As you run applications in Azure Kubernetes Service (AKS), you may need to increase or decrease the
amount of compute resources. As the number of application instances you need change, the number of
underlying Kubernetes nodes may also need to change. You may also need to quickly provision a large
number of additional application instances.

This section introduces the core concepts that help you scale applications in AKS:
e Manually scale

e Horizontal pod autoscaler (HPA)

e C(Cluster autoscaler

e Azure Container Instance (ACI) integration with AKS

Manually scale pods or nodes

You can manually scale replicas (pods) and nodes to test how your application responds to a change in
available resources and state. Manually scaling resources also lets you define a set amount of resources
to use to maintain a fixed cost, such as the number of nodes. To manually scale, you define the replica or
node count, and the Kubernetes APl schedules creating additional pods or draining nodes.

Horizontal pod autoscaler

Kubernetes uses the horizontal pod autoscaler (HPA) to monitor the resource demand and automatically
scale the number of replicas. By default, the horizontal pod autoscaler checks the Metrics API every 30
seconds for any required changes in replica count. When changes are required, the number of replicas is
increased or decreased accordingly. Horizontal pod autoscaler works with AKS clusters that have de-
ployed the Metrics Server for Kubernetes 1.8+.

Azure Kubernetes Service (AKS) cluster

Node | Node | Node

Henzontal Pod Autoscaler

l Scale out l

Pod Pod Pod Pod Pod

Creating an Azure Kubernetes Service Cluster 125

When you configure the horizontal pod autoscaler for a given deployment, you define the minimum and
maximum number of replicas that can run. You also define the metric to monitor and base any scaling
decisions on, such as CPU usage.

Cooldown of scaling events

As the horizontal pod autoscaler checks the Metrics API every 30 seconds, previous scale events may not
have successfully completed before another check is made. This behavior could cause the horizontal pod
autoscaler to change the number of replicas before the previous scale event has been able to receive
application workload and the resource demands to adjust accordingly.

To minimize these race events, cooldown or delay values can be set. These values define how long the
horizontal pod autoscaler must wait after a scale event before another scale event can be triggered. This
behavior allows the new replica count to take effect and the Metrics API reflect the distributed workload.
By default, the delay on scale up events is 3 minutes, and the delay on scale down events is 5 minutes

You may need to tune these cooldown values. The default cooldown values may give the impression that
the horizontal pod autoscaler isn't scaling the replica count quickly enough. For example, to more quickly
increase the number of replicas in use, reduce the --horizontal-pod-autoscaler-upscale-de-
lay when you create your horizontal pod autoscaler definitions using kubect1.

Cluster autoscaler

To respond to changing pod demands, Kubernetes has a cluster autoscaler that adjusts the number of
nodes based on the requested compute resources in the node pool. By default, the cluster autoscaler
checks the API server every 10 seconds for any required changes in node count. If the cluster autoscale
determines that a change is required, the number of nodes in your AKS cluster is increased or decreased
accordingly. The cluster autoscaler works with RBAC-enabled AKS clusters that run Kubernetes 1.10.x or
higher.

-

Azure Kubernetes Service (AKS) cluster

E Cluster Autoscaler

l Scale out l

L Node | Node | Node Node NodeJ
Henzontal Pod Autoscaler
l Scale out l
Pod Pod Pod Pod Pod

Cluster autoscaler is typically used alongside the horizontal pod autoscaler. When combined, the horizon-
tal pod autoscaler increases or decreases the number of pods based on application demand, and the
cluster autoscaler adjusts the number of nodes as needed to run those additional pods accordingly.

Scale up events

If a node does not have sufficient compute resources to run a requested pod, that pod cannot progress
through the scheduling process. The pod cannot start unless additional compute resources are available
within the node pool.

When the cluster autoscaler notices pods that cannot be scheduled due to node pool resource con-
straints, the number of nodes within the node pool is increased to provide the additional compute

126 Module 3 Module Using Azure Kubernetes Service

resources. When those additional nodes are successfully deployed and available for use within the node
pool, the pods are then scheduled to run on them.

If your application needs to scale rapidly, some pods may remain in a state waiting to be scheduled until
the additional nodes deployed by the cluster autoscaler can accept the scheduled pods. For applications
that have high burst demands, you can scale with virtual nodes and Azure Container Instances.

Scale down events

The cluster autoscaler also monitors the pod scheduling status for nodes that have not recently received
new scheduling requests. This scenario indicates that the node pool has more compute resources than
are required, and that the number of nodes can be decreased.

A node that passes a threshold for no longer being needed for 10 minutes by default is scheduled for
deletion. When this situation occurs, pods are scheduled to run on other nodes within the node pool, and
the cluster autoscaler decreases the number of nodes.

Your applications may experience some disruption as pods are scheduled on different nodes when the
cluster autoscaler decreases the number of nodes. To minimize disruption, avoid applications that use a
single pod instance.

Burst to Azure Container Instances

To rapidly scale your AKS cluster, you can integrate with Azure Container Instances (ACI). Kubernetes has
built-in components to scale the replica and node count. However, if your application needs to rapidly
scale, the horizontal pod autoscaler may schedule more pods than can be provided by the existing
compute resources in the node pool. If configured, this scenario would then trigger the cluster autoscaler
to deploy additional nodes in the node pool, but it may take a few minutes for those nodes to successful-
ly provision and allow the Kubernetes scheduler to run pods on them.

Azure Kubernetes Service (AKS) cluster Azure Container
Instances (ACI)

m Cluster Autoscaler

l Scale out l Rapid burst
scaling
‘ Node | Node | Node | Pad Pod > Pod Paod

Horizontal Pod Autoscaler

l Scale out l
Pod Pod Pod Pod Pod

AClI lets you quickly deploy container instances without additional infrastructure overhead. When you
connect with AKS, ACI becomes a secured, logical extension of your AKS cluster. The Virtual Kubelet
component is installed in your AKS cluster that presents ACI as a virtual Kubernetes node. Kubernetes can
then schedule pods that run as ACI instances through virtual nodes, not as pods on VM nodes directly in
your AKS cluster.

Your application requires no modification to use virtual nodes. Deployments can scale across AKS and ACI
and with no delay as cluster autoscaler deploys new nodes in your AKS cluster.

Virtual nodes are deployed to an additional subnet in the same virtual network as your AKS cluster. This
virtual network configuration allows the traffic between ACl and AKS to be secured. Like an AKS cluster,
an ACl instance is a secure, logical compute resource that is isolated from other users.

Creating an Azure Kubernetes Service Cluster 127

Developer best practices for managing resourc-
es in AKS

As you develop and run applications in Azure Kubernetes Service (AKS), there are a few key areas to
consider. How you manage your application deployments can negatively impact the end-user experience
of services that you provide. To help you succeed, keep in mind some best practices you can follow as
you develop and run applications in AKS.

In this section, you learn:
e What are pod resource requests and limits
e Ways to develop and deploy applications with Dev Spaces and Visual Studio Code

e How to use the kube-advisor tool to check for issues with deployments

Define pod resource requests and limits

Best practice guidance - Set pod requests and limits on all pods in your YAML manifests. If the AKS
cluster uses resource quotas, your deployment may be rejected if you don't define these values.

A primary way to manage the compute resources within an AKS cluster is to use pod requests and limits.
These requests and limits let the Kubernetes scheduler know what compute resources a pod should be
assigned.

e Pod requests define a set amount of CPU and memory that the pod needs. These requests should be
the amount of compute resources the pod needs to provide an acceptable level of performance.

e When the Kubernetes scheduler tries to place a pod on a node, the pod requests are used to
determine which node has sufficient resources available.

e Monitor the performance of your application to adjust these requests to make sure you don't
define less resources that required to maintain an acceptable level of performance.

e Pod limits are the maximum amount of CPU and memory that a pod can use. These limits help
prevent one or two runaway pods from taking too much CPU and memory from the node. This
scenario would reduce the performance of the node and other pods that run on it.

e Don't set a pod limit higher than your nodes can support. Each AKS node reserves a set amount of
CPU and memory for the core Kubernetes components. Your application may try to consume too
many resources on the node for other pods to successfully run.

e Again, monitor the performance of your application at different times during the day or week.
Determine when the peak demand is, and align the pod limits to the resources required to meet
the application's needs.

In your pod specifications, it's best practice to define these requests and limits. If you don't include these
values, the Kubernetes scheduler doesn't understand what resources are needed. The scheduler may
schedule the pod on a node without sufficient resources to provide acceptable application performance.
The cluster administrator may set resource quotas on a namespace that requires you to set resource
requests and limits.

When you define a CPU request or limit, the value is measured in CPU units. 7.0 CPU equates to one
underlying virtual CPU core on the node. The same measurement is used for GPUs. You can also define a
fractional request or limit, typically in millicpu. For example, 700m is 0.7 of an underlying virtual CPU core.

128 Module 3 Module Using Azure Kubernetes Service

In the following basic example for a single NGINX pod, the pod requests 700m of CPU time, and 728Mi of
memory. The resource limits for the pod are set to 250m CPU and 256Mi memory:

kind: Pod
apivVersion: vl
metadata:

name: mypod
spec:

containers:

- name: mypod

image: nginx:1.15.5

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 250m

memory: 256Mi

For more information about resource measurements and assignments, see Managing compute resourc-
es for containers®.

Develop and debug applications against an AKS cluster

Best practice guidance - Development teams should deploy and debug against an AKS cluster using
Dev Spaces. This development model makes sure that role-based access controls, network, or storage
needs are implemented before the app is deployed to production.

With Azure Dev Spaces, you develop, debug, and test applications directly against an AKS cluster.
Developers within a team work together to build and test throughout the application lifecycle. You can
continue to use existing tools such as Visual Studio or Visual Studio Code. An extension is installed for
Dev Spaces that gives an option to run and debug the application in an AKS cluster:

@ DEBUG P Launch Program (dev-space ¢ £If [

4 VARIABLES

This integrated development and test process with Dev Spaces reduces the need for local test environ-
ments, such as minikube. Instead, you develop and test against an AKS cluster. This cluster can be
secured and isolated as noted in previous section on the use of namespaces to logically isolate a cluster.
When your apps are ready to deploy to production, you can confidently deploy as your development was
all done against a real AKS cluster.

Use the Visual Studio Code extension for Kubernetes

Best practice guidance - Install and use the VS Code extension for Kubernetes when you write YAML
manifests. You can also use the extension for integrated deployment solution, which may help application
owners that infrequently interact with the AKS cluster.

The Visual Studio Code extension for Kubernetes’ helps you develop and deploy applications to AKS.
The extension provides intellisense for Kubernetes resources, and Helm charts and templates. You can

6 https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
7 https://github.com/Azure/vscode-kubernetes-tools

Creating an Azure Kubernetes Service Cluster 129

also browse, deploy, and edit Kubernetes resources from within VS Code. The extension also provides an
intellisense check for resource requests or limits being set in the pod specifications:

No memory limit specified for this container - this could starve ot
her processes

Regularly check for application issues with kube-advisor

Best practice guidance - Regularly run the latest version of kube-advisor to detect issues in your
cluster. If you apply resource quotas on an existing AKS cluster, run kube-advisor first to find pods
that don't have resource requests and limits defined.

The kube-advisor tool scans a Kubernetes cluster and reports on issues that it finds. One useful check
is to identify pods that don't have resource requests and limits in place.

In an AKS cluster that hosts many development teams and applications, it can be hard to track pods
without these resource requests and limits set. As a best practice, regularly run kube-advisor on your
AKS clusters.

130 Module 3 Module Using Azure Kubernetes Service

Deploy an AKS cluster
Deploy an AKS cluster using Azure CLI

In this section of the coruse, an AKS cluster is deployed using the Azure CLI. A multi-container application
consisting of web front end and a Redis instance is then run on the cluster. Once completed, the applica-
tion is accessible over the internet. You'll need a basic understanding of Kubernetes concepts, for detailed
information on Kubernetes see the Kubernetes documentation®. Once completed, the application is
accessible over the internet.

o0 e (< 0 52.179.23.131 v t ' +

Azure Voting App

Cats

Dogs

Reset

Cats -0 1 Dogs - 0

Create a resource group
Login to the Azure Portal (https://portal.azure.com) and launch the Azure Cloud Shell.

Create a resource group with the az group create command. An Azure resource group is a logical
group in which Azure resources are deployed and managed. When you create a resource group, you are
asked to specify a location. This location is where your resources run in Azure.

The following example creates a resource group named myAKSCluster in the eastus location.

az group create —--name myAKSCluster --location eastus

Output:

{
"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resource-

Groups/myAKSCluster",
"location": "eastus",
"managedBy": null,
"name": "myAKSCluster",
"properties": ({
"provisioningState": "Succeeded"

by

8 https://kubernetes.io/docs/home/

Deploy an AKS cluster 131

"tags": null

Create AKS cluster

Use the az aks create command to create an AKS cluster. The following example creates a cluster
named myAKSCluster with one node. Container health monitoring is also enabled using the —enable-ad-
dons monitoring parameter.

az aks create --resource-group myAKSCluster --name myAKSCluster --node-
count 1 --enable-addons monitoring --generate-ssh-keys

After several minutes, the command completes and returns JSON-formatted information about the
cluster.

Connect to the cluster
To manage a Kubernetes cluster, use kubect1, the Kubernetes command-line client.

If you're using Azure Cloud Shell, kubect1 is already installed. If you want to install it locally, use the az
aks install-cli command.

To configure kubect1 to connect to your Kubernetes cluster, use the az aks get-credentials
command. This step downloads credentials and configures the Kubernetes CLI to use them.

az aks get-credentials --resource-group myAKSCluster --name myAKSCluster

To verify the connection to your cluster, use the kubectl get command to return a list of the cluster
nodes. It can take a few minutes for the nodes to appear.

kubectl get nodes

Output:
NAME STATUS ROLES AGE VERSTION
k8s-myAKSCluster-36346190-0 Ready agent 2m v1.7.7

Run the application

A Kubernetes manifest file defines a desired state for the cluster, including what container images should
be running. For this example, a manifest is used to create all objects needed to run the Azure Vote
application. This manifest includes two Kubernetes deployments, one for the Azure Vote Python applica-
tions, and the other for a Redis instance. Also, two Kubernetes Services are created, an internal service for
the Redis instance, and an external service for accessing the Azure Vote application from the internet.

Create a file named azure-vote.yaml and copy into it the following YAML code. If you are working in
Azure Cloud Shell, this file can be created using vi or Nano as if working on a virtual or physical system.

apiVersion: apps/vl
kind: Deployment
metadata:

name: azure-vote-back

132 Module 3 Module Using Azure Kubernetes Service

spec:
replicas: 1
selector:
matchLabels:
app: azure-vote-back
template:
metadata:
labels:
app: azure-vote-back
spec:
containers:
- name: azure-vote-back
image: redis

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 250m

memory: 256Mi
ports:
- containerPort: 6379
name: redis
--- #separator
apivVersion: vl
kind: Service
metadata:
name: azure-vote-back
spec:
ports:
- port: 6379
selector:
app: azure-vote-back
-—- f#separator
apiVersion: apps/vl
kind: Deployment
metadata:
name: azure-vote-front
spec:
replicas: 1
selector:
matchLabels:
app: azure-vote-front
template:
metadata:
labels:
app: azure-vote-front
spec:
containers:
- name: azure-vote-front
image: microsoft/azure-vote-front:vl

MCT USE ONLY. STUDENT USE PROHIBITED

Deploy an AKS cluster

133

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 250m
memory: 256Mi
ports:

- containerPort: 80
env:
- name: REDIS
value: "azure-vote-back"
--- f#separator
apiVersion: vl
kind: Service
metadata:
name: azure-vote-front
spec:
type: LoadBalancer
ports:
- port: 80
selector:
app: azure-vote-front

Use the kubectl apply command to run the application.

kubectl apply -f azure-vote.yaml

Output:

deployment "azure-vote-back" created
service "azure-vote-back" created
deployment "azure-vote-front" created
service "azure-vote-front" created

Test the application

As the application is run, a Kubernetes service is created that exposes the application front end to the
internet. This process can take a few minutes to complete.

To monitor progress, use the kubectl get service command with the -—watch argument.

kubectl get service azure-vote-front --watch

Initially the EXTERNAL-IP for the azure-vote-front service appears as pending.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE
azure-vote-front LoadBalancer 10.0.37.27 <pending> 80:30572/TCP

6s

134 Module 3 Module Using Azure Kubernetes Service

Once the EXTERNAL-IP address has changed from pending to an IP address, use CTRL-C to stop the
kubectl watch process.

azure-vote-front LoadBalancer 10.0.37.27 52.179.23.131 80:30572/TCP
2m

Now browse to the external IP address to see the Azure Vote App.

o0 e [0 52.179.23.131

Azure Voting App

Cats

Dogs

Reset

Cats -0 1 Dogs - 0

Monitor health and logs

Monitor health and logs

When the AKS cluster was created, monitoring was enabled to capture health metrics for both the cluster
nodes and pods. These health metrics are available in the Azure portal. For more information on contain-
er health monitoring, see, see Monitor Azure Kubernetes Service health®.

It may take a few minutes for this data to populate in the Azure portal. To see current status, uptime, and
resource usage for the Azure Vote pods, complete the following steps:

1. Open a web browser to the Azure portal https://portal.azure.com.

2. Select your resource group, such as myResourceGroup, then select your AKS cluster, such as myAKS-
Cluster.

Under Monitoring on the left-hand side, choose Insights (preview)
Across the top, choose to + Add Filter

Select Namespace as the property, then choose <All but kube-system>

o Uk~ W

Choose to view the Containers.

