
Microsoft
Official
Course

AZ-300T06
Developing for the Cloud

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

AZ-300T06
Developing for the Cloud

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Contents

■■ Module 0 Start Here  . . � 1
Welcome to Developing for the Cloud  . . � 1

■■ Module 1 Module Developing Long-Running Tasks and Distributed Transactions  � 5
Implement large-scale, parallel, and high-performance apps by using batches  � 5
Implement resilient apps by using queues  . . � 8
Implement code to address application events by using webhooks  . . � 12
Online Lab - Configuring a Message-Based Integration Architecture  . . � 15
Review Questions  . . � 23

■■ Module 2 Module Configuring a Message-Based Integration Architecture  � 25
Configure an app or service to send emails  . . � 25
Configure an event publish and subscribe model  . . � 27
Configure the Azure Relay service  . . � 31
Create and configure a notification hub  . . � 34
Create and configure an event hub  . . � 40
Create and configure a service bus  . . � 43
Configuring apps and services with Microsoft Graph  . . � 47
Review Questions  . . � 50

■■ Module 3 Module Developing for Asynchronous Processing  . . � 51
Implement parallelism, multithreading, and processing  . . � 51
Implement Azure Functions and Azure Logic Apps  . . � 53
Implement interfaces for storage or data access  . . � 58
Implement appropriate asynchronous computing models  . . � 60
Review Questions  . . � 62

■■ Module 4 Module Developing for Autoscaling  . . � 65
Implement autoscaling rules and patterns  . . � 65
Implement code that addresses singleton application instances  . . � 68
Implement code that addresses a transient state  . . � 73
Review Questions  . . � 77

■■ Module 5 Module Developing Azure Cognitive Services Solutions  . . � 79
Cognitive Services Overview  . . � 79
Develop Solutions using Computer Vision  . . � 80
Develop Solutions using Bing Web Search  . . � 96
Develop Solutions using Custom Speech Service  . . � 109

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Develop Solutions using QnA Maker  . . � 121
Working with the Azure IoT Hub  . . � 138
Review Questions  . . � 143

■■ Module 6 Module Develop for Azure Storage  . � 145
Develop Solutions that use Azure Cosmos DB Storage  . . � 145
Develop Solutions that use a Relational Database  . . � 156
Develop Solutions that use Microsoft Azure Blob Storage  . . � 166
Review Questions  . . � 180

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Module 0 Start Here

Welcome to Developing for the Cloud
Welcome to Developing for the Cloud

Course Overview: Developing for the Cloud
Welcome to Developing for the Cloud. This course is part of a series of five courses to help students
prepare for Microsoft’s Azure Solutions Architect technical certification exam AZ-300: Microsoft Azure
Architect Technologies. These courses are designed for IT professionals and developers with experience
and knowledge across various aspects of IT operations, including networking, virtualization, identity,
security, business continuity, disaster recovery, data management, budgeting, and governance.

The outline for this course is as follows:

Module 1 - Developing Long-Running Tasks and Distributed Transactions

Topics for this module include:

●● Implementing large-scale, parallel, and high-performance apps using batches

●● HPC using Microsoft Azure Virtual Machines

●● Implementing resilient apps by using queues

As well as, implementing code to address application events by using webhooks. Implementing a web-
hook gives an external resource a URL for an application. The external resource then issues an HTTP
request to that URL whenever a change is made that requires the application to take an action.

Module 2 - Configuring a Message-Based Integration Architecture

Topics for this module include:

●● Configure an app or service to send emails

●● Configure an event publish and subscribe model

●● Configure the Azure Relay service

●● Configuring apps and services with Microsoft Graph

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

2  Module 0 Start Here

Module 3 - Developing for Asynchronous Processing

Topics for this module include:

●● Implement parallelism, multithreading, and processing

●● Implement Azure Functions and Azure Logic Apps

●● Implement interfaces for storage or data access

●● Implement appropriate asynchronous computing models

●● Implement autoscaling rules and patterns

This module includes recommendations for implementing code that addresses a transient state. Involv-
ing, momentary loss of network connectivity to components and services, the temporary unavailability of
a service, or timeouts that occur when a service is busy.

Module 4 - Developing for Autoscaling

Topics for this module include:

●● Implementing autoscaling rules and patterns

●● Implementing code that addresses singleton application instances

●● Implementing code that addresses a transient state

Module 5 - Developing Azure Cognitive Services Solutions

Topics for this module include:

●● Developing Solutions using Computer Vision

●● Developing solutions using Bing Web Search

●● Developing solutions using Custom Speech Service

●● Developing solutions using QnA Maker

Additionally, you’ll receive an overview of Azure IoT Hub service, hosted in the cloud, that acts as a
central message hub for bi-directional communication between your IoT application and the devices it
manages.

Module 6 - Develop for Azure Storage

Topics for this module include:

●● Develop Solutions that use Azure Cosmos DB Storage

●● Develop Solutions that use a Relational Database

●● Modeling a Database by using Entity Framework Core

●● Develop Solutions that use Microsoft Azure Blob Storage

●● Manipulating Blob Container Properties in .NET

What You’ll Learn:
●●

How to configure a message-based integration architecture

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Welcome to Developing for the Cloud  3

●●
Understand how to Develop for Asynchronous Processing

●●
Begin creating apps for Autoscaling

●●
Understand Azure Cognitive Services Solutions

Prerequisites:
Successful Cloud Solutions Architects begin this role with practical experience with operating systems,
virtualization, cloud infrastructure, storage structures, billing, and networking.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Module 1 Module Developing Long-Running
Tasks and Distributed Transactions

Implement large-scale, parallel, and high-per-
formance apps by using batches
High-performance computing (HPC)
Traditionally, complex processing was something saved for universities and major research firms. A
combination of cost, complexity, and accessibility served to keep many from pursuing potential gains for
their organizations by processing large and complex simulations or models. Cloud platforms have
democratized hardware so much that massive computing tasks are within the reach of hobbyist develop-
ers and small and medium-sized enterprises.

High-performance computing (HPC) typically describes the aggregation of complex processes across
many different machines, thereby maximizing the computing power of all of the machines. Through HPC
in the cloud, one could create enough compute instances to create a model or perform a calculation and
then destroy the instances immediately afterward. Advancements in the HPC field have led to improve-
ments in the way that machines can share memory or communicate with each other in a low-latency
manner.

HPC using Microsoft Azure Virtual Machines
Azure H-series virtual machines (VMs) are the latest in HPC VMs aimed at high-end computational needs,
like molecular modeling and computational fluid dynamics. These 8 and 16 virtual CPU (vCPU) VMs are
built on the Intel Haswell processor technology featuring a later generation (DDR4) memory and sol-
id-state drive (SSD)-based temporary storage.

In addition to substantial CPU power, the H-series offers diverse options for low-latency Remote Direct
Memory Access (RDMA) networking using Fourteen Data Rate (FDR) InfiniBand and several memory
configurations to support memory-intensive computational requirements.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

6  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

HPC Pack using Azure Virtual Machines
Microsoft HPC Pack is the Microsoft HPC cluster and job management solution for Windows. HPC Pack
can be installed on a server that functions as the “head node,” and the server can be used to manage
compute nodes in an HPC cluster. HPC Pack can also be used in hybrid scenarios where you want to
"burst to Azure" with cloud instances to obtain more processing power.

Starting with HPC Pack 2012 R2 Update 2, HPC Pack has supported several Linux distributions to run on
compute nodes deployed in Azure VMs, managed by a Windows Server head node. With the latest
release of HPC Pack, you can deploy a Linux-based cluster that can run Message Passing Interface (MPI)
applications that access the RDMA network in Azure. Using HPC Pack, you can create a cluster of virtual
machines using either Windows or Linux that use the Intel MPI Library to spread the workload of simula-
tions and computations among the compute nodes of many virtual machines.

Remote Direct Memory Access (RDMA)
RDMA is a technology that provides a low-latency network connection between the processing running
on two servers or virtual machines in Azure. This technology is essential for engineering simulations and
other compute applications that are too large to fit in the memory of a single machine. From a develop-
er’s perspective, RDMA is implemented in a way that makes it seem as if the machines are sharing
memory. RDMA is efficient, because it copies data from the network adapter directly to memory and
avoids wasting CPU cycles.

A subset of the compute-intensive instances (H16r, H16mr, A8, and A9) feature a network interface for
RDMA connectivity. Selected N-series sizes designated with “r” (such as NC24r) are also RDMA-capable.
This interface is available in addition to the standard Azure network interface available to other VM sizes.

This interface allows the RDMA-capable instances to communicate over an InfiniBand network, operating
at FDR rates for H16r, H16mr, and RDMA-capable N-series VMs and at Quad Data Rate (QDR) rates for
A8 and A9 VMs. These RDMA capabilities can boost the scalability and performance of certain MPI
applications.

Azure Batch for HPC
Azure Batch is a service that manages VMs for large-scale parallel and HPC applications. Batch is a
platform as a service (PaaS) offering that manages the VMs necessary for your compute jobs for you

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement large-scale, parallel, and high-performance apps by using batches  7

instead of forcing you to manage an HPC cluster or job schedule. Batch provides autoscaling functionality
and job scheduling functionality in addition to managing compute nodes.

Batch computing is a common pattern for organizations that process, transform, and analyze large
amounts of data either on a schedule or on demand. It includes end-of-cycle processing, such as a bank’s
daily risk reporting or a payroll that must be done on schedule. It also includes large-scale business,
science, and engineering applications that typically need the tools and resources of a compute cluster or
grid. Applications include traditional HPC applications, such as fluid dynamics simulations and specialized
workloads in fields ranging from digital content creation to financial services to life sciences research.
Batch works well with intrinsically parallel (sometimes called “embarrassingly parallel”) applications or
workloads, which lend themselves to running as parallel tasks on multiple computers.

Scaling out parallel workloads
The Batch API can handle scaling out an intrinsically parallel workload, such as image rendering, on a
pool of up to thousands of compute cores. Instead of having to set up a compute cluster or write code to
queue and schedule your jobs and move the necessary input and output data, you automate the schedul-
ing of large compute jobs and scale a pool of compute VMs up and down to run them. You can write
client apps or front ends to run jobs and tasks on demand, on a schedule, or as part of a larger workflow
managed by tools such as Azure Data Factory.

You can also use the Batch API to wrap an existing application so it runs as a service on a pool of com-
pute nodes that Batch manages in the background. The application might be one that runs today on
client workstations or a compute cluster. You can develop the service to let users offload peak work to
the cloud or to run their work entirely in the cloud. The Batch Apps framework handles the movement of
input and output files, the splitting of jobs into tasks, job and task processing, and data persistence.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

8  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

Implement resilient apps by using queues
Asynchronous messaging
Many software curriculums teach that separating your application into smaller modules will make it easier
to manage the application over the long term. Modules can be swapped, modified, and updated without
having to update the entire application. Partitioning your workloads into modules also carries the
additional benefit of allowing each logic center in your application to scale in isolation.

If you have a web application that allows people to upload images for processing, your image processing
module can become CPU intensive and easily account for the majority of your CPU time and disk usage.
By separating the image processing module out to another distinct server (or set of servers), you can
scale this module in isolation without having to modify, scale, or change the module that serves the web
pages. It then becomes very important to figure out how to communicate among these modules.

Messaging is a key strategy employed in many distributed environments, such as the cloud. It enables
applications and services to communicate and cooperate and can help to build scalable and resilient
solutions. Messaging supports asynchronous operations, enabling you to decouple a process that
consumes a service from the process that implements the service.

Message queues
Asynchronous messaging in the cloud is usually implemented by using message queues. Regardless of
the technology used to implement them, most message queues support three fundamental operations:

●● A sender can post a message to the queue.

●● A receiver can retrieve a message from the queue (the message is removed from the queue).

●● A receiver can examine (or peek at) the next available message in the queue (the message is not
removed from the queue).

Conceptually, you can think of a message queue as a buffer that supports send and receive operations. A
sender constructs a message in an agreed format and posts the message to a queue. A receiver retrieves
the message from the queue and processes it. If a receiver attempts to retrieve a message from an empty
queue, the receiver may be blocked until a new message arrives on that queue. Many message queues
enable a receiver to query the current length of a queue or peek to see whether one or more messages
are available, enabling the receiver to avoid being blocked if the queue is empty.

Many modern queue systems also support transactions, visibility, and leasing on top of the standard
queue operations.

Concurrent queue consumers
An application running in the cloud is expected to handle a large number of requests. Rather than
processing each request synchronously, a common technique is for the application to pass them through
a messaging system to another service (a consumer service) that handles them asynchronously. This

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement resilient apps by using queues  9

strategy helps to ensure that the business logic in the application isn't blocked while the requests are
being processed.

The number of requests can vary significantly over time for many reasons. A sudden increase in user
activity or aggregated requests coming from multiple tenants can cause an unpredictable workload. At
peak hours, a system might need to process many hundreds of requests per second, while at other times,
the number could be very small. Additionally, the nature of the work performed to handle these requests
might be highly variable. Using a single instance of the consumer service can cause that instance to
become flooded with requests, or the messaging system might be overloaded by an influx of messages
coming from the application. To handle this fluctuating workload, the system can run multiple instances
of the consumer service. However, these consumers must be coordinated to ensure that each message is
delivered only to a single consumer. The workload also needs to be load balanced across consumers to
prevent an instance from becoming a bottleneck.

Use a message queue to implement the communication channel between the application and the
instances of the consumer service. The application posts requests in the form of messages to the queue,
and the consumer service instances receive messages from the queue and process them. This approach
enables the same pool of consumer service instances to handle messages from any instance of the
application. The figure illustrates using a message queue to distribute work to instances of a service.

Azure provides Azure Storage queues and Azure Service Bus queues that both act as mechanisms for
implementing this pattern.

Using Azure Storage queues in code
Azure Queue storage provides cloud messaging between application components. In designing applica-
tions for scale, application components are often decoupled so that they can scale independently. Queue
storage delivers asynchronous messaging for communication between application components, whether
they are running in the cloud, on the desktop, on an on-premises server, or on a mobile device. Queue
storage also supports managing asynchronous tasks and building process workflows.

Sending a message to a queue
To insert a message into an existing queue, first create a new CloudQueueMessage. Next, call the
AddMessage method. A CloudQueueMessage can be created from either a string (in UTF-8 format) or a
byte array. Here is code that creates a queue (if it doesn't exist):

CloudStorageAccount storageAccount = CloudStorageAccount.Parse(CloudConfigu-
rationManager.GetSetting("StorageConnectionString"));
CloudQueueClient queueClient = storageAccount.CreateCloudQueueClient();

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

10  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

CloudQueue queue = queueClient.GetQueueReference("myqueue");
queue.CreateIfNotExists();

The next code sample inserts the message ‘Hello, World’ into the referenced queue:

CloudQueueMessage message = new CloudQueueMessage("Hello, World");
queue.AddMessage(message);

Receiving messages from a queue
You can peek at the message in the front of a queue without removing it from the queue by calling the
PeekMessage method:

CloudQueueMessage peekedMessage = queue.PeekMessage();

Console.WriteLine(peekedMessage.AsString);

Your code dequeues a message from a queue in two steps. When you call GetMessage, you get the next
message in a queue. A message returned from GetMessage becomes invisible to any other code reading
messages from this queue. By default, this message stays invisible for 30 seconds. To finish removing the
message from the queue, you must also call DeleteMessage. This two-step process of removing a
message assures that if your code fails to process a message due to a hardware or software failure,
another instance of your code can get the same message and try again. Your code calls DeleteMessage
right after the message has been processed:

CloudQueueMessage retrievedMessage = queue.GetMessage();
…
queue.DeleteMessage(retrievedMessage);

Using Azure Service Bus queues in code
Azure Service Bus supports a set of cloud-based, message-oriented middleware technologies, including
reliable message queuing and durable publish/subscribe messaging. These “brokered” messaging
capabilities can be thought of as decoupled messaging features that support publish-subscribe, temporal
decoupling, and load balancing scenarios using the Service Bus messaging workload.

Service Bus queues offer first in, first out (FIFO) message delivery to one or more competing consum-
ers. That is, receivers typically receive and process messages in the order in which they were added to the
queue, and only one message consumer receives and processes each message. A key benefit of using
queues is achieving the temporal decoupling of application components.

Sending messages to a queue
Using Service Bus, you create a client that grants access to a specific queue for message processing. To
create this client, you should use the QueueClient class, passing in a connection string for the Service
Bus namespace and the name of a specific queue:

QueueClient queueClient = new QueueClient(ServiceBusConnectionString,
QueueName);

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement resilient apps by using queues  11

Once the queue client has been created, you can use the client to send one or more messages to the
queue. To send a single message, you simpy need to use the SendAsync method. To send a group of
messages, you can use the SendBatchAsync method. Both methods require that you encapsulate the
queue message in an object of type Message:

string messageBody = $"First Message";
Message message = new Message(Encoding.UTF8.GetBytes(messageBody));
await queueClient.SendAsync(message);

var messages = new List<Message>();
for (int i = 0; i < 10; i++)
{
	 var message = new Message(Encoding.UTF8.GetBytes($"Message {i:00})};
	 messages.Add(message);
}

await queueClient.SendBatchAsync(messages);

Receiving messages from a queue
Using the same queue client, you can register a method that will handle any new messages that arrive
asynchronously:

queueClient.RegisterMessageHandler(MethodToHandleNewMessage, new Register-
HandlerOptions());

Now, you will need to implement a new method to handle each message that may come in. Within this
method, you can implement any business logic you like, but it must conform to a specific method
signature—Handler(Message, CancellationToken). As an example, this method will write each message
to the console:

static async Task MethodToHandleNewMessage (Message message, Cancellation-
Token token)
{
	 string messageString = Encoding.UTF8.GetString(message.Body);
	 Console.WriteLine($"Received message: {messageString}");
	 await queueClient.CompleteAsync(message.SystemProperties.LockToken);
}

You will notice that we need to call the CompleteAsync method of the queue client at the end of the
message handler method. This ensures that the message is not received again. Alternatively, you can call
AbandonAsync if you wish to stop handling the message and receive it again.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

12  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

Implement code to address application events
by using webhooks
Webhooks
Most applications look at external data and react to changes to that data. For example, your retail
application may need to watch a database and wait to see if any records are updated to a status of
“pending shipment”. If a record has that value, your application will ship a physical package and then
update the record’s status to “shipped”. To implement this logic in the past, we would have needed to
query the database on a regular basis. This technique is referred to as polling. While it is a simple tech-
nique to implement, it has significant drawbacks. Polling requires you to overallocate resources to
checking a data store or third-party service even if there are no changes waiting.

As the internet evolved, many applications began implementing “user-defined HTTP callbacks.” In this
pattern, the third-party service or data store would contact the application whenever it had changes. This
saves your application from having to waste compute cycles polling data. This pattern is referred to as
webhooks. When implementing a webhook, you give an external resource a URL for your application.
The external resource will then issue an HTTP request to that URL whenever a change is made that
requires your application to take action.

Implementing webhooks using Azure Functions
By far, the simplest way to implement an application that supports webhooks in Azure is to use the Azure
Functions service. When defining a function with Azure Functions, you define a trigger and then code
that will execute once triggered.

In this simple example, the function is triggered by an HTTP POST request, and it echoes the request
body:

{
 "disabled": false,
 "bindings": [
 {
 "authLevel": "function",
 "name": "req",
 "type": "httpTrigger",
 "direction": "in",
 "methods": [
 "post"
]
 },
 {
 "name": "$return",

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement code to address application events by using webhooks  13

 "type": "http",
 "direction": "out"
 }
]
}

module.exports = function(context, req) {
	 context.res = {
		 body: req.body
	 };
 context.done();
};

A webhook-based function defined with Azure Functions will create a URL that can be accessed by any
external or third-party service. The external (or third-party) service will then issue an HTTP POST request
to this URL whenever there is a change. The function’s code will then execute any business logic relevant
to the change:

The following example shows a webhook trigger binding in a function.json file and a JavaScript function
that uses the binding. This example function creates a webhook in GitHub that is called whenever there is
an issue comment. GitHub then issues an HTTP POST request to the function URL whenever a comment is
created for an issue. The function will then be triggered and handle the new comment:

{
	 "bindings": [
		 {
			 "type": "httpTrigger",
			 "direction": "in",
			 "webHookType": "github",
			 "name": "req"
		 },
		 {
			 "type": "http",
			 "direction": "out",
			 "name": "res"
		 }
],
	 "disabled": false

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

14  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

}

module.exports = function (context, data) {
	 context.log('GitHub WebHook triggered!', data.comment.body);
	 context.res = { body: 'New GitHub comment: ' + data.comment.body };
	 context.done();
};

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Online Lab - Configuring a Message-Based Integration Architecture  15

Online Lab - Configuring a Message-Based In-
tegration Architecture
Lab Steps

Online Lab: Configuring a Message-Based Integration Ar-
chitecture
NOTE: For the most recent version of this online lab, see: https://github.com/MicrosoftLearning/
AZ-300-MicrosoftAzureArchitectTechnologies

Scenario
Adatum has several web applications that process files uploaded in regular intervals to their on-premises
file servers. Files sizes vary, but they can reach up to 100 MB. Adatum is considering migrating the
applications to Azure App Service or Azure Functions-based apps and using Azure Storage to host
uploaded files. You plan to test two scenarios:

●● using Azure Functions to automatically process new blobs uploaded to an Azure Storage container.

●● using Event Grid to generate Azure Storage queue messages that will reference new blobs uploaded
to an Azure Storage container.

These scenarios are intended to address a challenge common to a messaging based architecture, when
sending, receiving, and manipulating large messages. Sending large messages to a message queue
directly is not recommended as they would require more resources to be used, result in more bandwidth
to be consumed, and negatively impact the processing speed, since messaging platforms are usually
fine-tuned to handle high volumes of small messages. In addition, messaging platforms usually limit the
maximum message size they can process.

One potential solution is to store the message payload into an external service, like Azure Blob Store,
Azure SQL or Azure Cosmos DB, get the reference to the stored payload and then send to the message
bus only that reference. This architectural pattern is known as "claim check". The clients interested in
processing that specific message can use the obtained reference to retrieve the payload, if needed. On
Azure this pattern can be implemented in several ways and with different technologies, but it typically it
relies on eventing to either automate the claim check generation and to push it into the message bus to
be used by clients or to trigger payload processing directly. One of the common components included in
such implementations is Event Grid, which is an event routing service responsible for delivery of events
within a configurable period of time (up to 24 hours). After that, events are either discarded or dead
lettered. If archival of event contents or replayability of event stream are needed, it is possible to facilitate
this requirement by setting up an Event Grid subscription to the Event Hub or a queue in Azure Storage
where messages can be retained for longer periods and archival of messages is supported.

In this lab, you will use Azure Storage Blob service to store files to be processed. A client just needs to
drop the files to be shared into a designated Azure Blob container. In the first exercise, the files will be
consumed directly by an Azure Function, leveraging its serverless nature. You will also take advantage of
the Application Insights to provide instrumentation, facilitating monitoring and analyzing file processing.
In the second exercise, you will use Event Grid to automatically generate a claim check message and send
it to an Azure Storage queue. This allows a client application to poll the queue, get the message and then
use the stored reference data to download the payload directly from Azure Blob Storage.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

16  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

It is worth noting that the Azure Function in the first exercise relies on the Blob Storage trigger. You
should opt for Event Grid trigger instead of the Blob storage trigger when dealing with the following
requirements:

●● blob-only storage accounts: blob storage accounts are supported for blob input and output bindings
but not for blob triggers. Blob storage triggers require a general-purpose storage account.

●● high scale: high scale can be loosely defined as containers that have more than 100,000 blobs in them
or storage accounts that have more than 100 blob updates per second.

●● reduced latency: if your function app is on the Consumption plan, there can be up to a 10-minute
delay in processing new blobs if a function app has gone idle. To avoid this latency, you can use an
Event Grid trigger or switch to an App Service plan with the Always On setting enabled.

●● processing of blob delete events: blob delete events are not supported by blob storage triggers.

Objectives
After completing this lab, you will be able to:

●● Configure and validate an Azure Function App Storage Blob trigger

●● Configure and validate an Azure Event Grid subscription-based queue messaging

Lab
Estimated Time: 60 minutes

Exercise 1: Configure and validate an Azure Function App
Storage Blob trigger
The main tasks for this exercise are as follows:

1.	 Configure an Azure Function App Storage Blob trigger

2.	 Validate an Azure Function App Storage Blob trigger

Task 1: Configure an Azure Function App Storage Blob trig-
ger
1.	 From the lab virtual machine, start Microsoft Edge, browse to the Azure portal at http://portal.azure.

com, and sign in by using the Microsoft account that has the Owner role in the target Azure subscrip-
tion.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Online Lab - Configuring a Message-Based Integration Architecture  17

2.	 In the Azure portal, in the Microsoft Edge window, start a Bash session within the Cloud Shell.

3.	 If you are presented with the You have no storage mounted message, configure storage using the
following settings:

●● Subsciption: the name of the target Azure subscription

●● Cloud Shell region: the name of the Azure region that is available in your subscription and which is
closest to the lab location

●● Resource group: az300T0601-LabRG

●● Storage account: a name of a new storage account

●● File share: a name of a new file share

4.	 From the Cloud Shell pane, run the following to generate a pseudo-random string of characters that
will be used as a prefix for names of resources you will provision in this exercise:

export PREFIX=$(echo `openssl rand 5 -base64 | cut -c1-7 | tr '[:upper:]'
'[:lower:]' | tr -cd '[[:alnum:]]._-'`)

5.	 From the Cloud Shell pane, run the following to designate the Azure region into which you want to
provision resources in this lab (make sure to replace the placeholder <Azure region> with the
name of the target Azure region):

export LOCATION='<Azure_region>'

6.	 From the Cloud Shell pane, run the following to create a resource group that will host all resources
that you will provision in this lab:

export RESOURCE_GROUP_NAME='az300T0602-LabRG'

az group create --name "${RESOURCE_GROUP_NAME}" --location $LOCATION

7.	 From the Cloud Shell pane, run the following to create an Azure Storage account and a container that
will host blobs to be processed by the Azure function:

export STORAGE_ACCOUNT_NAME="az300t06st2${PREFIX}"

export CONTAINER_NAME="workitems"

export STORAGE_ACCOUNT=$(az storage account create --name "${STORAGE_AC-
COUNT_NAME}" --kind "StorageV2" --location "${LOCATION}" --resource-group
"${RESOURCE_GROUP_NAME}" --sku "Standard_LRS")

az storage container create --name "${CONTAINER_NAME}" --account-name
"${STORAGE_ACCOUNT_NAME}"

8.	 Note: The same storage account will be also used by the Azure function to facilitate its own process-
ing requirements. In real-world scenarios, you might want to consider creating a separate storage
account for this purpose.

9.	 From the Cloud Shell pane, run the following to create a variable storing the value of the connection
string property of the Azure Storage account:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

18  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

export STORAGE_CONNECTION_STRING=$(az storage account show-connec-
tion-string --name "${STORAGE_ACCOUNT_NAME}" --resource-group "${RESOURCE_
GROUP_NAME}" -o tsv)

10.	From the Cloud Shell pane, run the following to create an Application Insights resource that will
provide monitoring of the Azure Function processing blobs and store its key in a variable:

export APPLICATION_INSIGHTS_NAME="az300t06ai${PREFIX}"

az resource create --name "${APPLICATION_INSIGHTS_NAME}" --location "${LO-
CATION}" --properties '{"Application_Type": "other", "ApplicationId":
"function", "Flow_Type": "Redfield"}' --resource-group "${RESOURCE_GROUP_
NAME}" --resource-type "Microsoft.Insights/components"

export APPINSIGHTS_KEY=$(az resource show --name "${APPLICATION_INSIGHTS_
NAME}" --query "properties.InstrumentationKey" --resource-group "${RE-
SOURCE_GROUP_NAME}" --resource-type "Microsoft.Insights/components" -o tsv)

11.	From the Cloud Shell pane, run the following to create the Azure Function that will process events
corresponding to creation of Azure Storage blobs:

export FUNCTION_NAME="az300t06f${PREFIX}"

az functionapp create --name "${FUNCTION_NAME}" --resource-group "${RE-
SOURCE_GROUP_NAME}" --storage-account "${STORAGE_ACCOUNT_NAME}" --consump-
tion-plan-location "${LOCATION}"

12.	From the Cloud Shell pane, run the following to configure Application Settings of the newly created
function, linking it to the Application Insights and Azure Storage account:

az functionapp config appsettings set --name "${FUNCTION_NAME}" --re-
source-group "${RESOURCE_GROUP_NAME}" --settings "APPINSIGHTS_INSTRUMENTA-
TIONKEY=$APPINSIGHTS_KEY" FUNCTIONS_EXTENSION_VERSION=~2

az functionapp config appsettings set --name "${FUNCTION_NAME}" --re-
source-group "${RESOURCE_GROUP_NAME}" --settings "STORAGE_CONNECTION_
STRING=$STORAGE_CONNECTION_STRING" FUNCTIONS_EXTENSION_VERSION=~2

13.	Switch to the Azure portal and navigate to the blade of the Azure Function app you created earlier in
this task.

14.	On the Azure Function app blade, click Functions and then, click + New function.

15.	On the Function App runtime stack blade, ensure that the .NET entry appears in the Function
Runtime stack drop down list and click Go.

16.	On the Choose a template below or go to the quickstart blade, click Azure Blob Storage trigger
template.

17.	On the Extensions not Installed blade, click Install and wait until the installation of the extension
completes. Wait until the installation completes and click Continue.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Online Lab - Configuring a Message-Based Integration Architecture  19

18.	Note: Azure Functions V2 runtime implement bindings in the form of Nuget packages, referred to as
"binding extensions" (in particular, the Azure Storage Blob binding uses the Microsoft.Azure.WebJobs.
Extensions.Storage package).

19.	On the Azure Blob Storage trigger blade, specify the following and click Create to create a new
function within the Azure function:

●● Name: BlobTrigger

●● Path: workitems/{name}

●● Storage account connection: STORAGE_CONNECTION_STRING

20.	On the Azure Function app BlobTrigger function blade, review the content of the run.csx file.

public static void Run(Stream myBlob, string name, ILogger log)
{
 log.LogInformation($"C# Blob trigger function Processed blob\n
Name:{name} \n Size: {myBlob.Length} Bytes");
}

21.	Note: By default, the function is configured to simply log the event corresponding to creation of a
new blob. In order to carry out blob processing tasks, you would modify the content of this file.

Task 2: Validate an Azure Function App Storage Blob trigger
1.	 If necessary, restart the Bash session in the Cloud Shell.

2.	 From the Cloud Shell pane, run the following to repopulate variables that you used in the previous
task:

export RESOURCE_GROUP_NAME='az300T0602-LabRG'

export STORAGE_ACCOUNT_NAME="$(az storage account list --resource-group
"${RESOURCE_GROUP_NAME}" --query "[0].name" --output tsv)"

export CONTAINER_NAME="workitems"

3.	 From the Cloud Shell pane, run the following to upload a test blob to the Azure Storage account you
created earlier in this task:

export STORAGE_ACCESS_KEY="$(az storage account keys list --account-name
"${STORAGE_ACCOUNT_NAME}" --resource-group "${RESOURCE_GROUP_NAME}" --query
"[0].value" --output tsv)"

export WORKITEM='workitem1.txt'

touch "${WORKITEM}"

az storage blob upload --file "${WORKITEM}" --container-name "${CONTAINER_
NAME}" --name "${WORKITEM}" --auth-mode key --account-key "${STORAGE_AC-

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

20  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

CESS_KEY}" --account-name "${STORAGE_ACCOUNT_NAME}"

4.	 In the Azure portal, navigate back to the blade displaying the Azure Function app you created in the
previous task.

5.	 On the Azure Function app blade, click Monitor entry in the Functions section.

6.	 Note a single event entry representing uploading of the blob. Click the entry to view the Invocation
Details blade.

7.	 Note: Since the Azure function app in this exercise runs in the Consumption plan, there may be a
delay of up to several minutes between uploading a blob and the function being triggered. It is
possible to minimize the latency by implementing the Function app by using an App Service (rather
than Consumption) plan.

8.	 On the Invocation Details blade, click the link Run in Application Insights.

9.	 In the Application Insights portal, review the autogenerated Kusto query and its results.

Exercise 2: Configure and validate an Azure Event Grid
subscription-based queue messaging
The main tasks for this exercise are as follows:

1.	 Configure an Azure Event Grid subscription-based queue messaging

2.	 Validate an Azure Event Grid subscription-based queue messaging

Task 1: Configure an Azure Event Grid subscription-based
queue messaging
1.	 If necessary, restart the Bash session in the Cloud Shell.

2.	 From the Cloud Shell pane, run the following to generate a pseudo-random string of characters that
will be used as a prefix for names of resources you will provision in this exercise:

export PREFIX=$(echo `openssl rand 5 -base64 | cut -c1-7 | tr '[:upper:]'
'[:lower:]' | tr -cd '[[:alnum:]]._-'`)

3.	 From the Cloud Shell pane, run the following to identify the Azure region hosting the target resource
group and its existing resources:

export RESOURCE_GROUP_NAME_EXISTING='az300T0602-LabRG'

export LOCATION=$(az group list --query "[?name == '${RESOURCE_GROUP_NAME_
EXISTING}'].location" --output tsv)

export RESOURCE_GROUP_NAME='az300T0603-LabRG'

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Online Lab - Configuring a Message-Based Integration Architecture  21

az group create --name "${RESOURCE_GROUP_NAME}" --location $LOCATION

4.	 From the Cloud Shell pane, run the following to create an Azure Storage account and its container
that will be used by the Event Grid subscription that you will configure in this task:

export STORAGE_ACCOUNT_NAME="az300t06st3${PREFIX}"

export CONTAINER_NAME="workitems"

export STORAGE_ACCOUNT=$(az storage account create --name "${STORAGE_AC-
COUNT_NAME}" --kind "StorageV2" --location "${LOCATION}" --resource-group
"${RESOURCE_GROUP_NAME}" --sku "Standard_LRS")

az storage container create --name "${CONTAINER_NAME}" --account-name
"${STORAGE_ACCOUNT_NAME}"

5.	 From the Cloud Shell pane, run the following to create a variable storing the value of the Resource Id
property of the Azure Storage account:

export STORAGE_ACCOUNT_ID=$(az storage account show --name "${STORAGE_AC-
COUNT_NAME}" --query "id" --resource-group "${RESOURCE_GROUP_NAME}" -o tsv)

6.	 From the Cloud Shell pane, run the following to create the Storage Account queue that will store
messages generated by the Event Grid subscription that you will configure in this task:

export QUEUE_NAME="az300t06q3${PREFIX}"

az storage queue create --name "${QUEUE_NAME}" --account-name "${STORAGE_
ACCOUNT_NAME}"

7.	 From the Cloud Shell pane, run the following to create the Event Grid subscription that will facilitate
generation of messages in Azure Storage queue in response to blob uploads to the designated
container in the Azure Storage account:

export QUEUE_SUBSCRIPTION_NAME="az300t06qsub3${PREFIX}"

az eventgrid event-subscription create --name "${QUEUE_SUBSCRIPTION_NAME}"
--included-event-types 'Microsoft.Storage.BlobCreated' --endpoint "${STOR-
AGE_ACCOUNT_ID}/queueservices/default/queues/${QUEUE_NAME}" --endpoint-type
"storagequeue" --source-resource-id "${STORAGE_ACCOUNT_ID}"

Task 2: Validate an Azure Event Grid subscription-based
queue messaging
1.	 From the Cloud Shell pane, run the following to upload a test blob to the Azure Storage account you

created earlier in this task:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

22  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

export AZURE_STORAGE_ACCESS_KEY="$(az storage account keys list --ac-
count-name "${STORAGE_ACCOUNT_NAME}" --resource-group "${RESOURCE_GROUP_
NAME}" --query "[0].value" --output tsv)"

export WORKITEM='workitem2.txt'

touch "${WORKITEM}"

az storage blob upload --file "${WORKITEM}" --container-name "${CONTAINER_
NAME}" --name "${WORKITEM}" --auth-mode key --account-key "${AZURE_STORAGE_
ACCESS_KEY}" --account-name "${STORAGE_ACCOUNT_NAME}"

2.	 In the Azure portal, navigate to the blade displaying the Azure Storage account you created in the
previous task of this exercise.