The azure-vote-back and azure-vote-front containers are displayed, as shown in the following example:

9 https://docs.microsoft.com/en-us/azure/monitoring/monitoring-container-health

Deploy an AKS cluster

135

- - i ®
N lnyAKS_E_!.Jster Insights (preview)
r ~ = 7 ~
BT | Tmefisnge = Last 6 hours | | Nemes.. = <Al butiube... © | [(3 Asd Fater | » . E—
% Custer Nodes Controllers Containers D, Mok rescurce gy Leam mone ([Feul v o tingr togs 2
Actiity log
. [Saarch by i | e [=) ¢] Mo avg | sotn | s0en [osth | s Sl
i ALY item(s) Consainer 10
MAME STATUS S5TH % S5TH o nant RESTA.. USTIME TREND 95TH % (1 RAR 53050075801 Trechfed085eb4bd
Settings 6ad95302c9e331 0200890558054 7010
I is-ssh @0k 0% 08mc akemheecl. so-agewpo.. O 56 mins.
Q@ Upgrade Container Status
. B acurevote-back @ok 0% 0bmc anrevateb. skvagentpo. O 21 hours runaing
i scale
W e " W arurevote-tront @ox 0% 03mc ancesotefr. sagentpa. 0 21 hours Tmage
& Lo Image Tag
B Automation script latest
Container Creation Time Stamp
Monitoring 9/19/2018, 11:57:41 AM
9 insights (preview) Start Time
18, 11:57:41 AM
- 9/19/2018,
Finigh Time
logs £
Suppart + troublethooting P Limit
1940 me
& New support request
CPU Request
Ome
Memory Limit
53168
Memory Reguest
axe

b Environment Variables

To see logs for the azure-vote-front pod, select the View container logs link on the right-hand side
of the containers list. These logs include the stdout and stderr streams from the container.

Logs
New Query 1= +

defaultworkspace-19da35d3-Oale-. & m /j“m! S _\

m startDateTine = datetise('2018-00-19T13:45:00.0002");

= datetise('Z018-#9-10T19:54:50.6552');

ln ContainerldList = KubePodInventory

| -nm TineGenerated > startDateTise and TimeGenerated < endDteTise

Schema Filker (preview) «

No fiters available for the current query.

= 'daBf e,
| wm Clusteriase = “syAKSCluster®
| distinct ContainerID;
Containeriog
| where TimeGenerated >= startDateTise and TimeGemerated < endlatelime
| where ContainerID in (ContainerIdList)

Compileted
ETaEE JlCHART Columns ~

Drag a cobumn header and drop | hem 1o group by that colusn.

(DD Help 53 Settings [3 Query expiorer

Bl save @ Copylink (% Export [[) Setalert P Pin

I project LogEntrySource, LogEntry, TimeGenerated, Cosputer, Image, Name, ContainerID

@ 00:01:05.114

Ditsplary time (UTC+00:00) ~

LB

i ———— e T T

e 1 a4

legEntysouce V' LogEeey W TeeGererted [UTC] ¥ Computer v

> stdout ‘Connection ko 10.240.0.4 closed \iln agen

3 stdout logoutirin 2018-09-19T19:04:56.629 aks-agentpook- 14653408-0
3 stoout w0 agen agentpock

3 stdot DISTRIB_DD= Uty 2018-09-19T19:01:27.183 aks-agentpool-14653408-0
3 stdout DISTRIE_CODENAME =unrialfn. 2018-09-19T19:01:27.183 aks-agentpook 14603406-0
3 stdout DISTRIB_RELEASE= 16,0440 2018-09-19T19:01:27.183 aks-agentpook-14653408-0
3 sdot DISTRIE_DESCRIPTION="Utunby 16.04.5 LTS\ in 2018-09-19T19:01:27.183 aks-agentoook- 14653408-0
> sdout elo e G408 r 182 alks-agentpoot- 14653408-0
3 stdout o e 197 agentpoal

3 sdout 4.15.0-102 L -azurelyin 157 gen

3 sdot W 2018-09-19T19:01:19.818 aks-agentpook 14603406-0
3 stdout See \"man sudo_root\” for detalls. \rin agentpock

> oot To run & command as administrator (user ("roof)"], use |eado <com. 2018-09-19T19:01:19.818 aks-agentpook- 14653408-0

K

B 177 records

<

Beb bbb f b BB B R

FEEEERREREREEL

M %0 v Eemsperpage

8
k-3
3
i

Delete cluster

When the cluster is no longer needed, delete the cluster resource, which deletes all associated resources.
This operation can be completed in the Azure portal by selecting the Delete button on the AKS cluster
dashboard. Alternatively, the az aks delete command can be used in the Cloud Shell:

136 Module 3 Module Using Azure Kubernetes Service

az aks delete --resource-group myResourceGroup --name myAKSCluster --no-
wait

Note: When you delete the cluster, the Azure Active Directory service principal used by the AKS cluster is
not removed. For steps on how to remove the service principal, see AKS service principal considera-
tions and deletion™.

Get the code

In this tutorial, pre-created container images have been used to create a Kubernetes deployment. The
related application code, Dockerfile, and Kubernetes manifest file are available on GitHub.

https://github.com/Azure-Samples/azure-voting-app-redis

Deploy an AKS cluster using Azure Portal

Now, we'll cover deploying an AKS cluster using the Azure portal. The first step is to sign in to the Azure
portal: https://portal.azure.com.

Create an AKS cluster

In the top left-hand corner of the Azure portal, select Create a resource > Kubernetes Service.
To create an AKS cluster, complete the following steps:

1. Basics - Configure the following options:

e PROJECT DETAILS: Select an Azure subscription, then select or create an Azure resource group,
such as myResourceGroup. Enter a Kubernetes cluster name, such as myAKSCluster.

e CLUSTER DETAILS: Select a region, Kubernetes version, and DNS name prefix for the AKS cluster.

e SCALE: Select a VM size for the AKS nodes. The VM size cannot be changed once an AKS cluster
has been deployed.

e Select the number of nodes to deploy into the cluster. For this tutorial, set Node count to 1.
Node count can be adjusted after the cluster has been deployed.

10 https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#additional-considerations

Deploy an AKS cluster

137

Create Kubernetes cluster

Basics Authentication Networking Monitoring Tags Review + create

Azure Kubemetes Service (AKS) manages your hosted Kubemetes environment, making it quick and easy to deploy and manage
containerized applications without container orchestration expertise. It also eliminates the burden of ongoing operations and
maintenance by provisioning, upgrading, and scaling resources on demand, without taking your applications offline. Learn more about
Azure Kubernetes Service

PROJECT DETAILS

Select a subscription to manage deployed resources and costs. Use resource groups like folders to organize and manage all your
resources.

* Subscription @ Visual Studio Enterprise it
* Resource group @ (New) myResourceGroup i
Create new

CLUSTER DETAILS

* Kubernetes cluster name @ myAKSCluster ud
* Region @ West US N
* Kubernetes version @ 1112 N
* DNS name prefix @ myakscluster v]
SCALE

The number and size of nodes in your cluster. For production workloads, at least 3 nodes are recommended for resiliency. For
development or test workloads, only one node is required. You will not be able to change the node size after cluster creation, but you will
be able to change the number of nodes in your cluster after creation. Learn more about scaling in Azure Kubernetes Service

* Node size @ Standard D52 v2
2 vepus, 7 GB memory

Change size

* Node count @ O nnm

Previous Next : Authentication > Download a template for automation

Select Next: Authentication when complete.

Authentication: Configure the following options:

Create a new service principal or Configure to use an existing one. When using an existing SPN,

you need to provide the SPN client ID and secret.

Enable the option for Kubernetes role-based access controls (RBAC). These controls provide more

fine-grained control over access to the Kubernetes resources deployed in your AKS cluster.

Select Next: Networking when complete.

Networking: Configure the following networking options, which should be set as default:

Http application routing - Select Yes to configure an integrated ingress controller with automatic

public DNS name creation.

Network configuration - Select the Basic network configuration using the kubenet Kubernetes

plugin, rather than advanced networking configuration using Azure CNI.

Select Next: Monitoring when complete.

138 Module 3 Module Using Azure Kubernetes Service

7. When deploying an AKS cluster, Azure Container Insights can be configured to monitor health of the
AKS cluster and pods running on the cluster.

e Select Yes to enable container monitoring and select an existing Log Analytics workspace, or
create a new one.

e Select Review + create and then Create when ready.

It takes a few minutes to create the AKS cluster and to be ready for use. Browse to the AKS cluster
resource group, such as myResourceGroup, and select the AKS resource, such as myAKSCluster. The AKS
cluster dashboard is shown, as in the following example screenshot:

Group » myAKSChuster

B8 myAKS_CIuster P 4

8f271ech hep westus.azmkBs io

4 Scale
Properties
& Lo

Bl Automation script

:® View logs
52 Saarch and snalyoe

w Kubernetes dashboard

w1 connect to the &

Meritoring

Support + troubleshcoting

& New support request

Connect to the cluster

To manage a Kubernetes cluster, use kubect1, the Kubernetes command-line client. The kubect1 client
is pre-installed in the Azure Cloud Shell.

Open Cloud Shell using the button on the top right-hand corner of the Azure portal.

Deploy an AKS cluster 139

=
&
o

© Monitor containers @ View lags View Kubernetes dashboard

Requesting & Cloud Shall.Buccesded.
Comnacting terminal...

Welcome to Aoere Clood Shell

Typs "ax® to wss hmare CLI 3.0
Typs “halp® to learn showt Cloed Shell

PR — |

Use the az aks get-credentials command to configure kubectl to connect to your Kubernetes
cluster. The following example gets credentials for the cluster name myAKSCluster in the resource group
named myResourceGroup:

az aks get-credentials --resource-group myResourceGroup --name myAKSCluster

To verify the connection to your cluster, use the kubectl get command to return a list of the cluster
nodes.

kubectl get nodes

The following example output shows the single node created in the previous steps.

NAME STATUS ROLES AGE VERSION
aks-agentpool-14693408-0 Ready agent 10m vli.11.2

Run the application

Kubernetes manifest files define a desired state for a cluster, including what container images should be
running. In this quickstart, a manifest is used to create all the objects needed to run a sample Azure Vote
application. These objects include two Kubernetes deployments - one for the Azure Vote front end, and
the other for a Redis instance. Also, two Kubernetes Services are created - an internal service for the Redis
instance, and an external service for accessing the Azure Vote application from the internet.

Create a file named azure-vote.yaml and copy into it the following YAML code. If you are working in
Azure Cloud Shell, create the file using vi or Nano, as if working on a virtual or physical system.

apiVersion: apps/vl
kind: Deployment
metadata:

140 Module 3 Module Using Azure Kubernetes Service

name: azure-vote-back
spec:
replicas: 1
selector:
matchLabels:
app: azure-vote-back
template:
metadata:
labels:
app: azure-vote-back
spec:
containers:
- name: azure-vote-back
image: redis

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 250m

memory: 256Mi
ports:
- containerPort: 6379
name: redis
--- f#separator
apivVersion: vl
kind: Service
metadata:
name: azure-vote-back
spec:
ports:
- port: 6379
selector:
app: azure-vote-back
--- {#separator
apiVersion: apps/vl
kind: Deployment
metadata:
name: azure-vote-front
spec:
replicas: 1
selector:
matchLabels:
app: azure-vote-front
template:
metadata:
labels:
app: azure-vote-front
spec:
containers:
- name: azure-vote-front

MCT USE ONLY. STUDENT USE PROHIBITED

Deploy an AKS cluster

141

image: microsoft/azure-vote-front:vl

resources:
requests:
cpu: 100m
memory: 128Mi
limits:
cpu: 250m
memory: 256Mi
ports:

- containerPort: 80
env:
- name: REDIS
value: "azure-vote-back"
--- f#separator
apiVersion: vl
kind: Service
metadata:
name: azure-vote-front
spec:
type: LoadBalancer
ports:
- port: 80
selector:
app: azure-vote-front

Use the kubectl apply command to run the application.

kubectl apply -f azure-vote.yaml

The following example output shows the Kubernetes resources created on your AKS cluster:

deployment "azure-vote-back" created
service "azure-vote-back" created
deployment "azure-vote-front" created
service "azure-vote-front" created

Test the application

As the application is run, a Kubernetes service is created that exposes the application front end to the

internet. This process can take a few minutes to complete.

To monitor progress, use the kubectl get service command with the -—watch argument.

kubectl get service azure-vote-front --watch

Initially the EXTERNAL-IP for the azure-vote-front service appears as pending.

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT (S)
AGE
azure-vote-front LoadBalancer 10.0.37.27 <pending> 80:30572/TCP

6s

142 Module 3 Module Using Azure Kubernetes Service

Once the EXTERNAL-IP address has changed from pending to an IP address, use CTRL-C to stop the
kubectl watch process.

azure-vote-front LoadBalancer 10.0.37.27 52.179.23.131 80:30572/TCP

2m

Open a web browser to the external IP address of your service to see the Azure Vote App, as shown in the
following example:

ene < i 52.179.23131 i + o |

Azure Voting App

Cats

Dogs

Reset

Cats -0 1 Dogs - 0

Monitor health and logs

When the AKS cluster was created, monitoring was enabled to capture health metrics for both the cluster
nodes and pods. These health metrics are available in the Azure portal. For more information on contain-
er health monitoring, see, see Monitor Azure Kubernetes Service health™.

It may take a few minutes for this data to populate in the Azure portal. To see current status, uptime, and
resource usage for the Azure Vote pods, complete the following steps:

1. Open a web browser to the Azure portal https://portal.azure.com.

2. Select your resource group, such as myResourceGroup, then select your AKS cluster, such as myAKS-
Cluster.

Under Monitoring on the left-hand side, choose Insights (preview)
Across the top, choose to + Add Filter

Select Namespace as the property, then choose <All but kube-system >

o kW

Choose to view the Containers.

The azure-vote-back and azure-vote-front containers are displayed, as shown in the following example:

11 https://docs.microsoft.com/en-us/azure/monitoring/monitoring-container-health

Deploy an AKS cluster

143

- - i ®
N lnyAKS_E_!.Jster Insights (preview)
r ~ = 7 ~
BT | Tmefisnge = Last 6 hours | | Nemes.. = <Al butiube... © | [(3 Asd Fater | » . E—
% Custer Nodes Controllers Containers D, Mok rescurce gy Leam mone ([Feul v o tingr togs 2
Actiity log
. [Saarch by i | e [=) ¢] Mo avg | sotn | s0en [osth | s Sl
i ALY item(s) Consainer 10
MAME STATUS S5TH % S5TH o nant RESTA.. USTIME TREND 95TH % (1 RAR 53050075801 Trechfed085eb4bd
Settings 6ad95302c9e331 0200890558054 7010
I is-ssh @0k 0% 08mc akemheecl. so-agewpo.. O 56 mins.
Q@ Upgrade Container Status
. B acurevote-back @ok 0% 0bmc anrevateb. skvagentpo. O 21 hours runaing
i scale
W e " W arurevote-tront @ox 0% 03mc ancesotefr. sagentpa. 0 21 hours Tmage
& Lo Image Tag
B Automation script latest
Container Creation Time Stamp
Monitoring 9/19/2018, 11:57:41 AM
9 insights (preview) Start Time
18, 11:57:41 AM
- 9/19/2018,
Finigh Time
logs £
Suppart + troublethooting P Limit
1940 me
& New support request
CPU Request
Ome
Memory Limit
53168
Memory Reguest
axe

b Environment Variables

To see logs for the azure-vote-front pod, select the View container logs link on the right-hand side
of the containers list. These logs include the stdout and stderr streams from the container.

Logs
New Query 1= +

defaultworkspace-19da35d3-Oale-. & m /j“m! S _\

m startDateTine = datetise('2018-00-19T13:45:00.0002");

= datetise('Z018-#9-10T19:54:50.6552');

ln ContainerldList = KubePodInventory

| -nm TineGenerated > startDateTise and TimeGenerated < endDteTise

Schema Filker (preview) «

No fiters available for the current query.

= 'daBf e,
| wm Clusteriase = “syAKSCluster®
| distinct ContainerID;
Containeriog
| where TimeGenerated >= startDateTise and TimeGemerated < endlatelime
| where ContainerID in (ContainerIdList)

Compileted
ETaEE JlCHART Columns ~

Drag a cobumn header and drop | hem 1o group by that colusn.