3.	 On the blade of the Azure Storage account, click Queues to display the list of its queues.

4.	 Click the entry representing the queue you created in the previous task of this exercise.

5.	 Note that the queue contains a single message. Click its entry to display the Message properties
blade.

6.	 In the MESSAGE BODY, note the value of the url property, representing the URL of the Azure Storage
blob you uploaded in the previous task.

Exercise 3: Remove lab resources
The main tasks for this exercise are as follows:

1.	 Remove lab resources

Task 1: Remove lab resources
1.	 In the Azure portal, start the Bash session in the Cloud Shell.

2.	 From the Cloud Shell pane, run the following to delete resource groups that host all resources that
you provisioned in this lab

for RESOURCE_GROUP_NAME in 'az300T0602-LabRG' 'az300T0603-LabRG'
do
 az group delete --name "${RESOURCE_GROUP_NAME}" --no-wait --yes
done

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Review Questions  23

Review Questions
Module 1 Review Questions
Azure Batch

You are designing a video editing solution. The solution will require extension hardware resources to
perform require processing on large video files.

You need to recommend an Azure high performance computing option for the solution.

What options are available? Which option should you recommend?

Suggested Answer ↓
Azure Batch is a service that manages VMs for large-scale parallel and HPC applications. Batch is a
platform as a service (PaaS) offering that manages the VMs necessary for your compute jobs for you
instead of forcing you to manage an HPC cluster or job schedule. Batch provides autoscaling functionality
and job scheduling functionality in addition to managing compute nodes.

Messaging

You manage an e-Commerce solution that uses Azure Batch.

During periods of high user activity, several thousand complex operations run at the same time.

How does Azure Batch handle concurrent operations?

Suggested Answer ↓
An application running in the cloud is expected to handle a large number of requests. Rather than
processing each request synchronously, a common technique is for the application to pass them through
a messaging system to another service (a consumer service) that handles them asynchronously. This
strategy helps to ensure that the business logic in the application isn't blocked while the requests are
being processed.

Azure Batch uses a message queue to implement the communication channel between the application
and the instances of the consumer service. The application posts requests in the form of messages to the
queue, and the consumer service instances receive messages from the queue and process them. This
approach enables the same pool of consumer service instances to handle messages from any instance of
the application.

Azure Service Bus

You manage a solution that uses Azure Batch. The solution uses an Azure Service Bus message queue to
process data during periods of peak activity.

In what order are messages processed?

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

24  Module 1 Module Developing Long-Running Tasks and Distributed Transactions

Suggested Answer ↓
Service Bus queues offer first in, first out (FIFO) message delivery to one or more competing consumers.
Messages are processed in the order in which they were added to the queue.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Module 2 Module Configuring a Mes-
sage-Based Integration Architecture

Configure an app or service to send emails
SendGrid
SendGrid (https://sendgrid.com) is a third-party, cloud-based email messaging
service that has a deep level of integration with the Azure platform and portal.
SendGrid provides transactional email delivery, scalability based on email
volume, and real-time analytics for the sent messages. SendGrid also has a
flexible API to enable custom integration scenarios.

Sending emails through SendGrid by using C#
The SendGrid team provides an official library, which uses C#, to interact with
the SendGrid API. The library is open source and hosted on GitHub at
https://github.com/sendgrid/sendgrid-csharp. The C# library is also available
as a NuGet package to make it simple to import the library into an existing
Microsoft .NET project.

Once the library is successfully imported into a .NET project, the various API
features can be used by creating a new instance of the SendGridClient class
and passing in a string parameter containing your API Key:

var client = new SendGridClient(apiKey);

The client class contains multiple methods to perform common API tasks. For
example, you can create a new instance of the SendGridMessage class and pass
it in to the SendGridClient.SendEmailAsync method to send a simple email:

SendGridMessage message = new SendGridMessage()
{
	 From = new EmailAddress("admin@contoso.com", "Contoso Admin"),
	 Subject = "Greetings!"

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

26  Module 2 Module Configuring a Message-Based Integration Architecture

};
message.AddTo(new EmailAddress("test.person@adventureworks.net", "Test
Person"));
message.AddContent(MimeType.Text, "Hello World");
await client.SendEmailAsync(message);

You can also use the C# library to perform common tasks like attaching a file
to an e-mail message:

Attachment inlineGraphic = new Attachment()
{
	 Content = Convert.ToBase64String(raw_image_bytes),
	 Type = "image/png",
	 Filename = "graphic.png",
	 Disposition = "inline",
	 ContentId = "Graphic"
};
message.AddAttachment(inlineGraphic);

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configure an event publish and subscribe model  27

Configure an event publish and subscribe
model
Event-driven architecture
Modern application requirements stipulate that applications we build should be
able to handle a high volume and velocity of data, process that data in real
time, and allow multiple systems to respond to the same data. If we were to
build applications in a serial manner, this stipulation would be incredibly
difficult to meet. To help handle these application scenarios, many modern
systems are built using an architectural style referred to as event-driven
architecture. An event-driven architecture consists of event producers that
generate a stream of events and event consumers that listen for the events.

In an event-driven architecture, events are delivered in nearly real time, so
consumers can respond immediately to events as they occur. Producers are
decoupled from consumers—that is, a producer doesn't know which consumers are
listening. Consumers are also decoupled from each other, and every consumer sees
all of the events.

There are a few common implementations of an event-driven architecture that you
will commonly see on the Microsoft Azure platform:

●● Simple event processing. An event immediately triggers an action in the
consumer. For example, you could use Azure Functions with an Azure Service
Bus trigger so that a function executes whenever a message is published to a
Service Bus topic.

●● Complex event processing. A consumer processes a series of events,
looking for patterns in the event data, by using a technology such as Azure
Stream Analytics or Apache Storm. For example, you could aggregate readings
from an embedded device over a time window and generate a notification if
the moving average crosses a certain threshold.

●● Event stream processing. You use a data streaming platform, such as
Azure IoT Hub or Apache Kafka, as a pipeline to ingest events and feed them
to stream processors. The stream processors act to process or transform the
stream. There may be multiple stream processors for different subsystems of

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

28  Module 2 Module Configuring a Message-Based Integration Architecture

the application. This approach is a good fit for Internet of Things (IoT)
workloads.

Azure Event Grid
Azure Event Grid allows you to easily build applications with event-based
architectures. You select the Azure resource you would like to subscribe to and
give the event handler or webhook endpoint to send the event to. Event Grid has
built-in support for events coming from Azure services, like those for storage
blobs and resource groups. Event Grid also has custom support for application
and third-party events using custom topics and custom webhooks. You can use
filters to route specific events to different endpoints, use multicasting to
send events to multiple endpoints, and make sure your events are reliably
delivered. Event Grid also has built-in support for custom and third-party
events.

The following Azure services can send events to Event Grid:

●● Azure subscription management operations

●● Custom topics

●● Azure Event Hubs

●● IoT Hub

●● Azure Media Services

●● Resource group management operations

●● Service Bus

●● Azure Blob storage

●● General Purpose v2 storage

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configure an event publish and subscribe model  29

The following Azure services can handle events from Event Grid:

●● Azure Automation

●● Azure Functions

●● Event Hubs

●● Hybrid Connections

●● Azure Logic Apps

●● Microsoft Flow

●● Azure Queue storage

●● Webhooks (external)

Subscribing to Blob storage events using Azure
CLI
Event Grid connects data sources and event handlers. For example, an Event Grid
can instantly trigger a serverless function to run an image analysis each time a
new photo is added to a Blob storage container. In this example, we will create
an event source using Blob storage.

Note: To use Blob storage events, you need either a Blob storage
account or a General Purpose v2 storage account. General Purpose v2 storage accounts support all
features for all storage services, including those for blobs, files, queues, and tables. A Blob storage
account is a specialized storage account for storing your unstructured data as blobs (objects) in Azure
Storage. Blob storage accounts are like General Purpose v2 storage accounts and share all the great
durability, availability, scalability, and performance features that you use today, including 100% API
consistency for block blobs and append blobs.

Event Grid topics are Azure resources and must be placed in an Azure resource
group. The resource group is a logical collection into which Azure resources are
deployed and managed. The az group create command will create a new resource
group. The following example creates a resource group named DemoGroup in the
East US location:

az group create --name DemoGroup --location eastus

The az storage account create command will create a new Azure Storage
account. The following example creates a Blob storage account named
demostor in the East US location and uses locally redundant
replication:

az storage account create --name demostor --location eastus --re-
source-group
DemoGroup --sku Standard_LRS --kind BlobStorage --access-tier Hot

Now that the storage account has been created, we will need the ID of the
storage account to subscribe to events from the storage account. We can use
the az storage account show command to return a JavaScript Object Notation
(JSON) object containing metadata about the newly created account:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

30  Module 2 Module Configuring a Message-Based Integration Architecture

az storage account show --name demostor --resource-group DemoGroup

Azure CLI also contains the capability to query JSON objects and arrays for
specific values. We can further refine the query by using the –query
parameter to only return the id property in tab-separated values format.
This will effectively print out the value of the id JSON property on its own
line:

az storage account show --name demostor --resource-group DemoGroup --query
id
--output tsv

Depending on your OS of choice, you can then store this value in a variable. In
this example, we are using a Bash shell to store the output of the query in
a variable named storageid:

storageid=\$(az storage account show --name demostor --resource-group
DemoGroup
--query id --output tsv)

Before you can create a subscription, you will need somewhere to send the
messages. This destination is referred to as an endpoint. For our example,
we have a web API endpoint at the URL https://contoso.com/api/updates. You
subscribe to a topic to tell Event Grid which events you want to track and where
to send those events. The following example uses the az eventgrid
event-subscription create command to subscribe to the storage account you
created and pass the URL from your web app as the endpoint for event
notifications:

az eventgrid event-subscription create --resource-id \$storageid --name
contosostoragesub --endpoint https://contoso.com/api/updates

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configure the Azure Relay service  31

Configure the Azure Relay service
Azure Relay service
The Azure Relay service facilitates hybrid applications by enabling you to
more-securely expose services that reside within a corporate enterprise network
to the public cloud—without having to open a firewall connection or require
intrusive changes to a corporate network infrastructure. Azure Relay supports a
variety of different transport protocols and web service standards. The Azure
Relay service supports traditional one-way, request/response, and peer-to-peer
traffic. It also supports event distribution at internet scope to enable
publish/subscribe scenarios and bidirectional socket communication for increased
point-to-point efficiency.

In the relayed data transfer pattern, an on-premises service connects to the
Azure Relay service through an outbound port and creates a bidirectional socket
for communication tied to a particular rendezvous address. The client can then
communicate with the on-premises service by sending traffic to the Azure Relay
service and targeting the rendezvous address. The Azure Relay service then
relays data to the on-premises service through a bidirectional socket dedicated
to each client. The client does not need a direct connection to the on-premises
service, it is not required to know where the service resides, and the
on-premises service does not need any inbound ports open on the firewall.

The key capability elements provided by Azure Relay are bidirectional,
unbuffered communication across network boundaries with Transmission Control
Protocol (TCP)-like throttling; endpoint discovery; connectivity status; and
overlaid endpoint security.

Note: The Azure Relay capabilities differ from network-level integration technologies, such as virtual
private network (VPN) technology, in that Azure Relay can be scoped to a single application endpoint on
a single machine, while VPN technology is far more intrusive, as it relies on altering the network environ-
ment.

Hybrid Connections
The Hybrid Connections capability of Azure Relay is a more-secure, open-protocol
evolution of the existing Azure Relay features that can be implemented
essentially on any platform and in any language. Hybrid Connections can relay
WebSocket protocol, HTTP, and HTTPS requests and responses. These capabilities
are compatible with the WebSocket protocol API in common web browsers. Hybrid
Connections is based on HTTP and the WebSocket protocol.

Azure Relay service architecture
When a client sends a request to the Azure Relay service, the Azure load
balancer routes it to any of the gateway nodes. If the request is a listening
request, the gateway node creates a new relay. If the request is a connection
request to a specific relay, the gateway node forwards the connection request to
the gateway node that owns the relay. The gateway node that owns the relay sends
a rendezvous request to the listening client, asking the listener to create a
temporary channel to the gateway node that received the connection request. When

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

32  Module 2 Module Configuring a Message-Based Integration Architecture

the relay connection is established, the clients can exchange messages via the
gateway node that is used for the rendezvous.

If you follow the diagram above, the steps are as follows:

1.	 A client (Client A) creates a listening request that is routed to a gateway.

2.	 The gateway creates a new relay.

3.	 A different client (Client B) creates a connection request.

4.	 The connection request from Client B is handled first by looking up the
associated relay.

5.	 Once the correct relay has been identified, the request is forwarded to that
specific relay.

6.	 A rendezvous request is sent to Client A.

7.	 Client A creates a temporary channel to Client B using the original gateway
that Client B used in its original connection request.

8.	 Client B can receive messages sent from Client A directly from its original
gateway.

9.	 Client A can receive messages sent from Client B through Client B’s original
gateway and the established temporary channel.

Using Azure Relay in Node.js
The ws package in Node.js is a WebSocket protocol client library that
streamlines the implementation of Node.js applications that communicate using
the WebSocket protocol. The hyco-ws Node package for Hybrid Connections in
Azure Relay is built on and extends the ws npm package. This package
re-exports all exports of that base package and adds new exports that enable
integration with the Hybrid Connections feature of the Azure Relay service. The
key differences between the base package and this hyco-ws is that it adds a

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configure the Azure Relay service  33

new server class, exported via require(‘hyco-ws’).RelayedServer, and a few
helper methods.

Note: Remember, Azure Relay is built on top of the WebSocket protocol, so you can naturally use
libraries that support the WebSocket protocol in the language of your choice. In this example, we will use
the hyco-ws Node package to simplify development against Azure Relay.

There are several utility methods available in the package export that you can
reference as follows:

const WebSocket = require('hyco-ws');

var listenUri =
WebSocket.createRelayListenUri('namespace.servicebus.windows.net', 'path');

listenUri = WebSocket.appendRelayToken(listenUri, 'ruleName', '...key...')

The helper methods are for use with this package but can also be used by a Node
server for enabling web or device clients to create listeners or senders. The
server uses these methods by passing them URIs that embed short-lived tokens.
These URIs can also be used with common WebSocket protocol stacks that do not
support setting HTTP headers for the WebSocket protocol handshake. Embedding
authorization tokens into the URI is supported primarily for those
library-external usage scenarios.

The hycows.RelayedServer class is an alternative to the ws.Server class
that does not listen on the local network but delegates listening to the Azure
Relay service.

The two classes are mostly contract compatible, meaning that an existing
application using the ws.Server class can easily be changed to use the
relayed version. The main differences are in the constructor and in the
available options. The RelayedServer constructor supports a different set of
arguments than the Server, because it is not a standalone listener or able
to be embedded into an existing HTTP listener framework. There are also fewer
options available, since the WebSocket protocol management is largely delegated
to the Azure Relay service:

var server = ws.RelayedServer;
var wss = new server({
		 server: ws.createRelayListenUri(ns, path),
		 token: function() { return ws.createRelayToken('http://' + ns,
keyrule, key); }
});

The RelayedServer constructor has two required arguments to establish a
connection over the WebSocket protocol using Azure Relay:

●● server - The fully qualified URI for a Hybrid Connection name on which
to listen, usually constructed with the WebSocket.createRelayListenUri()
helper method.