(DD Help 53 Settings [3 Query expiorer

Bl save @ Copylink (% Export [[) Setalert P Pin

I project LogEntrySource, LogEntry, TimeGenerated, Cosputer, Image, Name, ContainerID

@ 00:01:05.114

Ditsplary time (UTC+00:00) ~

LB

i ———— e T T

e 1 a4

legEntysouce V' LogEeey W TeeGererted [UTC] ¥ Computer v

> stdout ‘Connection ko 10.240.0.4 closed \iln agen

3 stdout logoutirin 2018-09-19T19:04:56.629 aks-agentpook- 14653408-0
3 stoout w0 agen agentpock

3 stdot DISTRIB_DD= Uty 2018-09-19T19:01:27.183 aks-agentpool-14653408-0
3 stdout DISTRIE_CODENAME =unrialfn. 2018-09-19T19:01:27.183 aks-agentpook 14603406-0
3 stdout DISTRIB_RELEASE= 16,0440 2018-09-19T19:01:27.183 aks-agentpook-14653408-0
3 sdot DISTRIE_DESCRIPTION="Utunby 16.04.5 LTS\ in 2018-09-19T19:01:27.183 aks-agentoook- 14653408-0
> sdout elo e G408 r 182 alks-agentpoot- 14653408-0
3 stdout o e 197 agentpoal

3 sdout 4.15.0-102 L -azurelyin 157 gen

3 sdot W 2018-09-19T19:01:19.818 aks-agentpook 14603406-0
3 stdout See \"man sudo_root\” for detalls. \rin agentpock

> oot To run & command as administrator (user ("roof)"], use |eado <com. 2018-09-19T19:01:19.818 aks-agentpook- 14653408-0

K

B 177 records

<

Beb bbb f b BB B R

FEEEERREREREEL

M %0 v Eemsperpage

8
k-3
3
i

Delete cluster

When the cluster is no longer needed, delete the cluster resource, which deletes all associated resources.
This operation can be completed in the Azure portal by selecting the Delete button on the AKS cluster
dashboard. Alternatively, the az aks delete command can be used in the Cloud Shell:

144 Module 3 Module Using Azure Kubernetes Service

az aks delete --resource-group myResourceGroup --name myAKSCluster --no-
wait

Note: When you delete the cluster, the Azure Active Directory service principal used by the AKS cluster is
not removed. For steps on how to remove the service principal, see AKS service principal considera-
tions and deletion'2.

Get the code

In this tutorial, pre-created container images have been used to create a Kubernetes deployment. The
related application code, Dockerfile, and Kubernetes manifest file are available on GitHub.

https://github.com/Azure-Samples/azure-voting-app-redis

12 https://docs.microsoft.com/en-us/azure/aks/kubernetes-service-principal#additional-considerations

Publish a container image to Azure Container Registry ~ 145

Publish a container image to Azure Container
Registry

Azure Container Registry overview

Azure Container Registry is a managed Docker registry service based on the open-source Docker Registry
2.0. Create and maintain Azure container registries to store and manage your private Docker container
images.

Use container registries in Azure with your existing container development and deployment pipelines.
Use Azure Container Registry Build (ACR Build) to build container images in Azure. Build on demand, or
fully automate builds with source code commit and base image update build triggers.

For background about Docker and containers, see the Docker overview.

Use cases
Pull images from an Azure container registry to various deployment targets:

e Scalable orchestration systems that manage containerized applications across clusters of hosts,
including Kubernetes, DC/OS, and Docker Swarm.

e Azure services that support building and running applications at scale, including Azure Kubernetes
Service (AKS), App Service, Batch, Service Fabric, and others.

Developers can also push to a container registry as part of a container development workflow. For
example, target a container registry from a continuous integration and deployment tool such as Azure
DevOps Services or Jenkins.

Configure ACR Tasks to automatically rebuild application images when their base images are updated.
Use ACR Tasks to automate image builds when your team commits code to a Git repository.

Key concepts

e Registry - Create one or more container registries in your Azure subscription. Registries are available
in three SKUs: Basic, Standard, and Premium, each of which support webhook integration, registry
authentication with Azure Active Directory, and delete functionality. Take advantage of local, net-
work-close storage of your container images by creating a registry in the same Azure location as your
deployments. Use the geo-replication feature of Premium registries for advanced replication and
container image distribution scenarios. A fully qualified registry name has the form myregistry.

azurecr.io.

e You control access to a container registry using an Azure Active Directory-backed service principal or
a provided admin account. Run the standard docker login command to authenticate with a registry.

e Repository - A registry contains one or more repositories, which store groups of container images.
Azure Container Registry supports multilevel repository namespaces. With multilevel namespaces, you
can group collections of images related to a specific app, or a collection of apps to specific develop-
ment or operational teams. For example:

® myregistry.azurecr.io/aspnetcore:1.0.1 represents a corporate-wide image

13 https://docs.docker.com/engine/docker-overview/

146 Module 3 Module Using Azure Kubernetes Service

e myregistry.azurecr.io/warrantydept/dotnet-build represents an image used to build
.NET apps, shared across the warranty department

e myregistry.azurecr.io/warrantydept/customersubmissions/web represents a web
image, grouped in the customer submissions app, owned by the warranty department

e Image - Stored in a repository, each image is a read-only snapshot of a Docker-compatible container.
Azure container registries can include both Windows and Linux images. You control image names for
all your container deployments. Use standard Docker commands to push images into a repository, or
pull an image from a repository. In addition to container images, Azure Container Registry stores
related content formats such as Helm charts, used to deploy applications to Kubernetes.

e Container - A container defines a software application and its dependencies wrapped in a complete
filesystem including code, runtime, system tools, and libraries. Run Docker containers based on
Windows or Linux images that you pull from a container registry. Containers running on a single
machine share the operating system kernel. Docker containers are fully portable to all major Linux
distros, macOS, and Windows.

Azure Container Registry Tasks

Azure Container Registry Tasks (ACR Tasks) is a suite of features within Azure Container Registry that
provides streamlined and efficient Docker container image builds in Azure. Use ACR Tasks to extend your
development inner-loop to the cloud by offloading docker build operations to Azure. Configure build
tasks to automate your container OS and framework patching pipeline, and build images automatically
when your team commits code to source control.

Multi-step tasks, a preview feature of ACR Tasks, provides step-based task definition and execution for
building, testing, and patching container images in the cloud. Task steps define individual container
image build and push operations. They can also define the execution of one or more containers, with
each step using the container as its execution environment.

Deploy an image to ACR using Azure CLI

Azure Container Registry is a managed Docker container registry service used for storing private Docker
container images. This guide details creating an Azure Container Registry instance using the Azure CLI.
Then, use Docker commands to push a container image into the registry, and finally pull and run the
image from your registry.

This guide requires that you are running the Azure CLI (version 2.0.55 or later recommended). Run az
--version to find the version. If you need to install or upgrade, see Install Azure CLI™.

You must also have Docker installed locally. Docker provides packages that easily configure Docker on
any macOS, Windows, or Linux system.

Because the Azure Cloud Shell doesn't include all required Docker components (the dockerd daemon),
you can't use the Cloud Shell for this guide.

Create a resource group

Create a resource group with the az group create command. An Azure resource group is a logical
container into which Azure resources are deployed and managed.

The following example creates a resource group named myResourceGroup in the eastus location.

14 https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest

Publish a container image to Azure Container Registry 147

az group create --name myResourceGroup --location eastus

Create a container registry

In this guide you create a Basic registry. Azure Container Registry is available in several different SKUs,
described briefly in the following table. For extended details on each, see Container registry SKUs"".

Create an ACR instance using the az acr create command. The registry name must be unique within
Azure, and contain 5-50 alphanumeric characters. In the following example, myContainerRegistry007 is
used. Update this to a unique value.

az acr create --resource-group myResourceGroup --name myContainerRegis-—

try007 --sku Basic

When the registry is created, the output is similar to the following:

{

"adminUserEnabled": false,

"creationDate": "2017-09-08T22:32:13.175925+00:00",

"id": "/subscriptions/00000000-0000-0000-0000-000000000000/resource-
Groups/myResourceGroup/providers/Microsoft.ContainerRegistry/registries/
myContainerRegistry007",

"location": "eastus",

"loginServer": "myContainerRegistry007.azurecr.io",

"name": "myContainerRegistry007",

"provisioningState": "Succeeded",

"resourceGroup": "myResourceGroup",

"sku": {

"name": "Basic",
"tier"™: "Basic"

by

"status": null,

"storageAccount": null,

"tags": {},

"type": "Microsoft.ContainerRegistry/registries"

Important: Take note of loginServer in the output, which is the fully qualified registry name (all
lowercase). Throughout the rest of this guide <acrName> is a placeholder for the container registry
name.

Log in to registry

Before pushing and pulling container images, you must log in to the ACR instance. To do so, use the az
acr login command.
az acr login --name <acrName>

The command returns a Login Succeeded message once completed.

15 https://docs.microsoft.com/en-us/azure/container-registry/container-registry-skus

148 Module 3 Module Using Azure Kubernetes Service

Push image to registry

To push an image to an Azure Container registry, you must first have an image. If you don't yet have any
local container images, run the following docker pull command to pull an existing image from Docker
Hub. For this example, pull the hello-world image.

docker pull hello-world

Before you can push an image to your registry, you must tag it with the fully qualified name of your ACR
login server. The login server name is in the format <registry-name>.azurecr.io (all lowercase), for exam-
ple, mycontainerregistry007.azurecr.io.

Tag the image using the docker tag command. Replace <acrLoginServer> with the login server
name of your ACR instance.

docker tag hello-world <acrLoginServer>/hello-world:vl

Finally, use docker push to push the image to the ACR instance. Replace <acrLoginServer> with the
login server name of your ACR instance. This example creates the hello-world repository, containing the
hello-world:vl image.

docker push <acrLoginServer>/hello-world:vl

After pushing the image to your container registry, remove the hello-world:v1 image from your local
Docker environment. (Note that this docker rmi command does not remove the image from the
hello-world repository in your Azure container registry.)

docker rmi <acrLoginServer>/hello-world:vl

List container images
The following example lists the repositories in your registry:

az acr repository list --name <acrName> --output table

Output:

Result

The following example lists the tags on the busybox repository.

az acr repository show-tags --name <acrName> --repository busybox --output
table

Output:

Result

Publish a container image to Azure Container Registry ~ 149

Run image from registry

Now, you can pull and run the hello-world:v1 container image from your container registry by using
docker run:

docker run <acrLoginServer>/hello-world:vl

Example output:

Unable to find image 'mycontainerregistry007.azurecr.io/hello-world:vl'
locally

vl: Pulling from hello-world

Digest: sha256:662dd8e65ef7ccfl3£417962¢c2£77567d3b132£12c95909de6c85ac—
3c326a345

Status: Downloaded newer image for mycontainerregistry007.azurecr.io/
hello-world:vl

Hello from Docker!
This message shows that your installation appears to be working correctly.

Clean up resources

When no longer needed, you can use the az group delete command to remove the resource group,
the container registry, and the container images stored there.

az group delete --name myResourceGroup

150 Module 3 Module Using Azure Kubernetes Service

Create and run container images in Azure Con-
tainer Instances

Azure Container Instances overview

Containers are becoming the preferred way to package, deploy, and manage cloud applications. Azure
Container Instances offers the fastest and simplest way to run a container in Azure, without having to
manage any virtual machines and without having to adopt a higher-level service.

Azure Container Instances is a great solution for any scenario that can operate in isolated containers,
including simple applications, task automation, and build jobs. For scenarios where you need full contain-
er orchestration, including service discovery across multiple containers, automatic scaling, and coordinat-
ed application upgrades, we recommend Azure Kubernetes Service (AKS).

Below is an overview of the features of Azure Container Instances.

Feature Description

Fast startup times Containers offer significant startup benefits over
virtual machines. Azure Container Instances can
start containers in Azure in seconds, without the
need to provision and manage VMs.

Public IP connectivity and DNS name Azure Container Instances enables exposing your
containers directly to the internet with an IP
address and a fully qualified domain name
(FQDN). When you create a container instance,
you can specify a custom DNS name label so your
application is reachable at customlabel.azurere-
gion.azurecontainer.io.

Hypervisor-level security Historically, containers have offered application
dependency isolation and resource governance
but have not been considered sufficiently hard-
ened for hostile multi-tenant usage. Azure Con-
tainer Instances guarantees your application is as
isolated in a container as it would be in a VM.

Custom sizes As demand for resources increases, the nodes of
an AKS cluster can be scaled out to match. If
resource demand drops, nodes can be removed by
scaling in the cluster. AKS scale operations can be
completed using the Azure portal or the Azure CLI.
For compute-intensive jobs such as machine
learning, Azure Container Instances can schedule
Linux containers to use NVIDIA Tesla GPU resourc-
es (preview).

Persistent storage To retrieve and persist state with Azure Container
Instances, we offer direct mounting of Azure Files
shares.

Create and run container images in Azure Container Instances 151

Linux and Windows containers Azure Container Instances can schedule both
Windows and Linux containers with the same API.
Simply specify the OS type when you create your
container groups.

Some features are currently restricted to Linux
containers. While we work to bring feature parity
to Windows containers, you can find current
platform differences in Quotas and region
availability for Azure Container Instances
(https.//docs.microsoft.com/en-us/azure/contain-
er-instances/container-instances-quotas).

Azure Container Instances supports Windows
images based on Long-Term Servicing Channel
(LTSC) versions. Windows Semi-Annual Channel
(SAC) releases like 1709 and 1803 are unsupport-
ed.

Co-scheduled groups Azure Container Instances supports scheduling of
multi-container groups that share a host machine,
local network, storage, and lifecycle. This enables
you to combine your main application container
with other supporting role containers, such as
logging sidecars.

Virtual network deployment (preview) Currently in preview, this feature of Azure Contain-
er Instances enables deployment of container
instances into an Azure virtual network. By deploy-
ing container instances into a subnet within your
virtual network, they can communicate securely
with other resources in the virtual network,
including those that are on premises (through VPN
gateway or ExpressRoute).

Important: Certain features of Azure Container Instances are in preview, and some limitations apply'®.
Previews are made available to you on the condition that you agree to the supplemental terms of use'”.
Some aspects of these features may change prior to general availability (GA).

Create container for deployment to ACI

Azure Container Instances enables deployment of Docker containers onto Azure infrastructure without
provisioning any virtual machines or adopting a higher-level service. In this tutorial, you package a small
Node.js web application into a container image that can be run using Azure Container Instances.

In this article you:
e Clone application source code from GitHub
e Create a container image from application source

e Test the image in a local Docker environment

16 https://docs.microsoft.com/en-us/azure/container-instances/container-instances-vnet#preview-limitations
17 https://azure.microsoft.com/support/legal/preview-supplemental-terms/

152 Module 3 Module Using Azure Kubernetes Service

In tutorial parts two and three, you upload your image to Azure Container Registry, and then deploy it to
Azure Container Instances.

Before you begin
You must satisfy the following requirements to complete this tutorial:

Azure CLI: You must have Azure CLI version 2.0.29 or later installed on your local computer. Run az
--version to find the version. If you need to install or upgrade, see Install the Azure CLI™.

Docker: This tutorial assumes a basic understanding of core Docker concepts like containers, container
images, and basic docker commands. For a primer on Docker and container basics, see the [Docker
overview]https://docs.docker.com/engine/docker-overview/.

Docker Engine: To complete this tutorial, you need Docker Engine installed locally. Docker provides
packages that configure the Docker environment on macOS"®, Windows?’, and Linux?'.

Important: Because the Azure Cloud shell does not include the Docker daemon, you must install both
the Azure CLI and Docker Engine on your local computer to complete this tutorial. You cannot use the
Azure Cloud Shell for this tutorial.

Get application code

The sample application in this tutorial is a simple web app built in Node.js. The application serves a static
HTML page, and you can use Git to clone the sample application’s repository:

git clone https://github.com/Azure-Samples/aci-helloworld.git

You can also download the ZIP archive? from GitHub directly.

Build the container image

The Dockerfile in the sample application shows how the container is built. It starts from an official Node.
js image?® based on Alpine Linux, a small distribution that is well suited for use with containers. It then
copies the application files into the container, installs dependencies using the Node Package Manager,
and finally, starts the application.

FROM node:8.9.3-alpine

RUN mkdir -p /usr/src/app

COPY ./app/ /usr/src/app/
WORKDIR /usr/src/app

RUN npm install

CMD node /usr/src/app/index.]js

Use the docker build command to create the container image and tag it as aci-tutorial-app:

docker build ./aci-helloworld -t aci-tutorial-app

18 https://docs.microsoft.com/cli/azure/install-azure-cli

19 https://docs.docker.com/docker-for-mac/

20 https://docs.docker.com/docker-for-windows/

21 https://docs.docker.com/engine/installation/#supported-platforms
22 https://github.com/Azure-Samples/aci-helloworld/archive/master.zip
23 https://store.docker.com/images/node

Create and run container images in Azure Container Instances

153

Output from the docker build command is similar to the following (truncated for readability):

S docker build ./aci-helloworld -t aci-tutorial-app

Sending build context to Docker daemon 119.3kB

Step 1/6 : FROM node:8.9.3-alpine

8.9.3-alpine: Pulling from library/node
88286£f41530e: Pull complete

84f3a4bf8410: Pull complete

d0d9b2214720: Pull complete

Digest: sha256:c73277ccc763752b42bb2400dlaaecb4e3d32e3a9dbed-

d0e49885c71beal7354

Status: Downloaded newer image for node:8.9.3-alpine
---> 90f5ee24bee2

Step 6/6 : CMD node /usr/src/app/index.js
---> Running in f4aleal99%eec
---> 6edad76d09%e9
Removing intermediate container f4alea099%eec
Successfully built 6edad76d09e9
Successfully tagged aci-tutorial-app:latest

Use the docker images command to see the built image:

docker images

Your newly built image should appear in the list:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
aci-tutorial-app latest 5¢745774dfa9 39 seconds ago 68.1 MB

Run the container locally

Before you deploy the container to Azure Container Instances, use docker run to run it locally and

confirm that it works. The -d switch lets the container run in the background, while -p allows you to map

an arbitrary port on your computer to port 80 in the container.

docker run -d -p 8080:80 aci-tutorial-app

Output from the docker run command displays the running container's ID if the command was
successful:

$ docker run -d -p 8080:80 aci-tutorial-app
a2e3e4435db58ab0c664ce521854c2elalbda88c9cf2fcffd6aedf48df86cect

Now, navigate to http://localhost:8080 in your browser to confirm that the container is running. You
should see a web page similar to the following:

154 Module 3 Module Using Azure Kubernetes Service

o0 e < u| @ localhost:8080 :])

Welcome to Azure Container Instances!