●● token - This argument holds either a previously issued token string or a
callback function that can be called to obtain such a token string. The
callback option is preferred, as it enables token renewal.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

34  Module 2 Module Configuring a Message-Based Integration Architecture

Create and configure a notification hub
Azure Notification Hubs
Azure Notification Hubs is a scaled-out push engine that allows you to send
notifications to essentially any platform (iOS, Android, Windows, Kindle, BAIDU,
etc.) from essentially any back end (cloud or on-premises). You can use
Notification Hubs in the following common scenarios:

●● Sending breaking news notifications to millions with low latency

●● Sending location-based coupons to interested user segments

●● Sending event-related notifications to users or groups for
media/sports/finance/gaming applications

●● Pushing promotional content to applications to engage and market to
customers

●● Notifying users of enterprise events, like new messages and work items

●● Sending codes for multi-factor authentication

Push notifications
Push notifications are a form of app-to-user communication where users of mobile
apps are notified of certain desired information, usually in a pop-up window or
dialog box. Users can generally choose to view or dismiss the message. Choosing
the former opens the mobile application that communicated the notification. Push
notifications are vital for consumer apps in increasing app engagement and usage
and for enterprise apps in communicating up-to-date business information. It's
the best app-to-user communication, because it is energy efficient for mobile
devices, flexible for the notification senders, and available when corresponding
applications are not active.

Push notifications are delivered through platform-specific infrastructures
called Platform Notification Systems (PNSs). They offer bare-bones push
functionalities to deliver a message to a device with a provided handle and have
no common interface. To send a notification to all customers across the iOS,
Android, and Windows versions of an app, the developer must work with the Apple
Push Notification Service (APNs), Firebase Cloud Messaging (FCM), and Windows
Push Notification Service (WNS).

At a high level, here are how push notifications work:

1.	 The client app decides it wants to receive notifications. Hence, it contacts
the corresponding PNS to retrieve its unique and temporary push handle. The
handle type depends on the system (for example, WNS has URIs, while APNs has
tokens).

2.	 The client app stores this handle in the app’s back end or provider.

3.	 To send a push notification, the app’s back end contacts the PNS using the
handle to target a specific client app.

4.	 The PNS forwards the notification to the device specified by the handle.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure a notification hub  35

5.	

Notification Hubs eliminates all the complexities associated with pushing
notifications on your own from your app back end. Its multi-platform, scaled-out
push notification infrastructure reduces push-related coding and simplifies your
back end. With Notification Hubs, devices are merely responsible for registering
their PNS handles with a hub, while the back end sends messages to users or
interest groups, as shown in the following figure:

Configuring Notification Hubs in iOS
To configure Notification Hubs for an iOS native application, you will need to
configure your Xcode application with the following prerequisites:

●● The Push Notifications capability must be enabled.

●● The files distributed in the Azure messaging framework must be included
in the Xcode project.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

36  Module 2 Module Configuring a Message-Based Integration Architecture

In most examples, you would first add a few constants to HubInfo.h that will
contain important connection details for your notification hub:

#ifndef HubInfo_h
 #define HubInfo_h
 #define HUBNAME @"<Enter the name of your hub>"
 #define HUBLISTENACCESS @"<Enter your DefaultListenSharedAccess
connection string"
 #endif /* HubInfo_h */

After that, you will need to import the
WindowsAzureMessaging/WindowsAzureMessaging and
UserNotifications/UserNotifications directives in to your project:

#import <WindowsAzureMessaging/WindowsAzureMessaging.h>
#import <UserNotifications/UserNotifications.h>
#import "HubInfo.h"

Finally, you can add the following code to connect to the notification hub using
the connection information you specified in HubInfo.h. It then gives the device
token to the notification hub so that the notification hub can send
notifications:

-(void) application:(UIApplication *) application didRegisterForRemoteNoti-
ficationsWithDeviceToken:(NSData *) deviceToken {
	 SBNotificationHub* hub = [[SBNotificationHub alloc] initWithConnection-
String:HUBLISTENACCESS
								 notificationHubPath:HUB-
NAME];

	 [hub registerNativeWithDeviceToken:deviceToken tags:nil comple-
tion:^(NSError* error) {
		 if (error != nil) {
			 NSLog(@"Error registering for notifications: %@", error);
		 }
		 else {
			 [self MessageBox:@"Registration Status" message:@"Regis-
tered"];
		 }
	 }];
	 }

-(void)MessageBox:(NSString *) title message:(NSString *)messageText
{
	 UIAlertView *alert = [[UIAlertView alloc] initWithTitle:title mes-
sage:messageText delegate:self
		 cancelButtonTitle:@"OK" otherButtonTitles: nil];
	 [alert show];
}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure a notification hub  37

Configuring Notification Hubs in Xamarin.An-
droid
To configure Notification Hubs for an Android application written using the
Xamarin platform, you will need to configure your Xamarin project with the
following prerequisites:

●● The Xamarin.GooglePlayServices.Base, Xamarin.Firebase.Messaging, and
Xamarin.Azure.NotificationHubs.Android NuGet packages must be installed.

●● The google-services.json file must be downloaded from the Google
Firebase Console and then copied to the root of your project folder.

●● You must register the com.google.firebase.iid.FirebaseInstanceIdReceiver
receiver to enable PNS registration and message receipt.

In most examples, you would first add a few constants to a C# class that will
contain important connection details for your notification hub:

public static class Constants
{
	 public const string ListenConnectionString = "<Listen connection
string>";
	 public const string NotificationHubName = "<hub name>";
}

First, you will need to create a C# class to manage PNS registration:

using Android.App;
using Android.Util;
using WindowsAzure.Messaging;
using Firebase.Iid;

[Service]
[IntentFilter(new[] { "com.google.firebase.INSTANCE_ID_EVENT" })]
public class MyFirebaseIIDService : FirebaseInstanceIdService
{
	 const string TAG = "MyFirebaseIIDService";
 NotificationHub hub;

 public override void OnTokenRefresh()
 {
 var refreshedToken = FirebaseInstanceId.Instance.Token;
 Log.Debug(TAG, "FCM token: " + refreshedToken);
 SendRegistrationToServer(refreshedToken);
 }

 void SendRegistrationToServer(string token)
 {
 hub = new NotificationHub(Constants.NotificationHubName,
 Constants.ListenConnectionString, this);

 var tags = new List<string>() { };

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

38  Module 2 Module Configuring a Message-Based Integration Architecture

 var regID = hub.Register(token, tags.ToArray()).RegistrationId;
 }
}

Second, you will need to create a separate C# class to handle the receipt of a
new message and display that message in the application’s UI:

using Android.App;
using Android.Util;
using Firebase.Messaging;

[Service]
[IntentFilter(new[] { "com.google.firebase.MESSAGING_EVENT" })]
public class MyFirebaseMessagingService : FirebaseMessagingService
{
	 const string TAG = "MyFirebaseMsgService";
 public override void OnMessageReceived(RemoteMessage message)
 {
 if(message.GetNotification()!= null)
 {
 SendNotification(message.GetNotification().Body);
 }
 else
 {
 //Only used for debugging payloads sent from the Azure portal
 SendNotification(message.Data.Values.First());

 }

 }

 void SendNotification(string messageBody)
 {
 var intent = new Intent(this, typeof(MainActivity));
 intent.AddFlags(ActivityFlags.ClearTop);
 var pendingIntent = PendingIntent.GetActivity(this, 0, intent,
PendingIntentFlags.OneShot);

 var notificationBuilder = new Notification.Builder(this)
 .SetContentTitle("FCM Message")
 .SetSmallIcon(Resource.Drawable.ic_launcher)
 .SetContentText(messageBody)
 .SetAutoCancel(true)
 .SetContentIntent(pendingIntent);

 var notificationManager = NotificationManager.FromContext(this);

 notificationManager.Notify(0, notificationBuilder.Build());
 }
}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure a notification hub  39

Sending messages from an application back end
to Notification Hubs using C#
Using the various client libraries for Notification Hubs, you can send
notifications from any application’s back end to your registered devices. In the
context of a .NET application, you would need to import the
Microsoft.Azure.NotificationHubs NuGet package. Once imported, the library
contains a NotificationHubClient class that can be used to send messages:

using Microsoft.Azure.NotificationHubs;

public class NotificationManager
{
	 public async void SendNotifications()
	 {
		 NotificationHubClient hub = NotificationHubClient.CreateClientFrom-
ConnectionString("<your hub's DefaultFullSharedAccessSignature>", "<hub
name>");

		 var toast = @"<toast><visual><binding template=""ToastText01""><-
text id=""1"">From contoso-admin: Hello World</text></binding></visual></
toast>";
		 await hub.SendWindowsNativeNotificationAsync(toast);

		 var alert = @"{"aps": {"alert": "From contoso-admin: Hello
World"}}";
		 await hub.SendAppleNativeNotificationAsync(alert);

		 var notif = @"{"data": {"message":"From contoso-admin: Hello
World"}}";
		 await hub.SendGcmNativeNotificationAsync(notif);
	 }
}

Typically, multiple requests were required to send a notification to each
supported client platform. Azure Notification Hubs supports templates—with which
you can specify how a specific device wants to receive notifications. This
method simplifies sending cross-platform notifications.

var notification = new Dictionary\<string, string\> { { "message", "Hello
World"
} };

await Notifications.Instance.Hub.SendTemplateNotificationAsync(notification);

This code sends a notification to all platforms at the same time without you
having to specify a native payload. Notification Hubs builds and delivers the
correct payload to every device as specified in the registered templates.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

40  Module 2 Module Configuring a Message-Based Integration Architecture

Create and configure an event hub
Azure Event Hubs
Data is valuable only when there is an easy way to process and get timely
insights from data sources. Azure Event Hubs is a big data streaming platform
and event ingestion service, capable of receiving and processing millions of
events per second. Event Hubs can process and store events, data, or telemetry
produced by distributed software and devices. Data sent to an event hub can be
transformed and stored using any real-time analytics provider or
batching/storage adapters. Event Hubs provides a distributed stream processing
platform with low latency and seamless integration with data and analytics
services inside and outside Azure to build a complete big data pipeline.

Event Hubs represents the “front door” for an event pipeline, often called an
event ingestor in solution architectures. An event ingestor is a component or
service that sits between event publishers and event consumers to decouple the
production of an event stream from the consumption of those events. Event Hubs
provides a unified streaming platform with a time retention buffer, decoupling
the event producers from event consumers.

Event Hubs capabilities are built around high throughput and event processing
scenarios. Event Hubs contains the following key components:

●● Event producers: Any entities that send data to an event hub. Event
publishers can publish events using HTTPS or Advanced Message Queuing
Protocol (AMQP) 1.0 or Apache Kafka (1.0 and above).

●● Partitions: Each consumer only reads a specific subset, or partition, of
the message stream.

●● Consumer groups: Views (state, position, or offset) of an entire event
hub. Consumer groups enable multiple consuming applications to each have a
separate view of the event stream and to each read the stream independently
at its own pace and with its own offsets.

●● Throughput units: Prepurchased units of capacity that control the
throughput capacity of Event Hubs.

●● Event receivers: Any entities that read event data from event hubs. All
Event Hubs consumers connect via the AMQP 1.0 session, and events are
delivered through the session as they become available.

The following figure shows the Event Hubs stream processing architecture:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure an event hub  41

Azure IoT Hub
Azure IoT Hub is a managed service, hosted in the cloud, that acts as a central
message hub for bidirectional communication between your IoT application and the
devices it manages. You can use Azure IoT Hub to build IoT solutions with
reliable and encrypted communications between millions of IoT devices and a
cloud-hosted solution back-end. You can connect virtually any device to IoT Hub.

IoT Hub supports communications both from the device to the cloud and from the
cloud to the device. IoT Hub supports multiple messaging patterns, such as
device-to-cloud telemetry, file upload from devices, and request-reply methods,
to control your devices from the cloud. IoT Hub monitoring helps you maintain
the health of your solution by tracking events such as device creation, device
failures, and device connections.

The capabilities of IoT Hub help you build scalable, full-featured IoT
solutions, such as managing industrial equipment used in manufacturing, tracking
valuable assets in healthcare, and monitoring office building usage.

Comparing IoT Hub and Event Hubs
Azure provides services specifically developed for diverse types of connectivity
and communication to help you connect your data to the power of the cloud. Both
Azure IoT Hub and Azure Event Hubs are cloud services that can ingest large
amounts of data and process or store that data for business insights. The two
services are similar in that they both support the ingestion of data with low
latency and high reliability, but they are designed for different purposes. IoT
Hub was developed specifically to address the unique requirements of connecting
IoT devices—at scale—to Azure Cloud Services, while Event Hubs was designed for
big data streaming. This is why Microsoft recommends using Azure IoT Hub to
connect IoT devices to Azure.

Azure IoT Hub is the cloud gateway that connects IoT devices to gather data
to drive business insights and automation. In addition, IoT Hub includes

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

42  Module 2 Module Configuring a Message-Based Integration Architecture

features that enrich the relationship between your devices and your back-end
systems. Bidirectional communication capabilities mean that while you receive
data from devices, you can also send commands and policies back to devices—for
example, to update properties or invoke device management actions. This
cloud-to-device connectivity also powers the important capability of delivering
cloud intelligence to your edge devices with Azure IoT Edge. The unique
device-level identity provided by IoT Hub helps better secure your IoT solution
from potential attacks.

Azure Event Hubs is the big data streaming service of Azure. It is designed
for high throughput data streaming scenarios where customers may send billions
of requests per day. Event Hubs uses a partitioned consumer model to scale out
your stream and is integrated into the big data and analytics services of Azure,
including Azure Databricks, Stream Analytics, Azure Data Lake Storage (ADLS),
and Azure HDInsight. With Event Hubs features like Capture and Auto-Inflate,
this service is designed to support your big data apps and solutions.
Additionally, IoT Hub leverages Event Hubs for its telemetry flow path, so your
IoT solution also benefits from the tremendous power of Event Hubs.

To summarize, while both solutions are designed for data ingestion at a massive
scale, only IoT Hub provides the rich IoT-specific capabilities that are
designed for you to maximize the business value of connecting your IoT devices
to Azure Cloud Services. If your IoT journey is just beginning, starting with
IoT Hub to support your data ingestion scenarios will help assure that you have
instant access to the full-featured IoT capabilities once your business and
technical needs require them.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure a service bus  43

Create and configure a service bus
Azure Service Bus
Whether an application or service runs in the cloud or on-premises, it often
needs to interact with other applications or services. Different situations call
for different styles of communication. Sometimes, letting applications send and
receive messages through a simple queue is the best solution. In other
situations, an ordinary queue isn't enough; a queue with a publish-and-subscribe
mechanism is better. In some cases, all that's needed is a connection between
applications, and queues are not required.

To provide a broadly useful way to do this, Azure offers Azure Service Bus.
Azure Service Bus provides all three options, enabling your applications to
interact in several different ways. Service Bus is a multitenant cloud service,
which means that the service is shared by multiple users.

A namespace is a scoping container for all messaging components. Multiple queues
and topics can reside within a single namespace, and namespaces often serve as
application containers. Each user, such as an application developer, creates a
namespace, and then defines the communication mechanisms needed within that
namespace. Within a namespace, you can use one or more instances of three
different communication mechanisms, each of which connects applications in a
different way. The three communication mechanisms are:

●● Queues, which allow one-directional communication. Each queue acts as an
intermediary (sometimes called a broker) that stores sent messages until
they are received. Each message is received by a single recipient.

●● Topics, which provide one-directional communication using subscriptions.
A single topic can have multiple subscriptions. Like a queue, a topic acts
as a broker, but each subscription can optionally use a filter to receive
only messages that match specific criteria.

●● Relays, which provide bidirectional communication. Unlike a queue or a
topic, a relay doesn't store in-flight messages; it's not a broker. Instead,
it just passes them on to the destination application.

When you create a queue, topic, or relay, you give it a name. Combined with
whatever you called your namespace, this name creates a unique identifier for
the object. Applications can provide this name to Service Bus and then use that
queue, topic, or relay to communicate with each other.

Service Bus queues
Azure Service Bus is a fully managed enterprise integration message broker.
Service Bus is most commonly used to decouple applications and services from
each other, and it’s a reliable and more-secure platform for asynchronous data
and state transfer. Data is transferred between different applications and
services using messages. A message is in binary format and can contain a JSON
object, XML code, or just text.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

44  Module 2 Module Configuring a Message-Based Integration Architecture

Some common messaging scenarios are:

●● Messaging: Transfer business data, such as sales or purchase orders,
journals, or inventory movements.

●● Decoupling applications: Improve the reliability and scalability of
applications and services (the client and the service do not have to be
online at the same time).

●● Topics and subscriptions: Enable 1:n relationships between publishers
and subscribers.

●● Message sessions: Implement workflows that require message ordering or
message deferral.

Queues
Messages are sent to and received from queues. Queues enable you to store
messages until the receiving application is available to receive and process
them. Messages in queues are ordered and time stamped on arrival. Once accepted,
the message is held more safely in redundant storage. Messages are delivered in
pull mode, which delivers messages on request.

Service Bus queues support a brokered messaging communication model. When using
queues, components of a distributed application do not communicate directly with
each other; instead, they exchange messages via a queue, which acts as an
intermediary (broker). A message producer (sender) hands off a message to the
queue and then continues its processing. Asynchronously, a message consumer
(receiver) pulls the message from the queue and processes it. The producer does
not have to wait for a reply from the consumer in order to continue to process
and send further messages. Queues offer first in, first out (FIFO) message
delivery to one or more competing consumers. That is, messages are typically
received and processed by the receivers in the order in which they were added to
the queue, and each message is received and processed by only one message
consumer.

Service Bus queues are a general-purpose technology that can be used for a wide
variety of scenarios:

●● Communication between web and worker roles in a multi-tier Azure
application.

●● Communication between on-premises apps and Azure-hosted apps in a hybrid
solution.

●● Communication between the components of a distributed application running
on-premises in different organizations or departments of an organization.

Using queues enables you to scale your applications more easily and enables more
resiliency in your architecture.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Create and configure a service bus  45

Manipulating a Service Bus queue using Ruby
To use Service Bus, you will first need to download and use the Azure Ruby
package, which includes a set of convenience libraries that communicate with the
storage representational state transfer (REST) services. The easiest way to
accomplish this is to install the gem and dependencies:

gem install azure

At the top of any Ruby file where you want to use the Azure Ruby libraries, you
need to include the azure directive:

require "azure"

To create a connection to Service Bus using the client object, use the following
code to set the values of the namespace, key name, key, signer, and host:

Azure.configure do |config|
	 config.sb_namespace = '<your azure service bus namespace>'
	 config.sb_sas_key_name = '<your azure service bus access keyname>'
	 config.sb_sas_key = '<your azure service bus access key>'
end
signer = Azure::ServiceBus::Auth::SharedAccessSigner.new
sb_host = "https://#{Azure.sb_namespace}.servicebus.windows.net"
The Azure::ServiceBusService object enables you to work with queues. To
create a queue, use the create_queue() method. The following example cre-
ates a queue or prints out any errors:
azure_service_bus_service = Azure::ServiceBus::ServiceBusService.new(sb_
host, { signer: signer})
begin
	 queue = azure_service_bus_service.create_queue("test-queue")
rescue
	 puts $!
end

To send a message to a Service Bus queue, your application calls the
send_queue_message() method on the Azure::ServiceBusService object.
Messages sent to (and received from) Service Bus queues are
Azure::ServiceBus::BrokeredMessage objects and have a set of standard
properties (such as label and time_to_live); a dictionary that is used
to hold custom, application-specific properties; and a body of arbitrary
application data. An application can set the body of the message by passing a
string value as the message, and any required standard properties are populated
with default values.

The following example demonstrates how to send a test message to the queue named
test-queue using send_queue_message():

message = Azure::ServiceBus::BrokeredMessage.new("test queue message")

message.correlation_id = "test-correlation-id"

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

46  Module 2 Module Configuring a Message-Based Integration Architecture

azure_service_bus_service.send_queue_message("test-queue", message)

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configuring apps and services with Microsoft Graph  47

Configuring apps and services with Microsoft
Graph
Microsoft Graph
Microsoft Graph is the gateway to data and intelligence in Microsoft 365.
Microsoft Graph provides a unified programmability model that you can use to
query and manipulate data in Microsoft Office 365, Microsoft Enterprise Mobility

●● Security, and Windows 10. Microsoft Graph exposes APIs for:

●● Azure Active Directory

●● Office 365 services: Microsoft SharePoint, Microsoft OneDrive, Microsoft
Outlook, Microsoft Exchange, Microsoft Teams, Microsoft OneNote, Microsoft
Planner, and Microsoft Excel

●● Enterprise Mobility and Security services: Microsoft Identity Manager,
Microsoft Intune, Microsoft Advanced Threat Analytics, and Azure Advanced
Threat Protection.

●● Windows 10 services: activities and devices

Microsoft Graph connects all the resources across these services using
relationships. For example, a user can be connected to a group through a
memberOf relationship and to another user through a manager relationship.
Your app can traverse these relationships to access these connected resources
and perform actions on them through the API.

You can also get valuable insights and intelligence about the data from
Microsoft Graph. For example, you can get the popular files trending around a
particular user or get the most relevant people around a user.

REST API in Microsoft Graph
Microsoft Graph contains a REST API with endpoints for each resource that you
can query on the graph. The table below lists example endpoints for common tasks
you may want to perform with the REST API:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

48  Module 2 Module Configuring a Message-Based Integration Architecture

Operation URL
GET my profile https://graph.microsoft.com/v1.0/me (https://

developer.microsoft.com/graph/graph-explorer/?re-
quest=me&version=v1.0)

GET my files https://graph.microsoft.com/v1.0/me/drive/
root/children (https://developer.microsoft.com/
graph/graph-explorer/?request=me%2Fdrive%2F-
root%2Fchildren&version=v1.0)

GET my photo https://graph.microsoft.com/v1.0/me/pho-
to/$value (https://developer.microsoft.com/graph/
graph-explorer/?request=me%2Fphoto%2F%24val-
ue&version=v1.0)

GET my mail https://graph.microsoft.com/v1.0/me/messag-
es (https://developer.microsoft.com/graph/
graph-explorer/?request=me%2Fmessages&ver-
sion=v1.0)

GET my high importance email https://graph.microsoft.com/v1.0/me/messag-
es?$filter=importance%20eq%20'high' (https://
developer.microsoft.com/graph/graph-explorer/?re-
quest=me%2Fmessages%3F%24filter%3Dimpor-
tance%2520eq%2520%27high%27&version=v1.0)

GET my calendar events https://graph.microsoft.com/v1.0/me/events
(https://developer.microsoft.com/graph/graph-ex-
plorer/?request=me%2Fevents&version=v1.0)

GET my manager https://graph.microsoft.com/v1.0/me/manager
(https://developer.microsoft.com/graph/graph-ex-
plorer/?request=me%2Fmanager&version=v1.0)

GET the last user to modify the file foo.txt https://graph.microsoft.com/v1.0/me/drive/
root/children/foo.txt/lastModifiedByUser
(https://developer.microsoft.com/graph/graph-ex-
plorer/?request=me%2Fdrive%2Froot%2Fchil-
dren%2Ffoo.txt%2FlastModifiedByUser&ver-
sion=v1.0)

GET the Office 365 groups I’m member of https://graph.microsoft.com/v1.0/me/mem-
berOf/$/microsoft.graph.group?$filter=group-
Types/any(a:a%20eq%20'unified') (https://
developer.microsoft.com/graph/graph-explorer/?re-
quest=me%2FmemberOf%2F%24%2Fmicrosoft.
graph.group%3F%24filter%3DgroupTypes%2Fa-
ny(a%3Aa%2520eq%2520%27unified%27)&ver-
sion=v1.0)

GET users in my organization https://graph.microsoft.com/v1.0/users (https://
developer.microsoft.com/graph/graph-explorer/?re-
quest=users&version=v1.0)

GET groups in my organization https://graph.microsoft.com/v1.0/groups
(https://developer.microsoft.com/graph/graph-ex-
plorer/?request=groups&version=v1.0)

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Configuring apps and services with Microsoft Graph  49

Operation URL
GET people related to me https://graph.microsoft.com/v1.0/me/people

(https://developer.microsoft.com/graph/graph-ex-
plorer/?request=me%2Fpeople&version=beta)

GET items trending around me https://graph.microsoft.com/beta/me/insights/
trending (https://developer.microsoft.com/graph/
graph-explorer/?request=me%2Finsights%2Ftrend-
ing&version=beta)

GET my notes https://graph.microsoft.com/v1.0/me/one-
note/notebooks (https://developer.microsoft.com/
graph/graph-explorer/?request=me%2Fone-
note%2Fnotebooks&version=beta)

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

50  Module 2 Module Configuring a Message-Based Integration Architecture

Review Questions
Module 2 Review Questions
SendGrid

You are designing a solution that allows users to purchase merchandise from your organization.

Customers must automatically receive an email notification at the end of any transaction.

Which Azure service should you recommend?

Suggested Answer ↓
SendGrid (https://sendgrid.com) is a third-party, cloud-based email messaging service that has a deep
level of integration with the Azure platform and portal. SendGrid provides transactional email delivery,
scalability based on email volume, and real-time analytics for the sent messages. SendGrid also has a flex-
ible API to enable custom integration scenarios.

Event-driven architecture

You are designing a solution that ingests and processes large volumes of data in real time.

What type of architecture should you consider? Which Azure service provides support for this architec-
ture?

Suggested Answer ↓
In an event-driven architecture, a system delivers event data to consumer applications and services. These
applications and series can in turn respond to these events quickly.Azure Event Grid allows you to easily
build applications with event-based architectures.

Event-driven architecture

You are designing a solution that allows users to purchase merchandise for a grocery store. When
customers place items into a shopping cart, the solution must send the customer a notification to their
mobile device.

Which Azure service should you recommend?

Suggested Answer ↓
Azure Notification Hubs allows you to send push notification messages to mobile devices. This service is
highly scalable and is compatible with most mobile devices and back-end systems.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Module 3 Module Developing for Asynchro-
nous Processing

Implement parallelism, multithreading, and
processing
Asynchronous processing
Many personal computers and workstations have several CPU cores that enable the simultaneous
execution of multiple threads. As client devices increase in performance and server computers opt for
horizontal over vertical scaling, it's becoming increasingly common for a local client device to have more
computing power and threads than the server it is currently accessing. Shortly, computers are expected
to have even more cores, and this divide will continue to grow. It is more critical now than ever to take
advantage of parallelism in client devices, server-side computers, and cloud-managed computing.

Parallelism
In the past, parallelization required the low-level manipulation of threads and locks. Writing parallelized
code was an esoteric skill that could take years of experience to master. Later versions of the Microsoft
.NET Framework introduced the Task Parallel Library (TPL) to simplify the development of parallelized
code. With the TPL, developers can focus on writing efficient, fine-grained code, while the specific .NET
runtime manages the threads in a manner that can efficiently scale in the cloud.

Task Parallel Library (TPL)
The TPL is a set of public types and APIs in the System.Threading namespace. The purpose of the TPL is
to make developers more productive by simplifying the process of adding parallelism and concurrency to
applications. The TPL dynamically scales the degree of concurrency to most efficiently use all the proces-
sors that are available. Also, the TPL handles the partitioning of the work, the scheduling of threads in the
thread pool, cancellation support, state management, and other low-level details.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

52  Module 3 Module Developing for Asynchronous Processing

To get started with the TPL, create a Task instance that has a delegate parameter. The delegate contains
the code that is encapsulated and executed in the context of the task. The actual Task instance contains
metadata about the delegate, including but not limited to:

●● Whether the delegate has started.

●● Whether the delegate has completed executing.

●● The resulting value of the delegate.

After you have a Task instance, invoke the Task.Run method to start the task. The Task class contains a
Wait method that can be invoked to block execution until the asynchronous task has finished executing.
The Result property of the Task class contains the resulting value of executing the delegate. A typical
usage of the TPL looks like this:

Task<string> asyncOperation = new Task<string>(() =>
	 {
		 string greeting = $"You are running {Environment.OSVersion}";
		 return greeting;
	 }
);

asyncOperation.Start();

asyncOperation.Wait();

string message = asyncOperation.Result;

Note: The TPL also contains convenient helper methods, such as Task.Run and TaskFactory.StartNew,
to automatically start a newly created task.

Refactoring TPL code
You can simplify the use of the TPL even further by using the async modifier and the await keyword in a
.NET method. Instead of directly using the Task methods, this keyword instructs the compiler to handle
the tracking of the asynchronous methods. The keyword and its abstraction makes your code more
efficient and easier to read. To get started with this keyword, first define the delegate as a separate
method by using the async modifier:

public async Task<string> AsyncOperation()
{
 string greeting = $"You are running {Environment.OSVersion}";
 return greeting;
}

You can then define another method to use the asynchronous method. Within this method, use the await
keyword to asynchronously call the first method:

public async void DoSomething()
{
 string message = await AsyncOperation();
}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement Azure Functions and Azure Logic Apps  53

Implement Azure Functions and Azure Logic
Apps
Serverless computing
Serverless computing promises agility and power in building the next generation of solutions. You can
use services such as Azure Functions and Azure Logic Apps to build these solutions. All of these services
are useful for “gluing” together disparate systems. They can all define input, actions, conditions, and
output. You can run each of them on a schedule or via a trigger. However, each service has unique
advantages, and comparing them is not a question of "Which service is the best?" but one of “Which
service is best suited for this situation?” Often, a combination of these services is the best way to rapidly
build a scalable, full-featured integration solution.

Azure Functions
Azure Functions is a solution for running small pieces of code, or "functions," in the cloud. You can write
just the code you need for the problem at hand without worrying about a whole application or the
infrastructure to run it. Functions can make development even more productive, and you can use your
development languages of choice, such as C#, F#, Node.js, Java, or PHP. Functions is an excellent solution
for processing data, integrating systems, working with the Internet of Things (IoT), and building simple
APIs and microservices.

Azure Functions integrates with various Azure and third-party services. These services can trigger your
function and start execution, or they can serve as input and output for your code. Azure Functions
supports the following service integrations:

●● Azure Cosmos DB

●● Azure Event Hubs

●● Azure Event Grid

●● Azure Service Bus (queues and topics)

●● Azure Storage (blobs, queues, and tables)

●● GitHub (webhooks)

●● On-premises applications (by using Service Bus)

●● Twilio (SMS messages)

Example Azure function for .NET
Azure Functions supports the compiled C# and C# script programming languages. The Azure WebJobs
software development kit (SDK) serves as the foundation for the C# script experience for Azure Functions.
First, data flows into your C# function via method parameters. The function.json file specifies any
argument names that also exist as C# parameters in the script. An example function.json file that binds
the function instance to an Azure storage queue looks like this:

{
"disabled": false,
"bindings": [
 {
 "type": "queueTrigger",

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

54  Module 3 Module Developing for Asynchronous Processing

 "direction": "in",
 "name": "message",
 "queueName": "announcementqueue",
 "connection":"StorageConnectionString"
 }
]
}

The C# script for the corresponding function uses the name property of the “in” binding as a method
parameter:

public static void Run(string message, System.TraceWriter log)

public static void Run(string message, System.TraceWriter log)
{
	 log.Info($"New message: {message}");
}

The preceding example function immediately prints the message received from the queue to the func-
tion's log.

Logic Apps
Logic Apps helps you build, schedule, and automate processes as workflows so you can integrate apps,
data, systems, and services across enterprises or organizations. Logic Apps simplifies how you design and
create scalable solutions for app integration, data integration, system integration, enterprise application
integration (EAI), and business-to-business (B2B) communication—whether in the cloud, on-premises, or
both.

For example, here are just a few workflows that you can automate with logic apps:

●● Process and route orders across on-premises systems and cloud services.

●● Move uploaded files from an FTP server to Azure Storage.

●● Monitor tweets for a specific subject, analyze the sentiment and create alerts or tasks for items that
need review.

Every logic app workflow starts with a trigger, which fires when a specific event happens or when newly
available data meets specific criteria. Many triggers include essential scheduling capabilities so you can
specify how regularly your workloads will run. For more custom scheduling scenarios, start your work-
flows with the Schedule trigger.

Each time the trigger fires, the Logic Apps engine creates a logic app instance that runs the workflow's
actions. These actions can include data conversions and flow controls, such as conditional statements,
switch statements, loops, and branching. For example, a logic app might start with a Dynamics 365
trigger that has the built-in criterion "When a record is updated." If the trigger detects an event that
matches this criterion, the trigger will fire and run the workflow's actions. These actions might include
XML transformation, data updates, decision branching, and email notifications.

You can visually build your logic apps by using the Logic Apps designer, which is available in the Azure
portal through your browser and in Visual Studio. You can also use Azure PowerShell commands and
Azure Resource Manager templates for select tasks. For more-custom logic apps, you can create or edit
logic app definitions in JavaScript Object Notation (JSON) by working in code view mode. Here is an
example of a JSON template for a logic app:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement Azure Functions and Azure Logic Apps  55

{
	 "$schema": "https://schema.management.azure.com/schemas/2016-06-01/
Microsoft.Logic.json",
 "contentVersion": "1.0.0.0",
 "parameters": {
		 "uri": {
			 "type": "string"

		 }
	 },
 "triggers": {
		 "request": {
			 "type": "request",
 "kind": "http"

		 }
	 },
 "actions": {
		 "readData": {
			 "type": "Http",
 "inputs": {
				 "method": "GET",
 "uri": "@parameters('uri')"

			 }
		 }
	 },
 "outputs": { }
}

Create an Azure function by using a C# script
1.	 Navigate to https://portal.azure.com.

2.	 If you're not already signed in, sign in with the credentials you typically use for your Azure subscrip-
tion.

3.	 In the navigation pane on the left side, select Create a resource.

4.	 In the New blade, in the Search the Marketplace box, enter function app, and then press Enter.

5.	 In the search results, select the Function App template.

6.	 In the Function App blade, select Create.

7.	 In the form that displays, perform the following steps:

1.	 In the App name dialog box, create a unique name for your function.

2.	 In the Resource Group section, select Create new, and then enter the value FUNCDEMO.

3.	 In the OS group, select Windows.

4.	 In the Hosting Plan list, select Consumption Plan.

5.	 In the Location list, select the region that is closest to your location.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

56  Module 3 Module Developing for Asynchronous Processing

6.	 In the Storage section, select Create new, and leave the name set to the recommended value that
is displayed.

7.	 In the Application Insights section, select Off.

8.	 Select Create to create your function app.

8.	 Wait for the function app to finish being created. You will see a notification in the portal indicating
that the resource was successfully created.