Next Steps

Now that you have created the container, and confirmed that it works, you need to publish the container
image to the Azure Container Registry. Follow the steps in the previous lesson.

Deploy a container to ACI

In the last tutorial a container image was create and pushed to the Azure Container Registry. Now, you
will deploy the container to Azure Container Instances.

In this tutorial, you:
e Deploy the container from Azure Container Registry to Azure Container Instances
e View the running application in the browser

e Display the container's logs

Before you begin
You must satisfy the following requirements to complete this tutorial:

Azure CLI: You must have Azure CLI version 2.0.29 or later installed on your local computer. Run az
--version to find the version. If you need to install or upgrade, see Install the Azure CLI**.

Docker: This tutorial assumes a basic understanding of core Docker concepts like containers, container
images, and basic docker commands. For a primer on Docker and container basics, see the [Docker
overview]https://docs.docker.com/engine/docker-overview/.

Docker Engine: To complete this tutorial, you need Docker Engine installed locally. Docker provides
packages that configure the Docker environment on macOS?*, Windows?¢, and Linux?’.

Important: Because the Azure Cloud shell does not include the Docker daemon, you must install both
the Azure CLI and Docker Engine on your local computer to complete this tutorial. You cannot use the
Azure Cloud Shell for this tutorial.

24 https://docs.microsoft.com/cli/azure/install-azure-cli

25 https://docs.docker.com/docker-for-mac/

26 https://docs.docker.com/docker-for-windows/

27 https://docs.docker.com/engine/installation/#supported-platforms

Create and run container images in Azure Container Instances 155

Deploy the container using the Azure CLI

In this section, you use the Azure CLI to deploy the image you have already built and pushed to Azure
Container Registry. Be sure you've completed those steps before proceeding.

Get registry credentials

When you deploy an image that's hosted in a private container registry you must supply the registry's
credentials.

First, get the full name of the container registry login server (replace <acrName> with the name of your
registry):

az acr show --name <acrName> --query loginServer

Next, get the container registry password:

az acr credential show --name <acrName> --query "passwords[0].value"

Deploy container

Now, use the az container create command to deploy the container. Replace <acrLoginServer> and
<acrPassword> with the values you obtained from the previous two commands. Replace <acrName>
with the name of your container registry and <acibnsLabel> with desired DNS name.

az container create --resource-group myResourceGroup --name aci-tutori-
al-app --image <acrLoginServer>/aci-tutorial-app:vl --cpu 1 --memory 1
--registry-login-server <acrLoginServer> --registry-username <acrName>

--registry-password <acrPassword> --dns-name-label <aciDnsLabel> --ports 80

Within a few seconds, you should receive an initial response from Azure. The --dns-name-1label value
must be unique within the Azure region you create the container instance. Modify the value in the
preceding command if you receive a DNS name label error message when you execute the command.

Verify deployment progress
To view the state of the deployment, use az container show:

az container show --resource-group myResourceGroup --name aci-tutorial-app
--query instanceView.state

Repeat the az container show command until the state changes from Pending to Running, which
should take under a minute. When the container is Running, proceed to the next step.

View the application and container logs

Once the deployment succeeds, display the container's fully qualified domain name (FQDN) with the az
container show command:

az container show --resource-group myResourceGroup --name aci-tutorial-app
-—query ipAddress.fqgdn

156 Module 3

Module Using Azure Kubernetes Service

For

example:

$ az container show --resource-group myResourceGroup --name aci-tutori-

al-app --query ipAddress.fgdn

"aci-demo.eastus.azurecontainer.io"

To see the running application, navigate to the displayed DNS name in your favorite browser:

® < il aci-demo.eastus.azurecontainerio & th a +

Welcome to Azure Container Instances!

You can also view the log output of the container:

az container logs —--resource-group myResourceGroup --name aci-tutorial-app

Example output:

$ az container logs --resource-group myResourceGroup --name aci-tutori-
al-app

listening on port 80

::ffff:10.240.0.4 - - [21/Jul/2017:06:00:02 +0000] "GET / HTTP/1.1" 200 1663

"-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10 12 5) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36"

::ffff:10.240.0.4 - - [21/Jul/2017:06:00:02 +0000] "GET /favicon.ico
HTTP/1.1" 404 150 "http://aci-demo.eastus.azurecontainer.io/" "Mozilla/5.0
(Macintosh; Intel Mac O0S X 10 12 5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/59.0.3071.115 Safari/537.36"

Clean up resources

If you no longer need any of the resources you created in this tutorial series, you can execute the az
group delete command to remove the resource group and all resources it contains. This command
deletes the container registry you created, as well as the running container, and all related resources.

az group delete —--name myResourceGroup

Create and run container images in Azure Container Instances 157

Implement an application using Virtual Kublet

When using the Virtual Kubelet provider for Azure Container Instances, both Linux and Windows contain-
ers can be scheduled on a container instance as if it is a standard Kubernetes node. This configuration
allows you to take advantage of both the capabilities of Kubernetes and the management value and cost
benefit of container instances.

Note: Virtual Kubelet is an experimental open source project and should be used as such. To contribute,
file issues, and read more about virtual kubelet, see the Virtual Kubelet GitHub project®.

Prerequisites

This guide assumes that you have an AKS cluster. You also need the Azure CLI version 2.0.33 or later. Run
az --version to find the version.

To install the Virtual Kubelet, Helm? is also required.

For RBAC-enabled clusters

If your AKS cluster is RBAC-enabled, you must create a service account and role binding for use with
Tiller.

A ClusterRoleBinding must also be created for the Virtual Kubelet. To create a binding, create a file named
rbac-virtualkubelet.yaml and paste the following definition:

apiVersion: rbac.authorization.k8s.io/vlbetal
kind: ClusterRoleBinding
metadata:
name: virtual-kubelet
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: cluster-admin
subjects:
- kind: ServiceAccount
name: default
namespace: default

Apply the binding with kubectl apply and specify your rbac-virtualkubelet.yam! file, as shown in the
following example:

S kubectl apply -f rbac-virtual-kubelet.yaml

clusterrolebinding.rbac.authorization.k8s.io/virtual-kubelet created

You can now continue to installing the Virtual Kubelet into your AKS cluster.

28 https://github.com/virtual-kubelet/virtual-kubelet
29 https://docs.helm.sh/using_helm/#installing-helm

158 Module 3 Module Using Azure Kubernetes Service

Installation

Use the az aks install-connector command to install Virtual Kubelet. The following example
deploys both the Linux and Windows connector.

az aks install-connector --resource-group myAKSCluster --name myAKSCluster

—--connector-name virtual-kubelet --os-type Both

These arguments are available for the aks install-connector command.

kubelet container image.

Argument Description Required
--connector-name Name of the ACI Connector. Yes
--name Name of the managed cluster. Yes
—--resource-group Name of resource group. Yes
--os-type Container instances operating No
system type. Allowed values:
Both, Linux, Windows. Default:
Linux.
--aci-resource-group The resource group in which to No
create the ACI container groups.
--location The location to create the ACI No
container groups.
--service-principal Service principal used for No
authentication to Azure APIs.
--client-secret Secret associated with the No
service principal.
--chart-url URL of a Helm chart that installs | No
ACI Connector.
--image-tag The image tag of the virtual No

Validate Virtual Kubelet

To validate that Virtual Kubelet has been installed, return a list of Kubernetes nodes using the kubect1

get nodes command.

$ kubectl get nodes

NAME
SION

aks-nodepooll-23443254-0

v1.9.6

aks-nodepooll-23443254-1

v1.9.6

aks-nodepooll-23443254-2

v1.9.6

virtual-kubelet-virtual-kubelet-1linux

v1.8.3

virtual-kubelet-virtual-kubelet-win

v1l.8.3

STATUS

Ready

Ready

Ready

Ready

Ready

ROLES

agent

agent

agent

agent

agent

AGE

led

led

led

dm

4m

VER-

Create and run container images in Azure Container Instances

159

Run Linux container

Create a file named virtual-kubelet-linux.yam! and copy in the following YAML. Replace the kuber-

netes.io/hostname value with the name of the Linux Virtual Kubelet node. Take note that a nodeSe-

lector and toleration are being used to schedule the container on the node.

apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: aci-helloworld
spec:

replicas: 1

template:

metadata:

labels:
app: aci-helloworld

spec:

containers:

- name: aci-helloworld
image: microsoft/aci-helloworld
ports:

- containerPort: 80

nodeSelector:
kubernetes.io/hostname: virtual-kubelet-virtual-kubelet-linux

tolerations:

- key: azure.com/aci
effect: NoSchedule

Run the application with the kubectl create command.

kubectl create -f virtual-kubelet-linux.yaml

Use the kubectl get pods command with the -o wide argument to output a list of pods with the
scheduled node. Notice that the aci-helloworld pod has been scheduled on the virtual-kube-

let-virtual-kubelet-1linux node.

S kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
IP NODE
aci-helloworld-2559879000-8vmjw 1/1 Running 0 39s

52.179.3.180 virtual-kubelet-virtual-kubelet-linux

Run Windows container

Create a file named virtual-kubelet-windows.yaml and copy in the following YAML. Replace the kuber-

netes.io/hostname value with the name of the Windows Virtual Kubelet node. Take note that a
nodeSelector and toleration are being used to schedule the container on the node.

apiVersion: apps/vlbetal
kind: Deployment
metadata:

160 Module 3 Module Using Azure Kubernetes Service

name: nanoserver-iis
spec:
replicas: 1
template:
metadata:
labels:
app: nanoserver-iis
spec:
containers:
- name: nanoserver-iis
image: nanoserver/iis

ports:

- containerPort: 80
nodeSelector:

kubernetes.io/hostname: virtual-kubelet-virtual-kubelet-win
tolerations:

- key: azure.com/aci
effect: NoSchedule

Run the application with the kubectl create command.

kubectl create -f virtual-kubelet-windows.yaml

Use the kubectl get pods command with the -o wide argument to output a list of pods with the
scheduled node. Notice that the nanoserver-iis pod has been scheduled on the virtual-kube-
let-virtual-kubelet-win node.

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE
IP NODE
nanoserver-iis-868bc8d489-tg4st 1/1 Running 8 21lm

138.91.121.91 virtual-kubelet-virtual-kubelet-win

MCT USE ONLY. STUDENT USE PROHIBITED

Review Questions 161

Review Questions

Module 3 Review Questions

Managing Kubernetes Service Clusters
You manage several Azure subscriptions for an organization.

You have a multi-container application that consists of a web front-end and a Redis instance that runs on
an Azure Kubernetes Service (AKS) cluster.

You need to manage the AKS cluster by using the command line.

What tool should you use? How should you deploy the tool?

Suggested Answer |

To manage a Kubernetes cluster, use kubectl, the Kubernetes command-line client.

If you are using Azure Cloud Shell, kubectl is already installed. If you want to install it locally, use the az
aks install-cli command.

To configure kubectl to connect to your Kubernetes cluster, use the az aks get-credentials command.
This step downloads credentials and configures the Kubernetes CLI to use them

Azure Container Registry
You manage a multi-container application based on Docker Registry 2.0.

You deploy Azure Container Registry (ACR) and create Azure container registries to store your private
Docker container images.

What are the key concepts of ACR you must consider?

Suggested Answer |

Registry - Create one or more container registries in your Azure subscription. Registries are available in
three SKUs: Basic, Standard, and Premium, each of which support webhook integration, registry authenti-
cation with Azure Active Directory, and delete functionality.

Repository - A registry contains one or more repositories, which are groups of container images.
Image - Stored in a repository, each image is a read-only snapshot of a Docker container.

Container - A container defines a software application and its dependencies wrapped in a complete
filesystem including code, runtime, system tools, and libraries. Run Docker containers based on Windows
or Linux images that you pull from a container registry.

Azure Container Registry SKUs

You manage a multi-container application based on Docker Registry 2.0.

162 Module 3 Module Using Azure Kubernetes Service

You need to deploy Azure Container Registry (ACR) and create Azure container registries to store your
private Docker container images.

Your application requires geo-replication of content.

What version of ACR should you use and why?

Suggested Answer |

Azure Container Registry is available in the following SKUS: Basic, Standard, and Premium. Standard offers
higher storage limits and throughput than basic. Premium accounts add geo-replication and other
features to help you manage high-volume scenarios.

Module 4 Module Understanding Azure Func-
tions

Azure Functions overview

Introduction to Azure Functions

Azure Functions is a solution for easily running small pieces of code, or “functions,” in the cloud. You can
write just the code you need for the problem at hand, without worrying about a whole application or the
infrastructure to run it. Functions can make development even more productive, and you can use your
development language of choice, such as C#, F#, Node.js, Java, or PHP. Pay only for the time your code
runs and trust Azure to scale as needed. Azure Functions lets you develop serverless applications on
Microsoft Azure.

What can | do with Functions?

Functions is a great solution for processing data, integrating systems, working with the internet-of-things
(IoT), and building simple APIs and microservices. Consider Functions for tasks like image or order
processing, file maintenance, or for any tasks that you want to run on a schedule.

Functions provides templates to get you started with key scenarios, including the following:
e HTTPTrigger - Trigger the execution of your code by using an HTTP request.
e TimerTrigger - Execute cleanup or other batch tasks on a predefined schedule.

e GitHub webhook - Respond to events that occur in your GitHub repositories. Generic webhook -
Process webhook HTTP requests from any service that supports webhooks.

e CosmosDBTrigger - Process Azure Cosmos DB documents when they are added or updated in
collections in a NoSQL database.

e BlobTrigger - Process Azure Storage blobs when they are added to containers. You might use this
function for image resizing.

e QueueTrigger - Respond to messages as they arrive in an Azure Storage queue.

164 Module 4 Module Understanding Azure Functions

e EventHubTrigger - Respond to events delivered to an Azure Event Hub. Particularly useful in applica-
tion instrumentation, user experience or workflow processing, and Internet of Things (IoT) scenarios.

e ServiceBusQueueTrigger - Connect your code to other Azure services or on-premises services by
listening to message queues.

e ServiceBusTopicTrigger - Connect your code to other Azure services or on-premises services by
subscribing to topics.

Azure Functions supports triggers, which are ways to start execution of your code, and bindings, which are
ways to simplify coding for input and output data.

Integrations

Azure Functions integrates with various Azure and 3rd-party services. These services can trigger your
function and start execution, or they can serve as input and output for your code. The following service
integrations are supported by Azure Functions:

e Azure Cosmos DB

e Azure Event Hubs

e Azure Event Grid

e Azure Notification Hubs

e Azure Service Bus (queues and topics)

e Azure Storage (blob, queues, and tables)
e On-premises (using Service Bus)

e Twilio (SMS messages)

How much does Functions cost?
Azure Functions has two kinds of pricing plans. Choose the one that best fits your needs:

e Consumption plan - When your function runs, Azure provides all of the necessary computational
resources. You don't have to worry about resource management, and you only pay for the time that
your code runs.

e App Service plan - Run your functions just like your web apps. When you are already using App
Service for your other applications, you can run your functions on the same plan at no additional cost.

For more information about hosting plans, see Azure Functions hosting plan comparison'.

Azure Functions scale and hosting concepts

Azure Functions runs in two different modes: Consumption plan and Azure App Service plan. The Con-
sumption plan automatically allocates compute power when your code is running. Your app is scaled out
when needed to handle load, and scaled down when code is not running. You don't have to pay for idle
VMs or reserve capacity in advance.

When you create a function app, you choose the hosting plan for functions in the app. In either plan, an
instance of the Azure Functions host executes the functions. The type of plan controls:

e How host instances are scaled out.

1 https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale

Azure Functions overview 165

e The resources that are available to each host.

Important: You must choose the type of hosting plan during the creation of the function app. You can't
change it afterward.

On an App Service plan, you can scale between tiers to allocate different amount of resources. On the
Consumption plan, Azure Functions automatically handles all resource allocation.

Consumption plan

When you're using a Consumption plan, instances of the Azure Functions host are dynamically added and
removed based on the number of incoming events. This serverless plan scales automatically, and you're
charged for compute resources only when your functions are running. On a Consumption plan, a function
execution times out after a configurable period of time.

Note: The default timeout for functions on a Consumption plan is 5 minutes. The value can be increased
for the Function App up to a maximum of 10 minutes by changing the property functionTimeout in
the host.json project file.

Billing is based on number of executions, execution time, and memory used. Billing is aggregated across
all functions within a function app.

The Consumption plan is the default hosting plan and offers the following benefits:
e Pay only when your functions are running.

e Scale out automatically, even during periods of high load.

App Service plan

In the dedicated App Service plan, your function apps run on dedicated VMs on Basic, Standard, Premi-
um, and Isolated SKUs, which is the same as other App Service apps. Dedicated VMs are allocated to your
function app, which means the functions host can be always running. App Service plans support Linux.

Consider an App Service plan in the following cases:
e You have existing, underutilized VMs that are already running other App Service instances.

e Your function apps run continuously, or nearly continuously. In this case, an App Service Plan can be
more cost-effective.

e You need more CPU or memory options than what is provided on the Consumption plan.

e Your code needs to run longer than the maximum execution time allowed on the Consumption plan,
which is up to 10 minutes.

e You require features that are only available on an App Service plan, such as support for App Service
Environment, VNET/VPN connectivity, and larger VM sizes.

e You want to run your function app on Linux, or you want to provide a custom image on which to run
your functions.