9.	 In the navigation pane on the left side, select All services.

10.	Scroll down, and then locate and select the App Services option.

11.	In the App Services list, select the function app that you created earlier.

12.	On the left side of the Function Apps blade, locate and select the Functions link.

13.	In the Functions section, at the top of the section, select New function.

14.	In the template list, select the HTTP trigger template.

15.	In the HTTP Trigger dialog box, perform the following steps:

1.	 In the Language list, select C#.

2.	 In the Name box, enter Echo.

3.	 Select Create.

16.	Observe the default C# code in the following function:

using System.Net;

public static async Task<HttpResponseMessage> Run(HttpRequestMessage req,
TraceWriter log)
{
 log.Info("C# HTTP trigger function processed a request.");

 // parse query parameter
 string name = req.GetQueryNameValuePairs()
 .FirstOrDefault(q => string.Compare(q.Key, "name", true) == 0)
 .Value;

 if (name == null)
 {
 // Get request body
 dynamic data = await req.Content.ReadAsAsync<object>();
 name = data?.name;
 }

 return name == null
 ? req.CreateResponse(HttpStatusCode.BadRequest, "Please pass a name
on the query string or in the request body")
 : req.CreateResponse(HttpStatusCode.OK, "Hello " + name);
}

17.	Replace the existing function code with the following simplified script:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement Azure Functions and Azure Logic Apps  57

public static async Task<HttpResponseMessage> Run(HttpRequestMessage req,
TraceWriter log)
{
 log.Info("C# HTTP trigger executed");
 return req.CreateResponse(
 await req.Content.ReadAsAsync<object>()
);
}

18.	Note: This script will echo the body of a request back to the calling client.

19.	Select Save and run to test the function.

●● You should quickly notice that the example request body is echoed back as a response.

1.	 Locate the request body field in the Test section:

{
 "name": "Azure"
}

2.	 Replace the request body field's value with the following JSON object:

{
 "sizeSystem": "US",
 "sizeType": "regular",
 "targetCountry": "US",
 "taxes": [
 {
 "country": "US",
 "rate": "9.9",
 "region": "CA",
 "taxShip": "True"
 }
],
 "title": "Cute Toddler Sundress"
}

3.	 Select Save and run again to verify that the new JSON object is correctly echoed.

4.	 In the navigation pane on the left side of the Azure portal, select All services.

5.	 In the All services blade, select Resource groups.

6.	 In the Resource groups blade, select the FUNCDEMO resource group.

7.	 At the top of the FUNCDEMO blade, select Delete resource group.

8.	 In the deletion confirmation dialog box, enter the name FUNCDEMO, and then select Delete.

9.	 Wait for the resource group to be deleted.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

58  Module 3 Module Developing for Asynchronous Processing

Implement interfaces for storage or data ac-
cess
Asynchronous interfaces for external services
Blocking the calling thread during I/O can reduce performance and affect vertical scalability. You can see
this antipattern when your application attempts to access data in local storage via either Azure Storage or
another Azure data service. After the application blocks the calling thread, the thread enters a wait state
during which other operations can't use it, and it's effectively wasting valuable metered resources.
Because cloud-based services can experience latency or lag, any type of I/O-based wait might be disas-
trous, and even a single I/O block can block an entire call chain—crippling a useful thread in a computing
instance.

To fix this problem, implement asynchronous interfaces for all of your data tier code that accesses any
storage or data resource in Azure. Ideally, pair these asynchronous interfaces with implementations that
invoke the asynchronous version of an SDK or API method that you want to invoke.

Asynchronous interfaces for Azure services in
ASP.NET MVC
In a common example, you have a Microsoft ASP.NET Model - View - Controller (MVC) application that
accesses data in an Azure SQL Database instance using Entity Framework Core. In the simplest implemen-
tation, you create a DbContext implementation that is used directly in the controller action:

public class ItemsContext: DbContext
{
	 public DbSet<Item> Items { get; set; }
}

public class Item
{
	 public int Id { get; set; }
	 public string Name { get; set; }
}

public class ItemsController : Controller
{	
	 public string Get(int id)
	 {
		 ItemsContext context = new ItemsContext();
		 Item item = context.Items.Find(id);
		 return item.Name;
	 }
}

This is less than ideal for a few reasons.

First, your controller action strongly couples with the Entity Framework implementation. If you chose to
use a different object-relational mapper in the future, you would need to rewrite a large quantity of code
to implement the object-relational mapper, because Entity Framework–specific code exists directly in

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement interfaces for storage or data access  59

your web application. Things might be even worse if you chose to use a different database service
altogether.

Second, you might observe I/O blocking while your code uses the synchronous version of the Entity
Framework methods in the System.Data.Entity namespace.

To solve both of these issues, create a data layer for the sample application by creating an interface with
asynchronous method signatures. This interface will be the only thing coupled to your MVC web applica-
tion code—making it easier to switch your application code if you change your object-relational mapper
or database service. The interface will also enforce the use of asynchronous methods in your data layer by
requiring asynchronous signatures on your classes. ASP.NET MVC also has built-in dependency injection,
which will make it easier to implement this pattern. Here is a similar example that uses an interface and a
data layer class:

public class ItemsContext: DbContext
{
	 public DbSet<Item> Items { get; set; }
}

public class Item
{
	 public int Id { get; set; }
	 public string Name { get; set; }
}

public interface IDataLayer
{
	 Task<string> GetNameForIdAsync(int id);
}

public class EntityFrameworkDataLayer : IDataLayer
{
	 public async Task<string> GetNameForIdAsync(int id)
	 {
		 ItemsContext context = new ItemsContext();
		 Item item = await context.Items.FindAsync(id);
		 return item.Name;
	 }
}

public class ItemsController : Controller
{
	 public async Task<string> Get(IDataLayer dataLayer, int id)
	 {
		 return await dataLayer.GetNameForIdAsync(id);
	 }
}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

60  Module 3 Module Developing for Asynchronous Processing

Implement appropriate asynchronous comput-
ing models
Asynchronous computing
Modern apps make extensive use of file and networking I/O. I/O APIs traditionally block the calling thread
by default, resulting in what the user perceives as an application that has stopped responding. In the
server-side world, blocking an application on I/O can have devastating consequences for other users of
the same server application.

To solve this, many developers have implemented asynchronous code, which:

●● Handles more server requests by yielding threads while waiting for I/O requests to return.

●● Enables UIs to be more responsive by yielding threads to UI interaction while waiting for I/O requests
and by transitioning long-running work to other CPU cores.

In cloud-based applications, most SDKs, APIs, and code are asynchronous by default. Asynchronous SDKs
exist because most cloud services are metered (billed) based on usage. Synchronous code increases
usage, blocks other users, and ultimately results in increased billing.

Asynchronous code in .NET
In .NET, we recommend authoring asynchronous code by using the Task-based Asynchronous Pattern.
This pattern leverages the Task types in the TPL to represent arbitrary asynchronous operations.

In the past, you might have written a cloud-hosted API by using ASP.NET MVC and a controller action
that accesses your data tier, like this:

[Route("/api/users/")]
public class UserController : Controller
{
 [HttpGet("{id:int}")]
 public string GetName(int id)
 {
 return DataTier.GetNameForUniqueId(id);
 }
}

Although this code technically works, you might create a blocking scenario if your data tier needs to
access I/O or a third-party service. First, use the asynchronous version of your data tier method. Second,
update the MVC controller action to use an asynchronous signature. The .NET and ASP.NET runtimes will
automatically handle the parallel asynchronous processing of MVC controller actions when you use an
asynchronous signature. The updated controller action looks like this:

[Route("/api/users/")]
public class UserController : Controller
{
 [HttpGet("{id:int}")]
 public async Task<string> GetName(int id)
 {
 return await DataTier.GetNameForUniqueIdAsync(id);
 }

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement appropriate asynchronous computing models  61

}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

62  Module 3 Module Developing for Asynchronous Processing

Review Questions
Module 3 Review Questions
Logic Apps

You are designing a solution to handle order processing from an online e-Commerce site.

The solution must route messages to manufacturing, create orders in a sales system, and notify your
warehouse that an order is ready for processing.

You need to create the workflow modules to support the solution.

What should you use?

Suggested Answer ↓
Suggested Answer:

Logic Apps helps you build, schedule, and automate processes as workflows so you can integrate apps,
data, systems, and services across enterprises or organizations. Logic Apps simplifies how you design and
create scalable solutions for app integration, data integration, system integration, enterprise application
integration (EAI), and business-to-business (B2B) communication—whether in the cloud, on-premises, or
both.

Asynchronous code in .NET

You are designing a solution to handle order processing from an online e-Commerce site.

The solution must be able to handle multiple requests simultaneously without affecting the experience of
the users of the platform.

How can you ensure that a user request does not affect the experience of other users? Which design
pattern should be used to develop the code? Which tools are available?

Suggested Answer ↓
You should implement asynchronous code for the solution. Instead of waiting for processes to finish, the
solution makes a request and then performs other activities. When the requested action completes, the
code is alerted and can respond. This pattern allows solutions to handle more requests while remaining
responsive.

Computing patterns

You are designing a solution to handle order processing from an online e-Commerce site.

The solution must scale out as demand grows.

What type of patterns can you use? Which is most appropriate for the scenario?

Suggested Answer ↓
On and off, growing fast, unpredictable bursting, and predictable bursting are four common computing
design patterns. For this scenario, unpredictable bursting is most appropriate. Solutions that use this
pattern are designed to respond to unexpected spikes in activity. Resources are automatically added to

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Review Questions  63

handle increased workloads and then released when no longer necessary.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Module 4 Module Developing for Autoscaling

Implement autoscaling rules and patterns
Computing patterns

Computing Patterns
In distributed application scenarios, you are often advised to scale out your application horizontally by
adding multiple, small instances of your application to the cloud. With horizontal scaling, you can serve
more client devices and ensure high availability and resiliency against any specific fault.

Unfortunately, application workloads are unpredictable. To illustrate this, here are four of the most
common computing patterns you will see for web applications hosted in the cloud:

Pattern Graphic Description
On and off Workloads occur occasionally

(for example, batch processing).
Over-provisioned capacity is
wasted. The time to market can
be cumbersome.

Growing fast A successful service tends to
grow on a curve. Keeping up
with growth is a management
challenge. The IT team may not
be able to provision hardware
fast enough to keep pace with
growth.

Unpredictable bursting Bursts correlate with unexpected
or unplanned peaks in demand.
Sudden spikes impact the user
experience across the board.
Over-provisioning will lead to
tremendous wasted capacity.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

66  Module 4 Module Developing for Autoscaling

Pattern Graphic Description
Predictable bursting Bursts can be mapped to specific

trends that are planned and well
known. Resources will need to be
provisioned and de-provisioned
to match the peaks and valleys
of the usage curve. The complex-
ity of the infrastructure can be
challenging for the IT team.

You can easily overestimate or underestimate the number of instances required to provide the best user
experience. If you overestimate, you can end up paying for unnecessary compute resources. If you
underestimate, you can provide a poor user experience. Ideally, you want your web platform to use the
extra instances only when it is necessary and to shut down the same instances when they are no longer
needed.

Scale and auto-scale
To provide redundancy and improved performance, applications are typically distributed across multiple
instances. Customers may access your application through a load balancer that distributes requests to
one of the application instances. If you need to perform maintenance or update an application instance,
your customers must be distributed to another available application instance. To keep up with additional
customer demand, you may need to increase the number of application instances that run your applica-
tion. To save money during times of reduced customer utilization, you may need to decrease the number
of application instances.

A primary advantage of the cloud is elastic scaling—the ability to use as much capacity as you need,
scaling out as load increases and scaling in when the extra capacity is not needed. In the context of
Microsoft Azure, many services provide the capability to both manually and automatically scale to closely
match demand. These options include infrastructure services such as Azure Virtual Machine Scale Sets,
application services such as Azure App Service, and even database services such as Azure Cosmos DB.

Auto-scale refers to the capability of many of these services to monitor the application instances and
automatically scale appropriately to handle the current usage of the application. Using auto-scale, your
cloud service can scale out and in to exactly match the amount of instances needed for your specific
computing pattern.

Auto-scale metrics
App Service apps hosted in Basic, Standard, or Premium App Service plans support autoscale. Autoscale
allows you to configure rules that monitor the App Service plan metrics. Rules can increase or decrease
the instance count, providing additional resources as needed. Rules can also help you save money when
the application is over-provisioned.

Auto-scale settings help ensure that you have the right amount of resources running to handle the
fluctuating load of your application. You can configure auto-scale settings to be either triggered based
on metrics that indicate the load or performance or triggered at a scheduled date and time.

Below is the list of auto-scale metrics that are available to an App Service plan instance:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement autoscaling rules and patterns  67

Metric Metric identifier Description
CPU CpuPercentage The average amount of CPU time

used across all instances of the
plan

Memory MemoryPercentage The average amount of memory
used across all instances of the
plan

Data in BytesReceived The average incoming band-
width used across all instances of
the plan

Data out BytesSent The average outgoing bandwidth
used across all instances of the
plan

HTTP queue HttpQueueLength The average number of both
read and write requests that
were queued on storage. A high
disk queue length is an indica-
tion of an application that might
be slowing down due to exces-
sive disk I/O.

Disk queue DiskQueueLength The average number of HTTP
requests that had to sit in the
queue before being fulfilled. A
high or increasing HTTP queue
length is a symptom of a plan
under a heavy load.

Alerts and auto-scale
In addition to being used for automatic scale, metrics for an App Service plan can be used to trigger
alerts from Azure. An alert triggers when the value of a specified metric crosses a threshold that you
assign in either direction. That is, it triggers both when the condition is first met and when that condition
is no longer being met.

You can configure a metric alert to do the following when it triggers:

●● Send email notifications to the service administrator and co-administrators

●● Send email to additional email addresses that you specify

●● Call a webhook

●● Start the execution of an Azure runbook

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

68  Module 4 Module Developing for Autoscaling

Implement code that addresses singleton ap-
plication instances
Querying resources using Azure CLI
The Azure Command-Line Interface (Azure CLI) is the Microsoft cross-platform command-line experience
for managing Azure resources. You can use it in your browser with Azure Cloud Shell or install it on
macOS, Linux, or Windows and run it from the command line. Azure CLI is optimized for managing and
administering Azure resources from the command line and for building automation scripts that work
against the Azure Resource Manager.

The Azure CLI uses the –query argument to execute a JMESPath query on the results of commands.
JMESPath is a query language for JavaScript Object Notation (JSON) that gives you the ability to select
and present data from Azure CLI output. These queries are executed on the JSON output before they
perform any other display formatting. The –query argument is supported by all commands in the Azure
CLI.

Many CLI commands will return more than one value. These commands always return a JSON array
instead of a JSON document. Arrays can have their elements accessed by index, but there's never an
order guarantee from the Azure CLI. To make the arrays easier to query, we can flatten them using the
JMESPath [] operator.

In the following example, we use the az vm list command to query for a list of virtual machine (VM)
instances:

az vm list

The query will return an array of large JSON objects for each VM in your subscription:

[
	 {
		 "availabilitySet": null,
		 "diagnosticsProfile": null,
		 "hardwareProfile": {
			 "vmSize": "Standard_B1s"
		 },
		 "id": "/subscriptions/9103844d-1370-4716-b02b-69ce936865c6/
resourceGroups/VM/providers/Microsoft.Compute/virtualMachines/simple",
		 "identity": null,
		 "instanceView": null,
		 "licenseType": null,
		 "location": "eastus",
		 "name": "simple",
		 "networkProfile": {
			 "networkInterfaces": [{
				 "id": "/subscriptions/9103844d-1370-4716-b02b-
69ce936865c6/resourceGroups/VM/providers/Microsoft.Network/networkInterfac-
es/simple159",
				 "primary": null,
				 "resourceGroup": "VM"
			 }]
		 },

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement code that addresses singleton application instances  69

		 "osProfile": {
			 "adminPassword": null,
			 "adminUsername": "simple",
			 "computerName": "simple",
			 "customData": null,
			 "linuxConfiguration": {
				 "disablePasswordAuthentication": false,
				 "ssh": null
			 },
			 "secrets": [],
			 "windowsConfiguration": null
		 },
		 "plan": null,
		 "provisioningState": "Creating",
		 "resourceGroup": "VM",
		 "resources": null,
		 "storageProfile": {
			 "dataDisks": [],
			 "imageReference": {
				 "id": null,
				 "offer": "UbuntuServer",
				 "publisher": "Canonical",
				 "sku": "17.10",
				 "version": "latest"
			 },
			 "osDisk": {
				 "caching": "ReadWrite",
				 "createOption": "FromImage",
				 "diskSizeGb": 30,
				 "encryptionSettings": null,
				 "image": null,
				 "managedDisk": {
					 "id": "/subscriptions/9103844d-1370-4716-b02b-
69ce936865c6/resourceGroups/VM/providers/Microsoft.Compute/disks/simple_Os-
Disk_1_4da948f5ef1a4232ad2f632077326d0a",
					 "resourceGroup": "VM",
					 "storageAccountType": "Premium_LRS"
				 },
				 "name": "simple_OsDisk_1_4da948f5ef1a4232ad2f-
632077326d0a",
				 "osType": "Linux",
				 "vhd": null,
				 "writeAcceleratorEnabled": null
			 }
		 },
		 "tags": null,
		 "type": "Microsoft.Compute/virtualMachines",
		 "vmId": "6aed2e80-64b2-401b-a8a0-b82ac8a6ed5c",
		 "zones": null
	 },
	 {

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

70  Module 4 Module Developing for Autoscaling

		 ...
	 }
]

Using the –query argument, we can specify project-specific fields to make the JSON object more useful
and easier to read. This is useful if you are deserializing the JSON object into a specific type in your code:

az vm list --query '[].{name:name, image:storageProfile.imageReference.
offer}'

[
	 {

		 "image": "UbuntuServer",
		 "name": "linuxvm"
	 },
	 {
		 "image": "WindowsServer",
		 "name": "winvm"
	 }
]

Using the [] operator, you can create queries that filter your result set by comparing the values of various
JSON properties:

az vm list --query "[?starts_with(storageProfile.imageReference.offer, 'Win-
dowsServer')]"