A VM decouples cost from number of executions, execution time, and memory used. As a result, you
won't pay more than the cost of the VM instance that you allocate. With an App Service plan, you can
manually scale out by adding more VM instances, or you can enable autoscale.

When running JavaScript functions on an App Service plan, you should choose a plan that has fewer
vCPUs.

166 Module4 Module Understanding Azure Functions

Always On

If you run on an App Service plan, you should enable the Always on setting so that your function app
runs correctly. On an App Service plan, the functions runtime goes idle after a few minutes of inactivity,
so only HTTP triggers will “wake up” your functions. Always on is available only on an App Service plan.
On a Consumption plan, the platform activates function apps automatically.

Storage account requirements

On either a Consumption plan or an App Service plan, a function app requires a general Azure Storage
account, which supports Azure Blob, Queue, Files, and Table storage. This is because Functions relies on
Azure Storage for operations such as managing triggers and logging function executions, but some
storage accounts do not support queues and tables. These accounts, which include blob-only storage
accounts (including premium storage) and general-purpose storage accounts with zone-redundant
storage replication, are filtered-out from your existing Storage Account selections when you create a
function app.

How the Consumption plan works

In the Consumption plan, the scale controller automatically scales CPU and memory resources by adding
additional instances of the Functions host, based on the number of events that its functions are triggered
on. Each instance of the Functions host is limited to 1.5 GB of memory. An instance of the host is the
function app, meaning all functions within a function app share resource within an instance and scale at
the same time. Function apps that share the same Consumption plan are scaled independently.

When you use the Consumption hosting plan, function code files are stored on Azure Files shares on the
function's main storage account. When you delete the main storage account of the function app, the
function code files are deleted and cannot be recovered.

Note: When you're using a blob trigger on a Consumption plan, there can be up to a 10-minute delay in
processing new blobs. This delay occurs when a function app has gone idle. After the function app is
running, blobs are processed immediately. To avoid this cold-start delay, use an App Service plan with
Always On enabled, or use the Event Grid trigger.

Runtime scaling

Azure Functions uses a component called the scale controller to monitor the rate of events and deter-
mine whether to scale out or scale in. The scale controller uses heuristics for each trigger type. For
example, when you're using an Azure Queue storage trigger, it scales based on the queue length and the
age of the oldest queue message.

The unit of scale is the function app. When the function app is scaled out, additional resources are
allocated to run multiple instances of the Azure Functions host. Conversely, as compute demand is
reduced, the scale controller removes function host instances. The number of instances is eventually
scaled down to zero when no functions are running within a function app.

Azure Functions overview 167

Functions host instance

<P

A

rn
=
i
=1
=
T
£
=

Service Bus Monitor events Scale Control |er Create instance(s)

=
3
o

Process events

§

Queue

Blob

Understanding scaling behaviors

Scaling can vary on a number of factors, and scale differently based on the trigger and language selected.
However there are a few aspects of scaling that exist in the system today:

A single function app only scales up to a maximum of 200 instances. A
single instance may process more than one message or request at a time
though, so there isn't a set limit on number of concurrent executions.
New instances will only be allocated at most once every 10 seconds.

Different triggers may also have different scaling limits as well.

Azure Functions triggers and bindings concepts

This section is a conceptual overview of triggers and bindings in Azure Functions. Features that are
common to all bindings and all supported languages are described here.

Overview

A trigger defines how a function is invoked. A function must have exactly one trigger. Triggers have
associated data, which is usually the payload that triggered the function.

Input and output bindings provide a declarative way to connect to data from within your code. Bindings
are optional and a function can have multiple input and output bindings.

Triggers and bindings let you avoid hardcoding the details of the services that you're working with. Your
function receives data (for example, the content of a queue message) in function parameters. You send
data (for example, to create a queue message) by using the return value of the function. In C# and C#
script, alternative ways to send data are out parameters and collector objects.

When you develop functions by using the Azure portal, triggers and bindings are configured in a func-
tion.json file. The portal provides a Ul for this configuration but you can edit the file directly by changing
to the Advanced editor.

168 Module 4 Module Understanding Azure Functions

When you develop functions by using Visual Studio to create a class library, you configure triggers and
bindings by decorating methods and parameters with attributes.

Example trigger and binding

Suppose you want to write a new row to Azure Table storage whenever a new message appears in Azure
Queue storage. This scenario can be implemented using an Azure Queue storage trigger and an Azure
Table storage output binding.

Here's a function.json file for this scenario.

{
"bindings": [

{

"name": "order",

"type": "queueTrigger",

"direction": "in",

"queueName": "myqueue-items",

"connection": "MY STORAGE ACCT APP SETTING"
b
{

"name": "Sreturn",

"type": "table",

"direction": "out",

"tableName": "outTable",

"connection": "MY TABLE STORAGE ACCT APP SETTING"

The first element in the bindings array is the Queue storage trigger. The type and direction
properties identify the trigger. The name property identifies the function parameter that receives the
gueue message content. The name of the queue to monitor is in queueName, and the connection string
is in the app setting identified by connection.

The second element in the bindings array is the Azure Table Storage output binding. The type and
direction properties identify the binding. The name property specifies how the function provides the
new table row, in this case by using the function return value. The name of the table is in tableName,
and the connection string is in the app setting identified by connection.

To view and edit the contents of function.json in the Azure portal, click the Advanced editor option on
the Integrate tab of your function.

Note: The value of connection is the name of an app setting that contains the connection string, not
the connection string itself. Bindings use connection strings stored in app settings to enforce the best
practice that function.json does not contain service secrets.

Here's C# script code that works with this trigger and binding. Notice that the name of the parameter
that provides the queue message content is order; this name is required because the name property
value in function.json is order.

#r "Newtonsoft.Json"

using Microsoft.Extensions.Logging;

Azure Functions overview 169

using Newtonsoft.Json.Ling;

// From an incoming queue message that is a JSON object, add fields and
write to Table storage
// The method return value creates a new row in Table Storage
public static Person Run (JObject order, ILogger log)
{
return new Person() {
PartitionKey = "Orders",
RowKey = Guid.NewGuid() .ToString(),
Name = order["Name"].ToString(),
MobileNumber = order["MobileNumber"].ToString() };

public class Person

{
public string PartitionKey { get; set; }
public string RowKey { get; set; }
public string Name { get; set; }
public string MobileNumber { get; set; }

Register binding extensions

In some development environments, you have to explicitly register a binding that you want to use.
Binding extensions are provided in NuGet packages, and to register an extension you install a package.
The following table indicates when and how you register binding extensions.

Development environment Registration Registration
in Functions 1.x in Functions 2.x
Azure portal Automatic Automatic with prompt
Local using Azure Functions Core | Automatic Use Core Tools CLI commands
Tools
C# class library using Visual Use NuGet tools Use NuGet tools
Studio 2017
C# class library using Visual N/A Use .NET Core CLI
Studio Code

The following binding types are exceptions that don't require explicit registration because they are
automatically registered in all versions and environments: HTTP and timer.

Binding direction

All triggers and bindings have a direction property in the function.json file:
e For triggers, the direction is always in

e Input and output bindings use in and out

e Some bindings support a special direction inout. If you use inout, only the Advanced editor is
available in the Integrate tab.

170 Module 4 Module Understanding Azure Functions

When you use attributes in a class library to configure triggers and bindings, the direction is provided in
an attribute constructor or inferred from the parameter type.

Using the function return value

In languages that have a return value, you can bind an output binding to the return value:
e In a C# class library, apply the output binding attribute to the method return value.

e In other languages, set the name property in function.json to $return.

If there are multiple output bindings, use the return value for only one of them.

In C# and C# script, alternative ways to send data to an output binding are out parameters and collector
objects.

C# example
Here's C# code that uses the return value for an output binding:

[FunctionName ("QueueTrigger")]
[return: Blob ("output-container/{id}")]
public static string Run ([QueueTrigger ("inputqueue")]WorkItem input, ILog-
ger log)
{
string json = string.Format ("{{ \"id\": \"{O0}\" }}", input.Id);
log.LogInformation ($"C# script processed queue message. Item={json}");

return Jjson;

Binding dataType property

In .NET, use the parameter type to define the data type for input data. For instance, use string to bind
to the text of a queue trigger, a byte array to read as binary and a custom type to deserialize to a POCO
object.

For languages that are dynamically typed such as JavaScript, use the dataType property in the function.
Json file. For example, to read the content of an HTTP request in binary format, set dataType to binary:

{
"type": "httpTrigger",
Hnamell: Hreqll,
"direction": "in",

"dataType": "binary"

Other options for dataType are stream and string

Binding expressions and patterns

One of the most powerful features of triggers and bindings is binding expressions. In the function.json file
and in function parameters and code, you can use expressions that resolve to values from various
sources.

Azure Functions overview 171

Most expressions are identified by wrapping them in curly braces. For example, in a queue trigger
function, {queueTrigger} resolves to the queue message text. If the path property for a blob output
binding is container/{queueTrigger} and the function is triggered by a queue message HelloW-
orld, a blob named HelloWorld is created.

Types of binding expressions
e App settings

e Trigger file name

e Trigger metadata

e JSON payloads

e New GUID

e Current date and time

Binding expressions - app settings

As a best practice, secrets and connection strings should be managed using app settings, rather than
configuration files. This limits access to these secrets and makes it safe to store files such as function.json
in public source control repositories.

App settings are also useful whenever you want to change configuration based on the environment. For
example, in a test environment, you may want to monitor a different queue or blob storage container.

App setting binding expressions are identified differently from other binding expressions: they are
wrapped in percent signs rather than curly braces. For example if the blob output binding path is $Envi-
ronment%/newblob.txt and the Environment app setting value is Development, a blob will be
created in the Development container.

When a function is running locally, app setting values come from the local.settings.json file.

Note that the connection property of triggers and bindings is a special case and automatically resolves
values as app settings, without percent signs.

Binding expressions - trigger file name

The path for a Blob trigger can be a pattern that lets you refer to the name of the triggering blob in
other bindings and function code. The pattern can also include filtering criteria that specify which blobs
can trigger a function invocation.

Binding expressions - trigger metadata

In addition to the data payload provided by a trigger (such as the content of the queue message that
triggered a function), many triggers provide additional metadata values. These values can be used as
input parameters in C# and F# or properties on the context.bindings object in JavaScript.

For example, an Azure Queue storage trigger supports the following properties:
e QueueTrigger - triggering message content if a valid string

e DequeueCount

e ExpirationTime

e Id

172 Module 4 Module Understanding Azure Functions

e InsertionTime
e NextVisibleTime
e PopReceipt

These metadata values are accessible in function.json file properties. For example, suppose you use a
queue trigger and the queue message contains the name of a blob you want to read. In the function.json
file, you can use queueTrigger metadata property in the blob path property.

Binding expressions - JSON payloads

When a trigger payload is JSON, you can refer to its properties in configuration for other bindings in the
same function and in function code.

The following example shows the function.json file for a webhook function that receives a blob name in
JSON: {"BlobName":"HelloWorld.txt"}. A Blob input binding reads the blob, and the HTTP output
binding returns the blob contents in the HTTP response. Notice that the Blob input binding gets the blob
name by referring directly to the BlobName property"path": "strings/{BlobName}":

{
"bindings": [
{

"name": "info",
"type": "httpTrigger",
"direction": "in",
"webHookType": "genericJson"
bo
{
"name": "blobContents",
"type": "blob",
"direction": "in",
"path": "strings/{BlobName}",
"connection": "AzureWebJobsStorage"
b
{
"name": "res",
"type": "http",
"direction": "out"

Binding expressions - create GUIDs

The {rand-guid} binding expression creates a GUID. The following blob path in a function.json file
creates a blob with a name like 50770cb5-84b9-4d87-9d83-a03d6976a682.txt.

{
"type": "blob",
"name": "blobOutput",
"direction": "out",
"path": "my-output-container/{rand-guid}"

Azure Functions overview 173

Binding expressions - current time

The binding expression DateTime resolves to DateTime.UtcNow. The following blob path in a function.
Json file creates a blob with a name like 2078-02-16T17-59-55Z.txt.

{
"type": "blOb",

"name": "blobOutput",
"direction": "out",
"path": "my-output-container/{DateTime}"

Optimize the performance and reliability of Az-
ure Functions

This section provides guidance to improve the performance and reliability of your serverless function
apps.

General best practices

The following are best practices in how you build and architect your serverless solutions using Azure
Functions.

Avoid long running functions

Large, long-running functions can cause unexpected timeout issues. A function can become large due to
many Node.js dependencies. Importing dependencies can also cause increased load times that result in
unexpected timeouts. Dependencies are loaded both explicitly and implicitly. A single module loaded by
your code may load its own additional modules.

Whenever possible, refactor large functions into smaller function sets that work together and return
responses fast. For example, a webhook or HTTP trigger function might require an acknowledgment
response within a certain time limit; it is common for webhooks to require an immediate response. You
can pass the HTTP trigger payload into a queue to be processed by a queue trigger function. This
approach allows you to defer the actual work and return an immediate response.

Cross function communication

Durable Functions and Azure Logic Apps are built to manage state transitions and communication
between multiple functions.

If not using Durable Functions or Logic Apps to integrate with multiple functions, it is generally a best
practice to use storage queues for cross function communication. The main reason is storage queues are
cheaper and much easier to provision.

Individual messages in a storage queue are limited in size to 64 KB. If you need to pass larger messages
between functions, an Azure Service Bus queue could be used to support message sizes up to 256 KB in
the Standard tier, and up to 1 MB in the Premium tier.

174 Module 4 Module Understanding Azure Functions

Service Bus topics are useful if you require message filtering before processing.

Event hubs are useful to support high volume communications.

Write functions to be stateless

Functions should be stateless and idempotent if possible. Associate any required state information with
your data. For example, an order being processed would likely have an associated state member. A
function could process an order based on that state while the function itself remains stateless.

Idempotent functions are especially recommended with timer triggers. For example, if you have some-
thing that absolutely must run once a day, write it so it can run any time during the day with the same
results. The function can exit when there is no work for a particular day. Also if a previous run failed to
complete, the next run should pick up where it left off.

Write defensive functions

Assume your function could encounter an exception at any time. Design your functions with the ability to
continue from a previous fail point during the next execution. Consider a scenario that requires the
following actions:

1. Query for 10,000 rows in a db.
2. Create a queue message for each of those rows to process further down the line.

Depending on how complex your system is, you may have: involved downstream services behaving badly,
networking outages, or quota limits reached, etc. All of these can affect your function at any time. You
need to design your functions to be prepared for it.

How does your code react if a failure occurs after inserting 5,000 of those items into a queue for process-
ing? Track items in a set that you've completed. Otherwise, you might insert them again next time. This
can have a serious impact on your work flow.

If a queue item was already processed, allow your function to be a no-op.

Scalability best practices

There are a number of factors which impact how instances of your function app scale. The details were
covered easlier in this lesson. The following are some best practices to ensure optimal scalability of a
function app.

Share and manage connections

Re-use connections to external resources whenever possible. See how to manage connections in Azure
Functions.

Don't mix test and production code in the same function
app

Functions within a function app share resources. For example, memory is shared. If you're using a func-
tion app in production, don't add test-related functions and resources to it. It can cause unexpected
overhead during production code execution.

Be careful what you load in your production function apps. Memory is averaged across each function in
the app.

Azure Functions overview 175

If you have a shared assembly referenced in multiple .Net functions, put it in a common shared folder.
Reference the assembly with a statement similar to the following example if using C# Scripts (.csx):

#r "..\Shared\MyAssembly.dll".

Otherwise, it is easy to accidentally deploy multiple test versions of the same binary that behave differ-
ently between functions.

Don't use verbose logging in production code. It has a negative performance impact.

Use async code but avoid blocking calls

Asynchronous programming is a recommended best practice. However, always avoid referencing the
Result property or calling Wait method on a Task instance. This approach can lead to thread exhaus-
tion.

Tip: If you plan to use the HTTP or WebHook bindings, plan to avoid port exhaustion that can be caused
by improper instantiation of HttpClient.

Receive messages in batch whenever possible

Some triggers like Event Hub enable receiving a batch of messages on a single invocation. Batching
messages has much better performance. You can configure the max batch size in the host,json file as
detailed in the host.json reference documentation?.

For C# functions you can change the type to a strongly-typed array. For example, instead of EventData
sensorEvent the method signature could be EventData[] sensorEvent. For other languages you'll need to
explicitly set the cardinality property in your function.json to many in order to enable batching as shown
here.

Configure host behaviors to better handle concurrency

The host.json file in the function app allows for configuration of host runtime and trigger behaviors. In
addition to batching behaviors, you can manage concurrency for a number of triggers. Often adjusting
the values in these options can help each instance scale appropriately for the demands of the invoked
functions.

Settings in the hosts file apply across all functions within the app, within a single instance of the function.
For example, if you had a function app with 2 HTTP functions and concurrent requests set to 25, a request
to either HTTP trigger would count towards the shared 25 concurrent requests. If that function app scaled
to 10 instances, the 2 functions would effectively allow 250 concurrent requests (10 instances * 25
concurrent requests per instance).

2 https://docs.microsoft.com/en-us/azure/azure-functions/functions-host-json

176 Module 4 Module Understanding Azure Functions

Develop Azure Functions using Visual Studio

Getting started

Azure Functions Tools for Visual Studio 2017 is an extension for Visual Studio that lets you develop, test,
and deploy C# functions to Azure.

The Azure Functions Tools provides the following benefits:
e Edit, build, and run functions on your local development computer.
e Publish your Azure Functions project directly to Azure.

e Use WebJobs attributes to declare function bindings directly in the C# code instead of maintaining a
separate function.json for binding definitions.

e Develop and deploy pre-compiled C# functions. Pre-complied functions provide a better cold-start
performance than C# script-based functions.

e Code your functions in C# while having all of the benefits of Visual Studio development.

Important: Don't mix local development with portal development in the same function app. When you
publish from a local project to a function app, the deployment process overwrites any functions that you
developed in the portal.

Prerequisites

Azure Functions Tools is included in the Azure development workload of Visual Studio 2017 version 15.5,
or a later version. Make sure you include the Azure development workload in your Visual Studio 2017
installation. Also make sure that your Visual Studio is up-to-date and that you are using the most recent
version of the Azure Functions tools.

You will also need:
e An active Azure subscription

e An Azure Storage account.

Creating an Azure Functions project

The Azure Functions project template in Visual Studio creates a project that can be published to a
function app in Azure. A function app lets you group functions as a logical unit for management, deploy-
ment, and sharing of resources.

1. In Visual Studio, select New > Project from the File menu.

2. In the New Project dialog, select Installed, expand Visual C# > Cloud, select Azure Functions, type
a Name for your project, and click OK. The function app name must be valid as a C# namespace, so
don't use underscores, hyphens, or any other nonalphanumeric characters.

3. Use the settings specified in the table below.

Develop Azure Functions using Visual Studio 177

Setting Suggested Value Description

Version Azure Functions v1 This creates a function project
that uses the version 1 runtime
of Azure Functions. The version 2
runtime, which supports .NET
Core, is currently in preview.

Template HTTP trigger This creates a function triggered
by an HTTP request.

Storage account Storage emulator An HTTP trigger doesn't use the
Storage account connection. All
other trigger types require a
valid Storage account connection
string.

Access rights Anonymous The created function can be
triggered by any client without
providing a key. This authoriza-
tion setting makes it easy to test
your new function.

4. Click OK to create the function project and HTTP triggered function.

The project template creates a C# project, installs the Microsoft .NET.Sdk.Functions NuGet
package, and sets the target framework. Functions 1.x targets the .NET Framework, and Functions 2.x
targets .NET Standard. The new project has the following files:

e host.json: Lets you configure the Functions host. These settings apply both when running locally and
in Azure.

e local.settings.json: Maintains settings used when running functions locally. These settings are not
used by Azure, they are used by the Azure Functions Core Tools. Use this file to specify app settings
for variables required by your functions. Add a new item to the Values array for each connection
required by the functions bindings in your project.

Configure the project for local development

The Functions runtime uses an Azure Storage account internally. For all trigger types other than HTTP and
webhooks, you must set the Values.AzureWebJobsStorage key to a valid Azure Storage account
connection string. Your function app can also use the Azure storage emulator for the AzureWebJobsS-
torage connection setting that is required by the project. To use the emulator, set the value of

AzureWebJobsStorage to UseDevelopmentStorage=true. You must change this setting to an actual
storage connection before deployment.

To set the storage account connection string:

e In Visual Studio, open Cloud Explorer, expand Storage Account > Your Storage Account, then
select Properties and copy the Primary Connection String value.

e In your project, open the local.settings.json file and set the value of the AzureWebJobsStorage key to
the connection string you copied.

e Repeat the previous step to add unique keys to the Values array for any other connections required
by your functions.

178 Module 4 Module Understanding Azure Functions

Creating a function

In pre-compiled functions, the bindings used by the function are defined by applying attributes in the

code. When you use the Azure Functions Tools to create your functions from the provided templates,
these attributes are applied for you.

e

In Solution Explorer, right-click on your project node and select Add > New Item. Select Azure
Function, type a Name for the class, and click Add.

Choose your trigger, set the binding properties, and click Create. The following example shows the

settings when creating a Queue storage triggered function.

New Azure Function - Function2

E] Http trigger

Timer trigger

E Blob trigger

E Event Hub trigger

@ Service Bus Queue trigger
@ Service Bus Topic trigger
I3 GitHub WebHook

E Cosmos DB Trigger

E Face locator

Eﬁ Generic WebHook

Eﬁ GitHub commenter

& Hitp GET CRUD

Connection

| QueueString

Path

| myqueue-items

Cancel

This trigger example uses a connection string with a key named QueueStorage. This connection
string setting must be defined in the local settings.json file.

Examine the newly added class. You see a static Run method, that is attributed with the Function-
Name attribute. This attribute indicates that the method is the entry point for the function.

For example, the following C# class represents a basic Queue storage triggered function:

using System;
using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;

namespace FunctionAppl

{

public static class Functionl

{

[FunctionName ("QueueTriggerCSharp")]

public static void Run ([QueueTrigger ("myqueue-items",

"QueueStorage")]string myQueueltem,

{

TraceWriter log)

log.Info ($"C# Queue trigger function processed:

Item}"™);

Connection

{myQueue-

Develop Azure Functions using Visual Studio 179

7.

A binding-specific attribute is applied to each binding parameter supplied to the entry point method.
The attribute takes the binding information as parameters. In the previous example, the first parame-
ter has a QueueTrigger attribute applied, indicating queue triggered function. The queue name and
connection string setting name are passed as parameters to the QueueTrigger attribute.

You can use the above procedure to add more functions to your function app project. Each function in
the project can have a different trigger, but a function must have exactly one trigger.

Add bindings to the Azure Function

As with triggers, input and output bindings are added to your function as binding attributes. Add bind-
ings to a function as follows:

1.
2.

Make sure you have configured the project for local development.

Add the appropriate NuGet extension package for the specific binding. The binding-specific NuGet
package requirements are found in the reference article for the binding. For example, find package
requirements for the Event Hubs trigger in the Event Hubs binding reference article®.

If there are app settings that the binding needs, add them to the Values collection in the local setting
file. These values are used when the function runs locally. When the function runs in the function app
in Azure, the function app settings are used.

Add the appropriate binding attribute to the method signature. In the following example, a queue
message triggers the function, and the output binding creates a new queue message with the same
text in a different queue.

public static class SimpleExampleWithOutput
{
[FunctionName ("CopyQueueMessage")]
public static void Run(

[QueueTrigger ("myqueue-items-source", Connection = "AzureWebJobsS-
torage")] string myQueueltem,

[Queue ("mygueue-items-destination", Connection = "AzureWebJobsStor-
age")] out string myQueueItemCopy,

TraceWriter log)

log.Info ($"CopyQueueMessage function processed: {myQueueltem}");
myQueueltemCopy = myQueueltem;

The connection to Queue storage is obtained from the AzureWebJobsStorage setting. For more
information, see the reference article for the specific binding.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-bindings-event-hubs

180 Module 4 Module Understanding Azure Functions

Testing and publishing Azure Functions

Azure Functions Core Tools lets you run Azure Functions project on your local development computer.
You are prompted to install these tools the first time you start a function from Visual Studio.

To test your function, press F5. If prompted, accept the request from Visual Studio to download and
install Azure Functions Core (CLI) tools. You may also need to enable a firewall exception so that the tools
can handle HTTP requests.

With the project running, you can test your code as you would test deployed function. For more informa-
tion, see Strategies for testing your code in Azure Functions*. When running in debug mode, break-
points are hit in Visual Studio as expected.

Publish to Azure

1. In Solution Explorer, right-click the project and select Publish.

2. Select Azure Function App, choose Create New, and then select Publish.

3. If you haven't already connected Visual Studio to your Azure account, select Add an account....
4

In the Create App Service dialog, use the Hosting settings as specified in the table below:

Setting Suggested Value Description

App Name Globally unique name Name that uniquely identifies
your new function app.

Subscription Choose your subscription The Azure subscription to use.

Resource Group myResourceGroup Name of the resource group in

which to create your function
app. Choose New to create a
new resource group.

App Service Plan Consumption plan Make sure to choose the
Consumption under Size after
you click New to create a plan.
Also, choose a Location in a
region near you or near other
services your functions access.

Storage Account General purpose storage account | An Azure storage account is
required by the Functions
runtime. Click New to create a
general purpose storage ac-
count, or use an existing one.

5. Click Create to create a function app and related resources in Azure with these settings and deploy
your function project code.

6. After the deployment is complete, make a note of the Site URL value, which is the address of your
function app in Azure.

4 https://docs.microsoft.com/en-us/azure/azure-functions/functions-test-a-function

Develop Azure Functions using Visual Studio 181

Function app settings

Any settings you added in the local.settings.json must be also added to the function app in Azure. These
settings are not uploaded automatically when you publish the project.

The easiest way to upload the required settings to your function app in Azure is to use the Manage
Application Settings... link that is displayed after you successfully publish your project.

FunctionApp8 + >

Connected Services

Publish

Publish

(& Azure successfully configured: How was your experience?

<2 FunctionApp20180118122544 - Web Deploy © Publish

Create new profile

Summary

Site URL http://functionapp20180118122544. azurewebsites.net [l I Manage Application Settings... I
Configuration Release Manage Profile 5ettings...
Delete existing files False Rename profile...

Username SFunctionApp20180118122544 Delete profile

Password s

This displays the Application Settings dialog for the function app, where you can add new application
settings or modify existing ones.

Application Settings

MName Value

WEBSITE_CONTENTAZUREF| DefaultEndpointsProtocol=https;AccountMName=aaf9cd4
WEBSITE_CONTENTSHARE functionapp20180118122544
AzureWeblobsDashboard DefaultEndpointsProtocol=https;AccountMName=aaf9cd4

AzureWeblobsStorage DefaultEndpointsProtocol=https:AccountName=aaf9cd4

Add Remove

You can also manage application settings in one of these other ways:
e Using the Azure portal.

e Using the -—publish-local-settings publish option in the Azure Functions Core Tools.

e Using the Azure CLI.

182 Module 4 Module Understanding Azure Functions

Implement Durable Functions

Durable Functions overview

Durable Functions is an extension of Azure Functions and Azure WebJobs that lets you write stateful
functions in a serverless environment. The extension manages state, checkpoints, and restarts for you.

The extension lets you define stateful workflows in a new type of function called an orchestrator function.
Here are some of the advantages of orchestrator functions:

e They define workflows in code. No JSON schemas or designers are needed.

e They can call other functions synchronously and asynchronously. Output from called functions can be
saved to local variables.

e They automatically checkpoint their progress whenever the function awaits. Local state is never lost if
the process recycles or the VM reboots.

Note: Durable Functions is an advanced extension for Azure Functions that is not appropriate for all
applications. The rest of this section assumes that you have a strong familiarity with Azure Functions
concepts and the challenges involved in serverless application development.

The primary use case for Durable Functions is simplifying complex, stateful coordination problems in
serverless applications. The following sections describe some typical application patterns that can benefit
from Durable Functions.

Pattern #1: Function chaining

Function chaining refers to the pattern of executing a sequence of functions in a particular order. Often
the output of one function needs to be applied to the input of another function.

F1 F2 F3 F4
Durable Functions allows you to implement this pattern concisely in code.

C# script
public static async Task<object> Run (DurableOrchestrationContext ctx)
{
try
{
var x = await ctx.CallActivityAsync<object>("F1");
var y = await ctx.CallActivityAsync<object>("F2", x);
var z = awailt ctx.CallActivityAsync<object> ("F3", vy);
return await ctx.CallActivityAsync<object> ("F4", z);
}
catch (Exception)
{

// error handling/compensation goes here

Implement Durable Functions 183

Note: There are subtle differences while writing a precompiled durable function in C# vs the C# script
sample shown before. A C# precompiled function would require durable parameters to be decorated
with respective attributes. An example is [OrchestrationTrigger] attribute for DurableOrches-
trationContext parameter. If the parameters are not properly decorated, the runtime would not be
able to inject the variables to the function and would give error.

The values “F1", "F2", "F3", and "F4" are the names of other functions in the function app. Control flow is
implemented using normal imperative coding constructs. That is, code executes top-down and can
involve existing language control flow semantics, like conditionals, and loops. Error handling logic can be
included in try/catch/finally blocks.

The ctx parameter (DurableOrchestrationContext) provides methods for invoking other functions
by name, passing parameters, and returning function output. Each time the code calls await, the
Durable Functions framework checkpoints the progress of the current function instance. If the process or
VM recycles midway through the execution, the function instance resumes from the previous await call.
More on this restart behavior later.

Pattern #2: Fan-out/fan-in

Fan-out/fan-in refers to the pattern of executing multiple functions in parallel, and then waiting for all to
finish. Often some aggregation work is done on results returned from the functions.

~— 7> =
< >->i-»< >->i-»< >
F1 Q(>4 F3

F2

With normal functions, fanning out can be done by having the function send multiple messages to a
gueue. However, fanning back in is much more challenging. You'd have to write code to track when the
gueue-triggered functions end and store function outputs. The Durable Functions extension handles this
pattern with relatively simple code.

C# script

public static async Task Run(DurableOrchestrationContext ctx)

{
var parallelTasks = new List<Task<int>>();

// get a list of N work items to process in parallel

object[] workBatch = await ctx.CallActivityAsync<object[]>("F1");
for (int 1 = 0; 1 < workBatch.Length; i++)

{

184 Module 4 Module Understanding Azure Functions

Task<int> task = ctx.CallActivityAsync<int>("F2", workBatch[i]);
parallelTasks.Add (task) ;

await Task.WhenAll (parallelTasks);

// aggregate all N outputs and send result to F3
int sum = parallelTasks.Sum(t => t.Result);
await ctx.CallActivityAsync ("F3", sum);

The fan-out work is distributed to multiple instances of function F2, and the work is tracked by using a
dynamic list of tasks. The .NET Task.WhenAll APl is called to wait for all of the called functions to finish.
Then the F2 function outputs are aggregated from the dynamic task list and passed on to the F3 func-
tion.

The automatic checkpointing that happens at the await call on Task.WhenAll ensures that any crash
or reboot midway through does not require a restart of any already completed tasks.

Pattern #3: Async HTTP APIs

The third pattern is all about the problem of coordinating the state of long-running operations with
external clients. A common way to implement this pattern is by having the long-running action triggered
by an HTTP call, and then redirecting the client to a status endpoint that they can poll to learn when the
operation completes.

= <> == <>

Start DoWork

= 7l

GetStatus

Durable Functions provides built-in APIs that simplify the code you write for interacting with long-run-
ning function executions. Once an instance is started, the extension exposes webhook HTTP APIs that
query the orchestrator function status. The following example shows the REST commands to start an
orchestrator and to query its status. For clarity, some details are omitted from the example.

> curl -X POST https://myfunc.azurewebsites.net/orchestrators/DoWork -H
"Content-Length: 0" -1

HTTP/1.1 202 Accepted

Content-Type: application/json

Location: https://myfunc.azurewebsites.net/admin/extensions/DurableTaskEx—
tension/b79baf67f717453ca9%e86c5da2lel3ec

{"id":"b79%af67£717453ca%86c5da2lel03ec", ...}

Implement Durable Functions 185

> curl https://myfunc.azurewebsites.net/admin/extensions/DurableTaskExten—
sion/b79%af67£f717453ca%e86¢c5da2le03ec -1

HTTP/1.1 202 Accepted

Content-Type: application/json

Location: https://myfunc.azurewebsites.net/admin/extensions/DurableTaskEx—
tension/b79%af67f717453ca%e86c5da2le03ec

{"runtimeStatus":"Running", "lastUpdatedTime":"2017-03-16T21:20:472", ...}

> curl https://myfunc.azurewebsites.net/admin/extensions/DurableTaskExten—
sion/b79%af67£f717453ca%e86c5da2le03ec -1

HTTP/1.1 200 OK

Content-Length: 175

Content-Type: application/json

{"runtimeStatus":"Completed", "lastUpdatedTime":"2017-03-16T21:20:572", ...}

Because the state is managed by the Durable Functions runtime, you don't have to implement your own
status tracking mechanism.

Even though the Durable Functions extension has built-in webhooks for managing long-running orches-
trations, you can implement this pattern yourself using your own function triggers (such as HTTP, queue,
or Event Hub) and the orchestrationClient binding. For example, you could use a queue message
to trigger termination. Or you could use an HTTP trigger protected by an Azure Active Directory authenti-
cation policy instead of the built-in webhooks that use a generated key for authentication.

// HTTP-triggered function to start a new orchestrator function instance.
public static async Task<HttpResponseMessage> Run (

HttpRequestMessage req,

DurableOrchestrationClient starter,

string functionName,

ILogger log)

// Function name comes from the request URL.

// Function input comes from the request content.

dynamic eventData = await req.Content.ReadAsAsync<object>();

string instanceId = await starter.StartNewAsync (functionName, eventDa-
ta);

log.LogInformation ($"Started orchestration with ID = '{instanceId}'.");

return starter.CreateCheckStatusResponse (req, instancelId);

The DurableOrchestrationClientstarter parameter is a value from the orchestrationCli-
ent output binding, which is part of the Durable Functions extension. It provides methods for starting,
sending events to, terminating, and querying for new or existing orchestrator function instances. In the
previous example, an HTTP triggered-function takes in a functionName value from the incoming URL
and passes that value to StartNewAsync. This binding API then returns a response that contains a
Location header and additional information about the instance that can later be used to look up the
status of the started instance or terminate it.