You can even combine filtering and projection to create custom queries that only return the resources
you need and project only the fields that are useful to your application:

az vm list --query "[?starts_with(storageProfile.imageReference.offer, 'Ubun-
tu')].{name:name, id:vmId}"

[
	 {
		 "name": "linuxvm",
		 "id": "6aed2e80-64b2-401b-a8a0-b82ac8a6ed5c"
	 }
]

Querying resources using the fluent Azure SDK
In a manner similar to how you use the Azure CLI, you can use the Azure SDK to query resources in your
subscription. The SDK may be a better option if you intend to write code to find connection information
for a specific application instance. For example, you may need to write code to get the IP address of a
specific VM in your subscription.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement code that addresses singleton application instances  71

Connecting using the fluent Azure SDK
To use the APIs in the Azure management libraries for Microsoft .NET, as the first step, you need to create
an authenticated client. The Azure SDK requires that you invoke the Azure.Authenticate static method
to return an object that can fluently query resources and access their metadata. The Authenticate
method requires a parameter that specifies an authorization file:

Azure azure = Azure.Authenticate("azure.auth").WithDefaultSubscription();

The authentication file, referenced as azure.auth above, contains information necessary to access your
subscription using a service principal. The authorization file will look similar to the format below:

{
	 "clientId": "b52dd125-9272-4b21-9862-0be667bdf6dc",
	 "clientSecret": "ebc6e170-72b2-4b6f-9de2-99410964d2d0",
	 "subscriptionId": "ffa52f27-be12-4cad-b1ea-c2c241b6cceb",
	 "tenantId": "72f988bf-86f1-41af-91ab-2d7cd011db47",
	 "activeDirectoryEndpointUrl": "https://login.microsoftonline.com",
	 "resourceManagerEndpointUrl": "https://management.azure.com/",
	 "activeDirectoryGraphResourceId": "https://graph.windows.net/",
	 "sqlManagementEndpointUrl": "https://management.core.windows.
net:8443/",
	 "galleryEndpointUrl": "https://gallery.azure.com/",
	 "managementEndpointUrl": "https://management.core.windows.net/"
}

If you do not already have a service principal, you can generate a service principal and this file using the
Azure CLI:

az ad sp create-for-rbac --sdk-auth > azure.auth

Listing virtual machines using the fluent Azure SDK
Once you have a variable of type IAzure, you can access various resources by using properties of the
IAzure interface. For example, you can access VMs using the VirtualMachines property in the manner
displayed below:

azure.VirtualMachines

The properties have both synchronous and asynchronous versions of methods to perform actions such as
Create, Delete, List, and Get. If we wanted to get a list of VMs asynchronously, we could use the ListA-
sync method:

var vms = await azure.VirtualMachines.ListAsync();

foreach(var vm in vms)
{
	 Console.WriteLine(vm.Name);
}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

72  Module 4 Module Developing for Autoscaling

You can also use any language-integrated query mechanism, like language-integrated query (LINQ) in C#,
to filter your VM list to a specific subset of VMs that match a filter criteria:

var allvms = await azure.VirtualMachines.ListAsync();

IVirtualMachine targetvm = allvms.Where(vm => vm.Name == "simple").Single-
OrDefault();

Console.WriteLine(targetvm?.Id);

Gathering virtual machine metadata to determine the IP
address
Now that we can filter to a specific VM, we can access various properties of the IVirtualMachine inter-
face and other related interfaces to get that resource’s IP address.

To start, the IVirtualMachine.GetPrimaryNetworkInterface method implementation will return the
network adapter that we need to access the VM:

INetworkInterface targetnic = targetvm.GetPrimaryNetworkInterface();

The INetworkInterface interface has a property named PrimaryIPConfiguration that will get the
configuration of the primary IP address for the current network adapter:

INicIPConfiguration targetipconfig = targetnic.PrimaryIPConfiguration;

The INicIPConfiguration interface has a method named GetPublicIPAddress that will get the IP address
resource that is public and associated with the current specified configuration:

IPublicIPAddress targetipaddress = targetipconfig.GetPublicIPAddress();

Finally, the IPublicIPAddress interface has a property named IPAddress that contains the current IP
address as a string value:

Console.WriteLine($"IP Address:\t{targetipaddress.IPAddress}");

Your application can now use this specific IP address to communicate directly with the intended compute
instance.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement code that addresses a transient state  73

Implement code that addresses a transient
state
Transient errors
An application that communicates with elements running in the cloud has to be sensitive to the transient
faults that can occur in this environment. Faults include the momentary loss of network connectivity to
components and services, the temporary unavailability of a service, or timeouts that occur when a service
is busy.

These faults are typically self-correcting, and if the action that triggered a fault is repeated after a suitable
delay, it's likely to be successful. For example, a database service that's processing a large number of
concurrent requests can implement a throttling strategy that temporarily rejects any further requests until
its workload has eased. An application trying to access the database might fail to connect, but if it tries
again after a delay, it might succeed.

Handling transient errors
In the cloud, transient faults aren't uncommon, and an application should be designed to handle them
elegantly and transparently. This minimizes the effects faults can have on the business tasks the applica-
tion is performing.

If an application detects a failure when it tries to send a request to a remote service, it can handle the
failure using the following strategies:

●● Cancel: If the fault indicates that the failure isn't transient or is unlikely to be successful if repeated,
the application should cancel the operation and report an exception. For example, an authentication
failure caused by providing invalid credentials is not likely to succeed no matter how many times it's
attempted.

●● Retry: If the specific fault reported is unusual or rare, it might have been caused by unusual circum-
stances, such as a network packet becoming corrupted while it was being transmitted. In this case, the
application could retry the failing request again immediately, because the same failure is unlikely to
be repeated, and the request will probably be successful.

●● Retry after a delay: If the fault is caused by one of the more commonplace connectivity or busy
failures, the network or service might need a short period of time while the connectivity issues are
corrected or the backlog of work is cleared. The application should wait for a suitable amount of time
before retrying the request.

For the more common transient failures, the period between retries should be chosen to spread requests
from multiple instances of the application as evenly as possible. This reduces the chance of a busy service
continuing to be overloaded. If many instances of an application are continually overwhelming a service
with retry requests, it'll take the service longer to recover.

If the request still fails, the application can wait and make another attempt. If necessary, this process can
be repeated with increasing delays between retry attempts, until some maximum number of requests
have been attempted. The delay can be increased incrementally or exponentially depending on the type
of failure and the probability that it'll be corrected during this time.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

74  Module 4 Module Developing for Autoscaling

Retrying after a transient error
The following diagram illustrates invoking an operation in a hosted service using this pattern. If the
request is unsuccessful after a predefined number of attempts, the application should treat the fault as an
exception and handle it accordingly.

1.	 The application invokes an operation on a hosted service. The request fails, and the service host
responds with HTTP response code 500 (internal server error).

2.	 The application waits for a short interval and tries again. The request still fails with HTTP response
code 500.

3.	 The application waits for a longer interval and tries again. The request succeeds with HTTP response
code 200 (OK).

The application should wrap all attempts to access a remote service in code that implements a retry
policy matching one of the strategies listed above. Requests sent to different services can be subject to
different policies. Some vendors provide libraries that implement retry policies, where the application can
specify the maximum number of retries, the amount of time between retry attempts, and other parame-
ters.

An application should log the details of faults and failing operations. This information is useful to opera-
tors. If a service is frequently unavailable or busy, it's often because the service has exhausted its resourc-
es. You can reduce the frequency of these faults by scaling out the service. For example, if a database
service is continually overloaded, it might be beneficial to partition the database and spread the load
across multiple servers.

Handling transient errors in code
This example in C# illustrates an implementation of this pattern. The OperationWithBasicRetryAsync
method, shown below, invokes an external service asynchronously through the TransientOperation-
Async method. The details of the TransientOperationAsync method will be specific to the service and
are omitted from the sample code:

private int retryCount = 3;
private readonly TimeSpan delay = TimeSpan.FromSeconds(5);

public async Task OperationWithBasicRetryAsync()
{
	 int currentRetry = 0;
	 for (;;)
	 {
		 try

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Implement code that addresses a transient state  75

		 {
			 await TransientOperationAsync();
			 break;
		 }
		 catch (Exception ex)
		 {
			 Trace.TraceError("Operation Exception");
			 currentRetry++;
			 if (currentRetry > this.retryCount || !IsTransient(ex))
			 {
				 throw;
			 }
		 }
		 await Task.Delay(delay);
	 }
}

private async Task TransientOperationAsync()
{
 ...
}

The statement that invokes this method is contained in a try/catch block wrapped in a for loop. The for
loop exits if the call to the TransientOperationAsync method succeeds without throwing an exception. If
the TransientOperationAsync method fails, the catch block examines the reason for the failure. If it's
believed to be a transient error, the code waits for a short delay before retrying the operation.

The for loop also tracks the number of times that the operation has been attempted, and if the code fails
three times, the exception is assumed to be more long lasting. If the exception isn't transient or it's long
lasting, the catch handler will throw an exception. This exception exists in the for loop and should be
caught by the code that invokes the OperationWithBasicRetryAsync method.

Detecting if an error is transient in code
The IsTransient method, shown below, checks for a specific set of exceptions that are relevant to the
environment the code is run in. The definition of a transient exception will vary according to the resourc-
es being accessed and the environment the operation is being performed in:

private bool IsTransient(Exception ex)
{
	 if (ex is OperationTransientException)
		 return true;

	 var webException = ex as WebException;
	 if (webException != null)
	 {
		 return new[] {
			 WebExceptionStatus.ConnectionClosed,
			 WebExceptionStatus.Timeout,
			 WebExceptionStatus.RequestCanceled
		 }.Contains(webException.Status);
	 }

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

76  Module 4 Module Developing for Autoscaling

	
	 return false;
}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Review Questions  77

Review Questions
Module 4 Review Questions
Scale and auto-scale

You are designing a solution for a university. Students will use the solution to register for classes.

You plan to implement elastic scaling to handle the high levels of activity at the beginning of each class
registration period.

What services in Azure are available to support this scenario?

Suggested Answer ↓
You can use Azure services to manually or automatically scale solutions to meet demands. Scaling options
include Azure Virtual Machine Scale Sets, Azure App Service, and Azure Cosmos DB.

Auto-scale metrics

You are designing a solution for a university. Students will use the solution to register for classes.

You plan to implement elastic scaling to handle the high levels of activity at the beginning of each class
registration period.

You plan to implement an App Service instance and trigger auto-scaling based on metrics?

Which auto-scaling metrics are available for the App Service instance?

Suggested Answer ↓
You can monitor CPU usage, memory usage, data in, data out, average queue requests, and average disk
reads o determine when to scale the app.

Handling transient errors

You manage an application for a university that allows students to register for classes.

The application occasionally loses connectivity with the registration database.

What options are available to handle transient errors?

Suggested Answer ↓
When an application loses a connection to a resource such as a database, you can use cancel, retry, or
retry with delay logic to handle and potentially resolve the issue. In this case, the database may become
unavailable due to network issues. Alternatively, the database may be busy with maintenance tasks. You
can implement retry logic to reconnect to the database.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Module 5 Module Developing Azure Cognitive
Services Solutions

Cognitive Services Overview
About Cognitive Services
Microsoft Cognitive Services (formerly Project Oxford) are a set of APIs, SDKs and services available to
developers to make their applications more intelligent, engaging and discoverable. Microsoft Cognitive
Services expands on Microsoft’s evolving portfolio of machine learning APIs and enables developers to
easily add intelligent features – such as emotion and video detection; facial, speech and vision recogni-
tion; and speech and language understanding – into their applications. Our vision is for more personal
computing experiences and enhanced productivity aided by systems that increasingly can see, hear,
speak, understand and even begin to reason.

Getting started with free trials
Signing up for free trials only takes an email and a few simple steps1 You will need a Microsoft Account if
you don't already have one. You will receive a unique pair of keys for each API requested. The second one
is just a spare. Please do not share the secret keys with anyone. Trials have both rate limit, in terms of
transactions per second or minute, and a monthly usage cap. A transaction is simply an API call. You can
upgrade to paid tiers to unlock the restrictions.

Regional availability
The APIs in Cognitive Services are hosted on a growing network of Microsoft-managed data centers. You
can find the regional availability for each API in Azure region list2.

1	 https://azure.microsoft.com/try/cognitive-services/
2	 https://azure.microsoft.com/regions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

80  Module 5 Module Developing Azure Cognitive Services Solutions

Develop Solutions using Computer Vision
Computer Vision API v2 overview
The cloud-based Computer Vision API provides developers with access to advanced algorithms for
processing images and returning information. By uploading an image or specifying an image URL,
Microsoft Computer Vision algorithms can analyze visual content in different ways based on inputs and
user choices.

Requirements
●● Supported input methods: Raw image binary in the form of an application/octet stream or image URL.

●● Supported image formats: JPEG, PNG, GIF, BMP.

●● Image file size: Less than 4 MB.

●● Image dimension: Greater than 50 x 50 pixels.

Tagging images
Computer Vision API returns tags based on more than 2000 recognizable objects, living beings, scenery,
and actions. When tags are ambiguous or not common knowledge, the API response provides ‘hints’ to
clarify the meaning of the tag in context of a known setting. Tags are not organized as a taxonomy and
no inheritance hierarchies exist. A collection of content tags forms the foundation for an image 'descrip-
tion' displayed as human readable language formatted in complete sentences. Note, that at this point
English is the only supported language for image description.

After uploading an image or specifying an image URL, Computer Vision API's algorithms output tags
based on the objects, living beings, and actions identified in the image. Tagging is not limited to the main
subject, such as a person in the foreground, but also includes the setting (indoor or outdoor), furniture,
tools, plants, animals, accessories, gadgets etc.

Categorizing images
In addition to tagging and descriptions, Computer Vision API returns the taxonomy-based categories
defined in previous versions. These categories are organized as a taxonomy with parent/child hereditary
hierarchies. All categories are in English. They can be used alone or with our new models.

The 86-category concept
Based on a list of 86 concepts seen in the following diagram, visual features found in an image can be
categorized ranging from broad to specific. For the full taxonomy in text format, see Category Taxono-
my3.

3	 https://docs.microsoft.com/azure/cognitive-services/computer-vision/category-taxonomy

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  81

Identifying image types
There are several ways to categorize images. Computer Vision API can set a boolean flag to indicate
whether an image is black and white or color. The API can also set a flag to indicate whether an image is
a line drawing or not. It can also indicate whether an image is clip art or not and indicate its quality on a
scale of 0-3.

Domain-specific content
In addition to tagging and top-level categorization, Computer Vision API also supports specialized (or
domain-specific) information. Specialized information can be implemented as a standalone method or
with the high-level categorization. It functions as a means to further refine the 86-category taxonomy
through the addition of domain-specific models.

Currently, the only specialized information supported are celebrity recognition and landmark recognition.
They are domain-specific refinements for the people and people group categories, and landmarks around
the world.

There are two options for using the domain-specific models:

Option one - scoped analysis
Analyze only a chosen model by invoking an HTTP POST call. If you know which model you want to use,
specify the model's name. You only get information relevant to that model. For example, you can use this
option to only look for celebrity-recognition. The response contains a list of potential matching celebri-
ties, accompanied by their confidence scores.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

82  Module 5 Module Developing Azure Cognitive Services Solutions

Option two - enhanced analysis
Analyze to provide additional details related to categories from the 86-category taxonomy. This option is
available for use in applications where users want to get generic image analysis in addition to details
from one or more domain-specific models. When this method is invoked, the 86-category taxonomy
classifier is called first. If any of the categories match that of known/matching models, a second pass of
classifier invocations follows. For example, if ‘details=all’ or "details" include ‘celebrities’, the method calls
the celebrity classifier after the 86-category classifier is called. The result includes tags starting with
'people_'.

Generating descriptions
Computer Vision API's algorithms analyze the content in an image. This analysis forms the foundation for
a ‘description’ displayed as human-readable language in complete sentences. The description summariz-
es what is found in the image. Computer Vision API's algorithms generate various descriptions based on
the objects identified in the image. The descriptions are each evaluated and a confidence score generat-
ed. A list is then returned ordered from highest confidence score to lowest.

Perceiving color schemes
The Computer Vision algorithm extracts colors from an image. The colors are analyzed in three different
contexts: foreground, background, and whole. They are grouped into 12 dominant accent colors. Those
accent colors are black, blue, brown, gray, green, orange, pink, purple, red, teal, white, and yellow.
Depending on the colors in an image, simple black and white, or accent colors may be returned in
hexadecimal color codes.

Flagging adult content
Among the various visual categories is the adult and racy group, which enables detection of adult
materials and restricts the display of images containing sexual content. The filter for adult and racy
content detection can be set on a sliding scale to accommodate the user's preference.

Optical character recognition (OCR)
OCR technology detects text content in an image and extracts the identified text into a machine-readable
character stream. You can use the result for search and numerous other purposes like medical records,
security, and banking. It automatically detects the language. OCR saves time and provides convenience
for users by allowing them to take photos of text instead of transcribing the text.

OCR supports 25 languages. These languages are: Arabic, Chinese Simplified, Chinese Traditional, Czech,
Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian,
Polish, Portuguese, Romanian, Russian, Serbian (Cyrillic and Latin), Slovak, Spanish, Swedish, and Turkish.

If needed, OCR corrects the rotation of the recognized text, in degrees, around the horizontal image axis.
OCR provides the frame coordinates of each word as seen in below illustration.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  83

Requirements for OCR:

●● The size of the input image must be between 40 x 40 and 3200 x 3200 pixels.

●● The image cannot be bigger than 10 megapixels.