186 Module 4 Module Understanding Azure Functions

Pattern #4: Monitoring

The monitor pattern refers to a flexible recurring process in a workflow - for example, polling until certain
conditions are met. A regular timer-trigger can address a simple scenario, such as a periodic cleanup job,
but its interval is static and managing instance lifetimes becomes complex. Durable Functions enables
flexible recurrence intervals, task lifetime management, and the ability to create multiple monitor pro-
cesses from a single orchestration.

An example would be reversing the earlier async HTTP API scenario. Instead of exposing an endpoint for
an external client to monitor a long-running operation, the long-running monitor consumes an external
endpoint, waiting for some state change.

<

Using Durable Functions, multiple monitors that observe arbitrary endpoints can be created in a few lines
of code. The monitors can end execution when some condition is met, or be terminated by the bura-
bleOrchestrationClient, and their wait interval can be changed based on some condition (i.e.
exponential backoff.) The following code implements a basic monitor.

C# script
public static async Task Run (DurableOrchestrationContext ctx)
{
int jobId = ctx.GetInput<int>();
int pollingInterval = GetPollingInterval();
DateTime expiryTime = GetExpiryTime ()

while (ctx.CurrentUtcDateTime < expiryTime)

{
var jobStatus = await ctx.CallActivityAsync<string> ("GetJobStatus",
jobId) ;
if (jobStatus == "Completed")
{
// Perform action when condition met
await ctx.CallActivityAsync ("SendAlert", machineId);

break;

// Orchestration will sleep until this time
var nextCheck = ctx.CurrentUtcDateTime.AddSeconds (pollingInterval);
await ctx.CreateTimer (nextCheck, CancellationToken.None) ;

Implement Durable Functions 187

// Perform further work here, or let the orchestration end

When a request is received, a new orchestration instance is created for that job ID. The instance polls a
status until a condition is met and the loop is exited. A durable timer is used to control the polling
interval. Further work can then be performed, or the orchestration can end. When the ctx.Curren-
tUtcDateTime exceeds the expiryTime, the monitor ends.

Pattern #5: Human interaction

Many processes involve some kind of human interaction. The tricky thing about involving humans in an
automated process is that people are not always as highly available and responsive as cloud services.
Automated processes must allow for this, and they often do so by using timeouts and compensation
logic.

One example of a business process that involves human interaction is an approval process. For example,
approval from a manager might be required for an expense report that exceeds a certain amount. If the
manager does not approve within 72 hours (maybe they went on vacation), an escalation process kicks in
to get the approval from someone else (perhaps the manager's manager).

ProcessApproval

<> =

Escalate

This pattern can be implemented using an orchestrator function. The orchestrator would use a durable
timer to request approval and escalate in case of timeout. It would wait for an external event, which
would be the notification generated by some human interaction.

C# script

public static async Task Run (DurableOrchestrationContext ctx)

{
await ctx.CallActivityAsync ("RequestApproval");

using (var timeoutCts = new CancellationTokenSource())
{
DateTime dueTime = ctx.CurrentUtcDateTime.AddHours (72);
Task durableTimeout = ctx.CreateTimer (dueTime, timeoutCts.Token) ;

Task<bool> approvalEvent = ctx.WaitForExternalEvent<bool> ("Approva-
1Event") ;

if (approvalEvent == await Task.WhenAny (approvalEvent, durableTime-
out))

timeoutCts.Cancel () ;
await ctx.CallActivityAsync ("ProcessApproval", approvalEvent.

188 Module 4 Module Understanding Azure Functions

Result) ;
}
else
{

await ctx.CallActivityAsync ("Escalate");

The durable timer is created by calling ctx.CreateTimer. The notification is received by ctx.Wait-
ForExternalEvent. And Task.WhenAny is called to decide whether to escalate (timeout happens
first) or process approval (approval is received before timeout).

An external client can deliver the event notification to a waiting orchestrator function using either the
built-in HTTP APIs or by using DurableOrchestrationClient.RaiseEventAsync API from another function:

public static async Task Run(string instanceld, DurableOrchestrationClient
client)
{

bool isApproved = true;

await client.RaiseEventAsync (instanceld, "ApprovalEvent", isApproved);

The technology

Behind the scenes, the Durable Functions extension is built on top of the Durable Task Framework, an
open-source library on GitHub for building durable task orchestrations. Much like how Azure Functions is
the serverless evolution of Azure WebJobs, Durable Functions is the serverless evolution of the Durable
Task Framework. The Durable Task Framework is used heavily within Microsoft and outside as well to
automate mission-critical processes. It's a natural fit for the serverless Azure Functions environment.

Event sourcing, checkpointing, and replay

Orchestrator functions reliably maintain their execution state using a design pattern known as Event
Sourcing. Instead of directly storing the current state of an orchestration, the durable extension uses an
append-only store to record the full series of actions taken by the function orchestration. This has many
benefits, including improving performance, scalability, and responsiveness compared to “dumping” the
full runtime state. Other benefits include providing eventual consistency for transactional data and
maintaining full audit trails and history. The audit trails themselves enable reliable compensating actions.

The use of Event Sourcing by this extension is transparent. Under the covers, the await operator in an
orchestrator function yields control of the orchestrator thread back to the Durable Task Framework
dispatcher. The dispatcher then commits any new actions that the orchestrator function scheduled (such
as calling one or more child functions or scheduling a durable timer) to storage. This transparent commit
action appends to the execution history of the orchestration instance. The history is stored in a storage
table. The commit action then adds messages to a queue to schedule the actual work. At this point, the
orchestrator function can be unloaded from memory. Billing for it stops if you're using the Azure Func-
tions Consumption Plan. When there is more work to do, the function is restarted and its state is recon-
structed.

Once an orchestration function is given more work to do (for example, a response message is received or
a durable timer expires), the orchestrator wakes up again and re-executes the entire function from the

Implement Durable Functions 189

start in order to rebuild the local state. If during this replay the code tries to call a function (or do any
other async work), the Durable Task Framework consults with the execution history of the current orches-
tration. If it finds that the activity function has already executed and yielded some result, it replays that
function's result, and the orchestrator code continues running. This continues happening until the
function code gets to a point where either it is finished or it has scheduled new async work.

Orchestrator code constraints

The replay behavior creates constraints on the type of code that can be written in an orchestrator
function. For example, orchestrator code must be deterministic, as it will be replayed multiple times and
must produce the same result each time.

Language support

Currently C# (Functions v1 and v2), F# and JavaScript (Functions v2 only) are the only supported languag-
es for Durable Functions. This includes orchestrator functions and activity functions. In the future, we will
add support for all languages that Azure Functions supports. See the Azure Functions GitHub repository
issues list to see the latest status of our additional language support work.

Storage and scalability

The Durable Functions extension uses Azure Storage queues, tables, and blobs to persist execution
history state and trigger function execution. The default storage account for the function app can be
used, or you can configure a separate storage account. You might want a separate account due to
storage throughput limits. The orchestrator code you write does not need to (and should not) interact
with the entities in these storage accounts. The entities are managed directly by the Durable Task Frame-
work as an implementation detail.

Orchestrator functions schedule activity functions and receive their responses via internal queue messag-
es. When a function app runs in the Azure Functions Consumption plan, these queues are monitored by
the Azure Functions Scale Controller and new compute instances are added as needed. When scaled out
to multiple VMs, an orchestrator function may run on one VM while activity functions it calls run on
several different VMs. You can find more details on the scale behavior of Durable Functions in Perfor-
mance and scale.

Table storage is used to store the execution history for orchestrator accounts. Whenever an instance rehy-
drates on a particular VM, it fetches its execution history from table storage so that it can rebuild its local
state. One of the convenient things about having the history available in Table storage is that you can
take a look and see the history of your orchestrations using tools such as Microsoft Azure Storage
Explorer.

Storage blobs are used primarily as a leasing mechanism to coordinate the scale-out of orchestration
instances across multiple VMs. They are also used to hold data for large messages which cannot be
stored directly in tables or queues.

Create a Durable Function in C#

In this tutorial, you learn how to use the Visual Studio 2017 tools for Azure Functions to locally create and
test a "hello world” durable function. This function will orchestrate and chain together calls to other
functions. You then publish the function code to Azure. These tools are available as part of the Azure
development workload in Visual Studio 2017.

190 Module 4 Module Understanding Azure Functions

Prerequisites

To complete this tutorial:

e Install Visual Studio 2017° and ensure that the Azure development workload is also installed.
e Make sure you have the latest Azure Functions tools®.

e Verify you have the Azure Storage Emulator’ installed and running.

If you don't have an Azure subscription, create a free account before you begin.

Create a function app project

The Azure Functions project template in Visual Studio creates a project that can be published to a
function app in Azure. A function app lets you group functions as a logical unit for management, deploy-
ment, and sharing of resources.

1. In Visual Studio, select New > Project from the File menu.

2. In the New Project dialog, select Installed, expand Visual C# > Cloud, select Azure Functions, type
a Name for your project, and click OK. The function app name must be valid as a C# namespace, so
don't use underscores, hyphens, or any other nonalphanumeric characters.

MNew Project ? *
P Recent ~ Sort by: Default | i Search (Ctrl+E) P~
4 ;
@ ASP.NET Core Web Application Visual C# Up=Rieal
b Azure Data Lake Atemplate to create an Azure Function
b Azure Stream Analytics :
4 Other Languages Q Service Fabric Application Visual C#
4 Visual C#
Get Started @ﬂ ASP.NET Web Application (.NET Framework) Visual C#
Windows Desktop
P Web ﬁ Azure Weblob (MET Framework) Visual C#
MET Core e
.MET Standard O Azure Cloud Service Visual C2
Cloud
Test Q Azure Resource Group Visual C#
WCF
b Visual Basic
SQL Server
b Visual F#
> Python

b TypeScript
b Other Project Types

Mot finding what you are locking for?

Open Visual Studio Installer

Name:
Location: Ch\Users\Public\projects!, - Browse...
Solution name: FuncticnApp Create directory for solution

|:| Create new Git repository

Canca

4. Use the settings specified in the table that follows the image.

5 https://azure.microsoft.com/downloads/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-develop-vs#check-your-tools-version
7 https://docs.microsoft.com/en-us/azure/storage/common/storage-use-emulator

Implement Durable Functions 191

New Project - DurableTutorial

Azure Functions v2 ((NET Core) -

. .I E a | Storage Account (AzureWebJobsStorage)
Storage Emulator
Empty Blob trigger ~ Cosmos DB

Trigger i Some capabilities may require an Azure storage account.

& ko

Event Hub Http trigger loT Hub trigger

trigger
== =i
Queue trigger Service Bus Service Bus -

Creates an Azure Function project with no triggers. Function
triggers can be added during development.

Get started with Azure Functions 0K Cancel

5.

Setting Suggested value Description

Version Azure Functions 2.x Creates a function project that

(.NET Core) uses the version 2.x runtime of

Azure Functions which supports
.NET Core. Azure Functions 1.x
supports the .NET Framework.

Template Empty This creates an empty function
app. ‘

Storage account Storage Emulator A storage account is required for |
durable function state manage-
ment. ‘

6. Click OK to create an empty function project.

Add functions to the app

Visual Studio creates an empty function app project. It contains the basic configuration files needed for
an app, but doesn't yet contain any functions. We'll need to add a durable function template to the
project.

1. Right-click the project in Visual Studio and select Add > New Azure Function.

192 Module 4 Module Understanding Azure Functions

MNew Azure Function...

*.J New Item...

- g

2.

pd] SOIUTION

Ctrl+Shift+A

DurableTutorial {1 project)

Build

Rebuild

Clean

Analyze

Pack

Publish...

Update Build Tools

Scope to This

New Solution Explorer View
Edit DurableTutorial.csproj
Add

Manage NuGet Packages...

3. Verify Azure Function is selected from the add menu, and give your C# file a name. Press Add.

4. Select the Durable Functions Orchestration template and click Ok.

New Azure Function - Durable

@ Http trigger

@ Timer trigger

= Queue trigger

[] Blob trigger

@ Event Grid trigger

E Event Hub trigger

loT Hub trigger

@ Service Bus Queue trigger

@ Service Bus Topic trigger

Cosmes DB Trigger

SendGrid

5.

@& Durable Functions Orchestration

oK Cancel

A new durable function will be added to the app. Open the new file to view the contents. This durable

function is a simple function chaining example.

e The RunOrchestrator method is associated with the orchestrator function. This function will start,
create a list, and add the result of three functions calls to the list. When the three function calls are
completed, it will return the list. The function it is calling is the SayHe1 10 method (default it will be

called “_Hello").

e The SayHello function will return a hello.

Implement Durable Functions 193

e The HttpStart method describes the function that will start instances of the orchestration. It is

associated with an HTTP trigger that will start a new instance of the orchestrator and return back a
check status response.

Now that you've created your function project and a durable function, you can test it on your local
computer.

Test the function locally

Azure Functions Core Tools lets you run an Azure Functions project on your local development computer.
You are prompted to install these tools the first time you start a function from Visual Studio.

1.

To test your function, press F5. If prompted, accept the request from Visual Studio to download and
install Azure Functions Core (CLI) tools. You may also need to enable a firewall exception so that the
tools can handle HTTP requests.

Copy the URL of your function from the Azure Functions runtime output.

\DurableTutorial\DurableTutorial\bin\Deb

t down.

ttp Functions:

Durable_Htt

Paste the URL for the HTTP request into your browser's address bar and execute the request. The
following shows the response in the browser to the local GET request returned by the function:

< O @ localhost:7071/api/Durable_HttpStay e = 7 B

{"1id":"d495cbeac10d4e13b22729c37e335190" ,"statusQueryGetUri

boac10d4el13b22729c37e335190°?
taskHub=DurableFunctionsHub&connection=Storage&code=/yAl085y3Lsi7cofKlau6X3FZZMKXENddnoQSYszvMPa66uvXtwyYA==","sendEventPostUri"
:"http://localhost:7071/runtime/webhooks/durabletask/instances/d495cb@ac10d4el3b22729¢37e335190/raiseEvent/{eventName}?
taskHub=DurableFunctionsHub&connection=Storage&code=/yAl1085y3Lsi7cofklau6X3FZZMKxENddnoQSYszvMPa66uvXtwyYA==", "terminatePostUri"
:"http://localhost:7071/runtime/webhooks/durabletask/instances/d495cb@ac10d4e13b22729¢37e335190/terminate?reason={text}
&taskHub=DurableFunctionsHub&connection=Storage&code=/yA1085y3Lsi7cofKlau6X3FZZMKXENddnoQSYszvMPa66uvXtwyYA==","rewindPostUri":"
http://localhost:7071/runtime/webhooks/durabletask/instances/d495cb@aclOd4e13b22729¢37e335190/rewind?reason={text}
&taskHub=DurableFunctionsHub&connection=Storage&code=/yA1085y3Lsi7cofKlau6X3FZZMKXENddnoQSYszvMPa66uvXtwyYA=="

"http://localhost:7071/runtime/webhooks/durabletask/instances/d495c

The response is the initial result from the HTTP function letting us know the durable orchestration has
started successfully. It is not yet the end result of the orchestration. The response includes a few useful
URLs. For now, let's query the status of the orchestration.

Copy the URL value for statusQueryGetUri and pasting it in the browser's address bar and
execute the request.

The request will query the orchestration instance for the status. You should get an eventual response
that looks like the following. This shows us the instance has completed, and includes the outputs or
results of the durable function.

{
"instanceId": "d495cb0acl0d4el13b22729¢c37e335190",

"runtimeStatus": "Completed",

"input": null,

194 Module 4 Module Understanding Azure Functions

"customStatus": null,
"output": [
"Hello Tokyo!",
"Hello Seattle!™,
"Hello London!"

1,
"createdTime": "2018-11-08T07:07:40z2",
"lastUpdatedTime": "2018-11-08T07:07:522Z"

9. To stop debugging, press Shift + F5.

After you have verified that the function runs correctly on your local computer, it's time to publish the
project to Azure.

Publish the project to Azure

You must have a function app in your Azure subscription before you can publish your project. You can
create a function app right from Visual Studio.

1. In Solution Explorer, right-click the project and select Publish.

2. Select Azure Function App, choose Create New, and then select Publish.

Pick a publish target

|()AmmmemAW | Azure App Service
Fully managed, and highly scalable cloud envirenment
B Folder
() Select Existing
| Run from ZIP {recommended)
Import Profile... Publish | = Cancel

B

4. When you enable Run from Zip, your function app in Azure is run directly from the deployment
package.

5. Caution: When you choose Select Existing, all files in the existing function app in Azure are overwrit-
ten by files from the local project. Only use this option when republishing updates to an existing
function app.

Implement Durable Functions 195

6. If you haven't already connected Visual Studio to your Azure account, select Add an account....

7. In the Create App Service dialog, use the Hosting settings as specified in the table below the image:

x
Create App Service Azure Subscription -
Host your web and mobile applications, REST APls, and more in Azure
App Mame Explore additional Azure services
myDemoFunctionApp20181016 a Create a 50L Database
ﬁ Create a storage account
Subscription
Microsoft Azure Internal Consumption -
Resource Group
myDemos* -
Hosting Plan Clicking the Create button will create the following Azure
myDemoPlan20181016* (Central US, Y1) - resources
Storage Account - mydemofunctionapp2018101 & X
Storage Account Haosting Plan - myDemoPlan20181016 & X
mydemofunctionapp2018101* (Central US) - App Service - myDemoFunctionApp20181016
Export... Cancel
8.
Setting Suggested value Description
App Name Globally unique name Name that uniquely identifies
your new function app.
Subscription Choose your subscription The Azure subscription to use.
Resource Group myResourceGroup Name of the resource group in

which to create your function
app. Choose New to create a
new resource group.

App Service Plan

Consumption plan Make sure to choose the
Consumption under Size after
you click New to create a
serverless plan. Also, choose a
Location in a regionnear you or
near other services your func-
tions access. When you run in a
plan other than Consumption,
you must manage the scaling of
your function app.

196 Module4 Module Understanding Azure Functions

Setting Suggested value Description

Storage Account General purpose storage account | An Azure storage account is
required by the Functions
runtime. Click New to create a
general purpose storage ac-
count. You can also use an
existing account that meets the
storage account requirements.

9. Click Create to create a function app and related resources in Azure with these settings and deploy
your function project code.

10. After the deployment is complete, make a note of the Site URL value, which is the address of your
function app in Azure.

Publish

Publish your app to Azure or another host, Learn more

<7 myDemoFunctionApp20181016 - Zip Deploy v Publish

Mew Profile... Actionsw

Site URL https://mydemofunctiona... [} I Manage Application 5ettings...
Configuration Release Manage Profile Settings...
Delete existing files True

Username SmyDemoFunctionApp20181016

Password e

178

Test your function in Azure

1. Copy the base URL of the function app from the Publish profile page. Replace the localhost:port
portion of the URL you used when testing the function locally with the new base URL.

2. The URL that calls your durable function HTTP trigger should be in the following format:

http://<APP _NAME>.azurewebsites.net/api/<FUNCTION NAME> HttpStart

3. Paste this new URL for the HTTP request into your browser's address bar. You should get the same
status response as before when using the published app.

Fan-out/fan-in Durable Function example

Fan-out/fan-in refers to the pattern of executing multiple functions concurrently and then performing
some aggregation on the results. This lesson explains a sample that uses Durable Functions to implement
a fan-out/fan-in scenario. The sample is a durable function that backs up all or some of an app's site
content into Azure Storage.

Scenario overview

In this sample, the functions upload all files under a specified directory recursively into blob storage. They
also count the total number of bytes that were uploaded.

Implement Durable Functions 197

It's possible to write a single function that takes care of everything. The main problem you would run into
is scalability. A single function execution can only run on a single VM, so the throughput will be limited
by the throughput of that single VM. Another problem is reliability. If there's a failure midway through, or
if the entire process takes more than 5 minutes, the backup could fail in a partially-completed state. It
would then need to be restarted.

A more robust approach would be to write two regular functions: one would enumerate the files and add
the file names to a queue, and another would read from the queue and upload the files to blob storage.
This is better in terms of throughput and reliability, but it requires you to provision and manage a queue.
More importantly, significant complexity is introduced in terms of state management and coordination if
you want to do anything more, like report the total number of bytes uploaded.

A Durable Functions approach gives you all of the mentioned benefits with very low overhead.

The functions

This lesson explains the following functions in the sample app:
® E2 BackupSiteContent

® E2 GetFilelist

® E2 CopyFileToBlob

The following sections explain the configuration and code that are used for C# scripting. The code for
Visual Studio development is shown at the end of the lesson.

The cloud backup orchestration (Visual Studio Code and
Azure portal sample code)

The E2_BackupSiteContent function uses the standard function json for orchestrator functions.

{
"bindings": [

{

"name": "backupContext",
"type": "orchestrationTrigger",
"direction": "in"

}

I
"disabled": false

Here is the code that implements the orchestrator function:

C#

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"

public static async Task<long> Run (DurableOrchestrationContext backupCon-
text)
{

string rootDirectory = Environment.ExpandEnvironmentVariables (backup-
Context.GetInput<string>() 2?2 "");

198 Module 4 Module Understanding Azure Functions

if (string.IsNullOrEmpty (rootDirectory))
{

throw new ArgumentException ("A directory path is required as an
input.");

}

if (!Directory.Exists(rootDirectory))

{

throw new DirectoryNotFoundException ($"Could not find a directory
named '{rootDirectory}'.");

}

string[] files = await backupContext.CallActivityAsync<string[]>(
"E2 GetFilelList",
rootDirectory) ;

var tasks = new Task<long>|[files.Length];
for (int i = 0; 1 < files.Length; i++)
{

tasks[i] = backupContext.CallActivityAsync<long> (
"E2 CopyFileToBlob",
files[i]);

await Task.WhenAll (tasks);

long totalBytes = tasks.Sum(t => t.Result);
return totalBytes;

JavaScript (Functions v2 only)

const df = require ("durable-functions");

module.exports = df.orchestrator (function* (context) {
const rootDirectory = context.df.getInput();
if (!rootDirectory) {
throw new Error ("A directory path is required as an input.");

const files = yield context.df.callActivity ("E2 GetFileList", rootDirec-
tory);

// Backup Files and save Promises into array
const tasks = [];
for (const file of files) {
tasks.push (context.df.callActivity ("E2 CopyFileToBlob", file));

// wait for all the Backup Files Activities to complete, sum total

Implement Durable Functions 199

bytes
const results = yield context.df.Task.all (tasks);
const totalBytes = results.reduce((prev, curr) => prev + curr, O0);

// return results;
return totalBytes;

1)

This orchestrator function essentially does the following:
1. Takes a rootDirectory value as an input parameter.
2. Calls a function to get a recursive list of files under rootDirectory.
3. Makes multiple parallel function calls to upload each file into Azure Blob Storage.
4. Wiaits for all uploads to complete.
Returns the sum total bytes that were uploaded to Azure Blob Storage.

Notice the await Task.WhenAll (tasks); (C#) and yield context.df.Task.all (tasks); (JS) line.
All the calls to the E2_CopyFileToBlob function were not awaited. This is intentional to allow them to
run in parallel. When we pass this array of tasks to Task.WhenAll, we get back a task that won't
complete until all the copy operations have completed. If you're familiar with the Task Parallel Library (TPL)
in .NET, then this is not new to you. The difference is that these tasks could be running on multiple VMs
concurrently, and the Durable Functions extension ensures that the end-to-end execution is resilient to
process recycling.

Tasks are very similar to the JavaScript concept of promises. However, Promise.all has some differenc-
es from Task.WhenAl1l. The concept of Task.WhenAll has been ported over as part of the dura-
ble-functions JavaScript module and is exclusive to it.

After awaiting from Task.WhenAl1 (or yielding from context.df.Task.all), we know that all
function calls have completed and have returned values back to us. Each call to E2 CopyFileToBlob
returns the number of bytes uploaded, so calculating the sum total byte count is a matter of adding all
those return values together.

Helper activity functions

The helper activity functions, as with other samples, are just regular functions that use the activi-
tyTrigger trigger binding. For example, the function.json file for E2_GetFileList looks like the
following:

{
"bindings": [

{

"name": "rootDirectory",
"type": "activityTrigger",
"direction": "in"

}

I
"disabled": false

And here is the implementation:

200 Module4 Module Understanding Azure Functions

C#

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
#r "Microsoft.Extensions.Logging"

public static string[] Run(string rootDirectory, ILogger log)
{

string[] files = Directory.GetFiles (rootDirectory, "*", SearchOption.
AllDirectories);

log.LogInformation ($"Found {files.Length} file(s) under {rootDirecto-
ryt.");

return files;

JavaScript (Functions v2 only)

const readdirp = require ("readdirp"):;
module.exports = function (context, rootDirectory) {
context.log(Searching for files under '${rootDirectory}'...);

const allFilePaths = [];

readdirp (
{root: rootDirectory, entryType: 'all'},
function (fileInfo) {
if (!fileInfo.stat.isDirectory()) |
allFilePaths.push (fileInfo.fullPath);

b
function (err, res) {
if (err) {

throw err;

context.log(Found ${allFilePaths.length} under ${rootDirecto-

context.done (null, allFilePaths);

The JavaScript implementation of E2_GetFileList uses the readdirp module to recursively read the
directory structure.

Note: You might be wondering why you couldn't just put this code directly into the orchestrator function.
You could, but this would break one of the fundamental rules of orchestrator functions, which is that they
should never do /0O, including local file system access.

The function.json file for E2_CopyFileToBlob is similarly simple:

Implement Durable Functions 201

"bindings": [
{
"name": "filePath",
"type": "activityTrigger",
"direction": "in"

}
I
"disabled": false

The C# implementation is also pretty straightforward. It happens to use some advanced features of Azure
Functions bindings (that is, the use of the Binder parameter), but you don't need to worry about those
details for the purpose of this walkthrough.

C#

#r "Microsoft.Azure.WebJobs.Extensions.DurableTask"
#r "Microsoft.Azure.WebJobs.Extensions.Storage"

#r "Microsoft.Extensions.Logging"

#r "Microsoft.WindowsAzure.Storage"

using Microsoft.WindowsAzure.Storage.Blob;

public static async Task<long> Run (
string filePath,
Binder binder,
ILogger log)

long byteCount = new FileInfo (filePath) .Length;

// strip the drive letter prefix and convert to forward slashes
string blobPath = filePath

.Substring (Path.GetPathRoot (filePath) .Length)

.Replace ("\\', '/");
string outputLocation = $"backups/{blobPath}";

log.LogInformation ($"Copying '{filePath}' to '{outputLocation}'. Total
bytes = {byteCount}.");

// copy the file contents into a blob

using (Stream source = File.Open (filePath, FileMode.Open, FileAccess.
Read, FileShare.ReadWrite))
using (Stream destination = await binder.BindAsync<CloudBlobStream> (

new BlobAttribute (outputLocation)))

await source.CopyToAsync (destination);

return byteCount;

202 Module 4 Module Understanding Azure Functions

JavaScript (Functions v2 only)

The JavaScript implementation does not have access to the Binder feature of Azure Functions, so the
Azure Storage SDK for Node takes its place.

const fs = require("fs");

const path = require ("path");

const storage = require("azure-storage");

module.exports = function (context, filePath) ({
const container = "backups";

const root = path.parse (filePath) .root;
const blobPath = filePath

.substring (root.length)

.replace ("\\", "/");

const outputLocation = “backups/${blobPath}";

const blobService = storage.createBlobService (process.env|['AzureWeb-
JobsStorage']) ;

blobService.createContainerIfNotExists (container, (error) => {

if (error) {

throw error;

fs.stat (filePath, function (error, stats) {
if (error) {
throw error;
}
context.log(Copying '${filePath}' to '${outputLocation}'. Total
bytes = ${stats.size}.);

const readStream = fs.createReadStream (filePath) ;

blobService.createBlockBlobFromStream (container, blobPath,
readStream, stats.size, function (error) {
if (error) {

throw error;

context.done (null, stats.size);

The implementation loads the file from disk and asynchronously streams the contents into a blob of the
same name in the “backups” container. The return value is the number of bytes copied to storage, that is
then used by the orchestrator function to compute the aggregate sum.

Implement Durable Functions 203

Note: This is a perfect example of moving I/O operations into an activityTrigger function. Not only
can the work be distributed across many different VMs, but you also get the benefits of checkpointing
the progress. If the host process gets terminated for any reason, you know which uploads have already
completed.

Run the sample
You can start the orchestration by sending the following HTTP POST request.

POST http://{host}/orchestrators/E2 BackupSiteContent
Content-Type: application/json
Content-Length: 20

"D:\\home\\LogFiles"

Note: The HttpStart function that you are invoking only works with JSON-formatted content. For this
reason, the Content-Type: application/json header is required and the directory path is encod-
ed as a JSON string. Moreover, HTTP snippet assumes there is an entry in the host . json file which
removes the default api/ prefix from all HTTP trigger functions URLs. You can find the markup for this
configuration in the host . json file in the samples.

This HTTP request triggers the E2_BackupSiteContent orchestrator and passes the string D: \home \
LogFiles as a parameter. The response provides a link to get the status of the backup operation:

HTTP/1.1 202 Accepted

Content-Length: 719

Content-Type: application/json; charset=utf-8

Location: http://{host}/admin/extensions/DurableTaskExtension/instances/
b4e9bdcc4d35d460£8dc008115ff0a8a9?taskHub=DurableFunction-
sHub&connection=Storage&code={systemKey}

(...trimmed...)

Depending on how many log files you have in your function app, this operation could take several
minutes to complete. You can get the latest status by querying the URL in the Location header of the
previous HTTP 202 response.

GET http://{host}/admin/extensions/DurableTaskExtension/instances/b4de9bdc—
c435d460£8dc008115ff0a8a9?taskHub=DurableFunctionsHub&con-
nection=Storageé&code={systemKey}

HTTP/1.1 202 Accepted

Content-Length: 148

Content-Type: application/json; charset=utf-8

Location: http://{host}/admin/extensions/DurableTaskExtension/instances/
b4e9bdcc435d460£8dc008115ff0a8a9?taskHub=DurableFunction-
sHub&connection=Storage&code={systemKey}

{"runtimeStatus":"Running", "input":"D:\\home\\LogFiles", "output":null, "cre—
atedTime":"2017-06-29T718:50:552", "lastUpdatedTime" :"2017-06-29T18:51:162"}

204 Module 4 Module Understanding Azure Functions

In this case, the function is still running. You are able to see the input that was saved into the orchestrator
state and the last updated time. You can continue to use the Location header values to poll for comple-
tion. When the status is “Completed”, you see an HTTP response value similar to the following:

HTTP/1.1 200 OK
Content-Length: 152
Content-Type: application/json; charset=utf-8

{"runtimeStatus":"Completed", "input":"D:\\home\\LogFiles", "out-
put":452071, "createdTime" :"2017-06-29T18:50:55Z", "lastUpdated-
Time":"2017-06-29T18:51:262"}

Now you can see that the orchestration is complete and approximately how much time it took to com-
plete. You also see a value for the output field, which indicates that around 450 KB of logs were upload-
ed.

Visual Studio sample code
Here is the orchestration as a single C# file in a Visual Studio project:

// Copyright (c) .NET Foundation. All rights reserved.
// Licensed under the MIT License. See LICENSE in the project root for

license information.

using System.IO;

using System.Ling;

using System.Threading.Tasks;

using Microsoft.Azure.WebJobs;

using Microsoft.Extensions.Logging;

using Microsoft.WindowsAzure.Storage.Blob;

namespace VSSample
{
public static class BackupSiteContent
{
[FunctionName ("E2 BackupSiteContent")]
public static async Task<long> Run (
[OrchestrationTrigger] DurableOrchestrationContext backupCon-
text)

string rootDirectory = backupContext.GetInput<string>()?.
Trim() ;
if (string.IsNullOrEmpty (rootDirectory))

{
rootDirectory = Directory.GetParent (typeof (BackupSiteCon-

tent) .Assembly.Location) .FullName;
}

string[] files = await backupContext.CallActivityAsyn-—
c<stringl[]>(
"E2 GetFileList",
rootDirectory) ;

Implement Durable Functions 205

var tasks = new Task<long>([files.Length];
for (int 1 = 0; 1 < files.Length; i++)
{

tasks[i] = backupContext.CallActivityAsync<long>(
"E2 CopyFileToBlob",
files[1]);

await Task.WhenAll (tasks);

long totalBytes = tasks.Sum(t => t.Result);
return totalBytes;

[FunctionName ("E2 GetFileList")]

public static string[] GetFileList(
[ActivityTrigger] string rootDirectory,
ILogger log)

log.LogInformation ($"Searching for files under '{rootDirecto-
ryt'...");

string[] files = Directory.GetFiles (rootDirectory, "*",
SearchOption.AllDirectories);

log.LogInformation ($"Found {files.Length} file(s) under {rootDi-

rectory}.");

return files;

[FunctionName ("E2 CopyFileToBlob")]

public static async Task<long> CopyFileToBlob (
[ActivityTrigger] string filePath,
Binder binder,
ILogger log)

long byteCount = new FileInfo (filePath) .Length;

// strip the drive letter prefix and convert to forward slashes
string blobPath = filePath

.Substring (Path.GetPathRoot (filePath) .Length)

.Replace ("\\', '/");
string outputLocation = $"backups/{blobPath}";

log.LogInformation ($"Copying '{filePath}' to '{outputLocation}'.
Total bytes = {byteCount}.");

// copy the file contents into a blob

using (Stream source = File.Open (filePath, FileMode.Open, File-
Access.Read, FileShare.Read))

using (Stream destination = await binder.BindAsync<CloudBlob-

6 Module 4 Module Understanding Azure Functions

Stream> (
new BlobAttribute (outputLocation, FileAccess.Write)))

await source.CopyToAsync (destination);

return byteCount;

MCT USE ONLY. STUDENT USE PROHIBITED

Review Questions 207

Review Questions

Module 2 Review Questions

Azure Redis Cache

Azure Redis Cache is a managed service based on Redis Cache that provides you secure nodes as a
service. There are only two tiers for this service currently available. What are they and how do they differ?

> Click to see suggested answer

e Basic: Includes a single node.

e Standard: Includes two nodes in the Primary/Replica configuration and also includes replication
support and a Service Level Agreement (SLA).

Normalized units

How can normalized units help you determine, and plan for, your database needs?

> Click to see suggested answer

In a world of hyperscale database services, it can be difficult to determine how much performance you
need or how powerful an allocated database is. To help ease this challenge, many cloud vendors have
provided normalized units of measurements that can be used to compare database tiers.

For example, if your application uses 20 database units today, 40 database units will guarantee you
approximately double your performance, while 10 database units will guarantee you half of your perfor-
mance.