The input image can be rotated by any multiple of 90 degrees plus a small angle of up to '40 degrees.

The accuracy of text recognition depends on the quality of the image. An inaccurate reading may be
caused by the following situations:

●● Blurry images.

●● Handwritten or cursive text.

●● Artistic font styles.

●● Small text size.

●● Complex backgrounds, shadows, or glare over text or perspective distortion.

●● Oversized or missing capital letters at the beginnings of words

●● Subscript, superscript, or strikethrough text.

Limitations: On photos where text is dominant, false positives may come from partially recognized words.
On some photos, especially photos without any text, precision can vary a lot depending on the type of
image.

Recognize text
This technology allows you to detect and extract printed or handwritten text from images of various
objects with different surfaces and backgrounds, such as receipts, posters, business cards, letters, and
whiteboards.

Text recognition saves time and effort. You can be more productive by taking an image of text rather than
transcribing it. Text recognition makes it possible to digitize notes. This digitization allows you to imple-
ment quick and easy search. It also reduces paper clutter.

Input requirements:

●● Supported image formats: JPEG, PNG, and BMP.

●● Image file size must be less than 4 MB.

●● Image dimensions must be at least 40 x 40, at most 3200 x 3200.

Note: this technology is currently in preview and is only available for English text.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

84  Module 5 Module Developing Azure Cognitive Services Solutions

Generating thumbnails
A thumbnail is a small representation of a full-size image. Varied devices such as phones, tablets, and PCs
create a need for different user experience (UX) layouts and thumbnail sizes. Using smart cropping, this
Computer Vision API feature helps solve the problem.

After uploading an image, a high-quality thumbnail gets generated and the Computer Vision API algo-
rithm analyzes the objects within the image. It then crops the image to fit the requirements of the ‘region
of interest’ (ROI). The output gets displayed within a special framework as seen in below illustration. The
generated thumbnail can be presented using an aspect ratio that is different from the aspect ratio of the
original image to accommodate a user's needs.

The thumbnail algorithm works as follows:

1.	 Removes distracting elements from the image and recognizes the main object, the ‘region of interest’
(ROI).

2.	 Crops the image based on the identified region of interest.

3.	 Changes the aspect ratio to fit the target thumbnail dimensions.

Analyze an image with C#
The following information shows you how to analyze both a local and a remote image to extract visual
features using the Computer Vision Windows client library.

Prerequisites
●● To use Computer Vision, you need a subscription key; see Obtaining Subscription Keys4.

●● Any edition of Visual Studio 2015 or 2017.

●● The Microsoft.Azure.CognitiveServices.Vision.ComputerVision5 client library NuGet package. It
isn't necessary to download the package. Installation instructions are provided below.

AnalyzeImageAsync method
The AnalyzeImageAsync and AnalyzeImageInStreamAsync methods wrap the Analyze Image API
for remote and local images, respectively. You can use these methods to extract visual features based on
image content and choose which features to return, including:

●● A detailed list of tags related to the image content.

●● A description of image content in a complete sentence.

●● The coordinates, gender, and age of any faces contained in the image.

●● The ImageType (clip art or a line drawing).

●● The dominant color, the accent color, or whether an image is black & white.

●● The category defined in this taxonomy6.

●● Does the image contain adult or sexually suggestive content?

4	 https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/vision-api-how-to-topics/howtosubscribe
5	 https://www.nuget.org/packages/Microsoft.Azure.CognitiveServices.Vision.ComputerVision
6	 https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/category-taxonomy

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  85

To run the sample, do the following steps:

1.	 Create a new Visual C# Console App in Visual Studio.

2.	 Install the Computer Vision client library NuGet package.

●● On the menu, click Tools, select NuGet Package Manager, then Manage NuGet Packages for
Solution.

●● Click the Browse tab, and in the Search box type “Microsoft.Azure.CognitiveServices.Vision.
ComputerVision”.

●● Select Microsoft.Azure.CognitiveServices.Vision.ComputerVision when it displays, then click
the checkbox next to your project name, and Install.

3.	 Replace Program.cs with the following code.

4.	 Replace <Subscription Key> with your valid subscription key.

5.	 Change computerVision.AzureRegion = AzureRegions.Westcentralus to the location
where you obtained your subscription keys, if necessary.

6.	 Optionally, replace <LocalImage> with the path and file name of a local image (will be ignored if
not set).

7.	 Optionally, set remoteImageUrl to a different image.

8.	 Run the program.

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;

using System;
using System.Collections.Generic;
using System.IO;
using System.Threading.Tasks;

namespace ImageAnalyze
{
 class Program
 {
 // subscriptionKey = "0123456789abcdef0123456789ABCDEF"
 private const string subscriptionKey = "<SubscriptionKey>";

 // localImagePath = @"C:\Documents\LocalImage.jpg"
 private const string localImagePath = @"<LocalImage>";

 private const string remoteImageUrl =
 "http://upload.wikimedia.org/wikipedia/commons/3/3c/Shaki_wa-
terfall.jpg";

 // Specify the features to return
 private static readonly List<VisualFeatureTypes> features =
 new List<VisualFeatureTypes>()
 {
 VisualFeatureTypes.Categories, VisualFeatureTypes.Description,
 VisualFeatureTypes.Faces, VisualFeatureTypes.ImageType,
 VisualFeatureTypes.Tags

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

86  Module 5 Module Developing Azure Cognitive Services Solutions

 };

 static void Main(string[] args)
 {
 ComputerVisionAPI computerVision = new ComputerVisionAPI(
 new ApiKeyServiceClientCredentials(subscriptionKey),
 new System.Net.Http.DelegatingHandler[] { });

 // You must use the same region as you used to get your sub-
scription
 // keys. For example, if you got your subscription keys from
westus,
 // replace "Westcentralus" with "Westus".
 //
 // Free trial subscription keys are generated in the westcen-
tralus
 // region. If you use a free trial subscription key, you
shouldn't
 // need to change the region.

 // Specify the Azure region
 computerVision.AzureRegion = AzureRegions.Westcentralus;

 Console.WriteLine("Images being analyzed ...");
 var t1 = AnalyzeRemoteAsync(computerVision, remoteImageUrl);
 var t2 = AnalyzeLocalAsync(computerVision, localImagePath);

 Task.WhenAll(t1, t2).Wait(5000);
 Console.WriteLine("Press any key to exit");
 Console.ReadLine();
 }

 // Analyze a remote image
 private static async Task AnalyzeRemoteAsync(
 ComputerVisionAPI computerVision, string imageUrl)
 {
 if (!Uri.IsWellFormedUriString(imageUrl, UriKind.Absolute))
 {
 Console.WriteLine(
 "\nInvalid remoteImageUrl:\n{0} \n", imageUrl);
 return;
 }

 ImageAnalysis analysis =
 await computerVision.AnalyzeImageAsync(imageUrl, features);
 DisplayResults(analysis, imageUrl);
 }

 // Analyze a local image
 private static async Task AnalyzeLocalAsync(
 ComputerVisionAPI computerVision, string imagePath)

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  87

 {
 if (!File.Exists(imagePath))
 {
 Console.WriteLine(
 "\nUnable to open or read localImagePath:\n{0} \n",
imagePath);
 return;
 }

 using (Stream imageStream = File.OpenRead(imagePath))
 {
 ImageAnalysis analysis = await computerVision.AnalyzeImage-
InStreamAsync(
 imageStream, features);
 DisplayResults(analysis, imagePath);
 }
 }

 // Display the most relevant caption for the image
 private static void DisplayResults(ImageAnalysis analysis, string
imageUri)
 {
 Console.WriteLine(imageUri);
 Console.WriteLine(analysis.Description.Captions[0].Text +
"\n");
 }
 }
}

AnalyzeImageAsync response
A successful response displays the most relevant caption for each image.

http://upload.wikimedia.org/wikipedia/commons/3/3c/Shaki_waterfall.jpg
a large waterfall over a rocky cliff

Generate a thumbnail with C#
The following information shows you how to generate a thumbnail from an image using the Computer
Vision Windows client library.

Prerequisites
●● To use Computer Vision, you need a subscription key; see Obtaining Subscription Keys7.

●● Any edition of Visual Studio 2015 or 2017.

7	 https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/vision-api-how-to-topics/howtosubscribe

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

88  Module 5 Module Developing Azure Cognitive Services Solutions

●● The Microsoft.Azure.CognitiveServices.Vision.ComputerVision8 client library NuGet package. It
isn't necessary to download the package. Installation instructions are provided below.

GenerateThumbnailAsync method
The GenerateThumbnailAsync and GenerateThumbnailInStreamAsync methods wrap the Get
Thumbnail API9 for remote and local images, respectively. You can use these methods to generate a
thumbnail of an image. You specify the height and width, which can differ from the aspect ratio of the
input image. Computer Vision uses smart cropping to intelligently identify the region of interest and
generate cropping coordinates based on that region.

To run the sample, do the following steps:

1.	 Create a new Visual C# Console App in Visual Studio.

2.	 Install the Computer Vision client library NuGet package.

●● On the menu, click Tools, select NuGet Package Manager, then Manage NuGet Packages for
Solution.

●● Click the Browse tab, and in the Search box type “Microsoft.Azure.CognitiveServices.Vision.
ComputerVision”.

●● Select Microsoft.Azure.CognitiveServices.Vision.ComputerVision when it displays, then click
the checkbox next to your project name, and Install.

3.	 Replace Program.cs with the following code.

4.	 Replace <Subscription Key> with your valid subscription key.

5.	 Change computerVision.AzureRegion = AzureRegions.Westcentralus to the location
where you obtained your subscription keys, if necessary.

6.	 Optionally, replace <LocalImage> with the path and file name of a local image (will be ignored if
not set).

7.	 Optionally, set remoteImageUrl to a different image.

8.	 Optionally, set writeThumbnailToDisk to true to save the thumbnail to disk.

9.	 Run the program.

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;

using System;
using System.IO;
using System.Threading.Tasks;

namespace ImageThumbnail
{
 class Program
 {
 private const bool writeThumbnailToDisk = false;

 // subscriptionKey = "0123456789abcdef0123456789ABCDEF"

8	 https://www.nuget.org/packages/Microsoft.Azure.CognitiveServices.Vision.ComputerVision
9	 https://westus.dev.cognitive.microsoft.com/docs/services/5adf991815e1060e6355ad44/operations/56f91f2e778daf14a499e1fb

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  89

 private const string subscriptionKey = "<SubscriptionKey>";

 // localImagePath = @"C:\Documents\LocalImage.jpg"
 private const string localImagePath = @"<LocalImage>";

 private const string remoteImageUrl =
 "https://upload.wikimedia.org/wikipedia/commons/9/94/Blood-
hound_Puppy.jpg";

 private const int thumbnailWidth = 100;
 private const int thumbnailHeight = 100;

 static void Main(string[] args)
 {
 ComputerVisionAPI computerVision = new ComputerVisionAPI(
 new ApiKeyServiceClientCredentials(subscriptionKey),
 new System.Net.Http.DelegatingHandler[] { });

 // You must use the same region as you used to get your sub-
scription
 // keys. For example, if you got your subscription keys from
westus,
 // replace "Westcentralus" with "Westus".
 //
 // Free trial subscription keys are generated in the westcen-
tralus
 // region. If you use a free trial subscription key, you
shouldn't
 // need to change the region.

 // Specify the Azure region
 computerVision.AzureRegion = AzureRegions.Westcentralus;

 Console.WriteLine("Images being analyzed ...\n");
 var t1 = GetRemoteThumbnailAsync(computerVision, remoteIma-
geUrl);
 var t2 = GetLocalThumbnailAsnc(computerVision, localImagePath);

 Task.WhenAll(t1, t2).Wait(5000);
 Console.WriteLine("Press any key to exit");
 Console.ReadLine();
 }

 // Create a thumbnail from a remote image
 private static async Task GetRemoteThumbnailAsync(
 ComputerVisionAPI computerVision, string imageUrl)
 {
 if (!Uri.IsWellFormedUriString(imageUrl, UriKind.Absolute))
 {
 Console.WriteLine(
 "\nInvalid remoteImageUrl:\n{0} \n", imageUrl);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

90  Module 5 Module Developing Azure Cognitive Services Solutions

 return;
 }

 Stream thumbnail = await computerVision.GenerateThumbnailAsync(
 thumbnailWidth, thumbnailHeight, imageUrl, true);

 string path = Environment.CurrentDirectory;
 string imageName = imageUrl.Substring(imageUrl.LastIndexOf('/')
+ 1);
 string thumbnailFilePath =
 path + "\\" + imageName.Insert(imageName.Length - 4, "_
thumb");

 // Save the thumbnail to the current working directory,
 // using the original name with the suffix "_thumb".
 SaveThumbnail(thumbnail, thumbnailFilePath);
 }

 // Create a thumbnail from a local image
 private static async Task GetLocalThumbnailAsnc(
 ComputerVisionAPI computerVision, string imagePath)
 {
 if (!File.Exists(imagePath))
 {
 Console.WriteLine(
 "\nUnable to open or read localImagePath:\n{0} \n",
imagePath);
 return;
 }

 using (Stream imageStream = File.OpenRead(imagePath))
 {
 Stream thumbnail = await computerVision.GenerateThumbnail-
InStreamAsync(
 thumbnailWidth, thumbnailHeight, imageStream, true);

 string thumbnailFilePath =
 localImagePath.Insert(localImagePath.Length - 4, "_
thumb");

 // Save the thumbnail to the same folder as the original
image,
 // using the original name with the suffix "_thumb".
 SaveThumbnail(thumbnail, thumbnailFilePath);
 }
 }

 // Save the thumbnail locally.
 // NOTE: This will overwrite an existing file of the same name.
 private static void SaveThumbnail(Stream thumbnail, string thumb-
nailFilePath)

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  91

 {
 if (writeThumbnailToDisk)
 {
 using (Stream file = File.Create(thumbnailFilePath))
 {
 thumbnail.CopyTo(file);
 }
 }
 Console.WriteLine("Thumbnail {0} written to: {1}\n",
 writeThumbnailToDisk ? "" : "NOT", thumbnailFilePath);
 }
 }
}

GenerateThumbnailAsync response
A successful response saves the thumbnail for each image locally and displays the thumbnail's location,
for example:

Thumbnail written to: C:\Documents\LocalImage_thumb.jpg

Thumbnail written to: ...\bin\Debug\Bloodhound_Puppy_thumb.jpg

Extract handwritten text with C#
The following information shows you how to extract handwritten text from an image using the Computer
Vision Windows client library.

Prerequisites
●● To use Computer Vision, you need a subscription key; see Obtaining Subscription Keys10.

●● Any edition of Visual Studio 2015 or 2017.

●● The Microsoft.Azure.CognitiveServices.Vision.ComputerVision11 client library NuGet package. It
isn't necessary to download the package. Installation instructions are provided below.

AnalyzeImageAsync method
The AnalyzeImageAsync and AnalyzeImageInStreamAsync methods wrap the Analyze Image API
for remote and local images, respectively. You can use these methods to extract visual features based on
image content and choose which features to return, including:

●● A detailed list of tags related to the image content.

●● A description of image content in a complete sentence.

●● The coordinates, gender, and age of any faces contained in the image.

●● The ImageType (clip art or a line drawing).

10	 https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/vision-api-how-to-topics/howtosubscribe
11	 https://www.nuget.org/packages/Microsoft.Azure.CognitiveServices.Vision.ComputerVision

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

92  Module 5 Module Developing Azure Cognitive Services Solutions

●● The dominant color, the accent color, or whether an image is black & white.

●● The category defined in this taxonomy12.

●● Does the image contain adult or sexually suggestive content?

To run the sample, do the following steps:

1.	 Create a new Visual C# Console App in Visual Studio.

2.	 Install the Computer Vision client library NuGet package.

●● On the menu, click Tools, select NuGet Package Manager, then Manage NuGet Packages for
Solution.

●● Click the Browse tab, and in the Search box type “Microsoft.Azure.CognitiveServices.Vision.
ComputerVision”.

●● Select Microsoft.Azure.CognitiveServices.Vision.ComputerVision when it displays, then click
the checkbox next to your project name, and Install.

3.	 Replace Program.cs with the following code.

4.	 Replace <Subscription Key> with your valid subscription key.

5.	 Change computerVision.AzureRegion = AzureRegions.Westcentralus to the location
where you obtained your subscription keys, if necessary.

6.	 Optionally, replace <LocalImage> with the path and file name of a local image (will be ignored if
not set).

7.	 Optionally, set remoteImageUrl to a different image.

8.	 Run the program.

using Microsoft.Azure.CognitiveServices.Vision.ComputerVision;
using Microsoft.Azure.CognitiveServices.Vision.ComputerVision.Models;

using System;
using System.IO;
using System.Threading.Tasks;

namespace ImageHandText
{
 class Program
 {
 // subscriptionKey = "0123456789abcdef0123456789ABCDEF"
 private const string subscriptionKey = "<SubscriptionKey>";

 // localImagePath = @"C:\Documents\LocalImage.jpg"
 private const string localImagePath = @"<LocalImage>";

 private const string remoteImageUrl =
 "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/" +
 "Cursive_Writing_on_Notebook_paper.jpg/" +
 "800px-Cursive_Writing_on_Notebook_paper.jpg";

 private const int numberOfCharsInOperationId = 36;

12	 https://docs.microsoft.com/en-us/azure/cognitive-services/Computer-vision/category-taxonomy

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  93

 static void Main(string[] args)
 {
 ComputerVisionAPI computerVision = new ComputerVisionAPI(
 new ApiKeyServiceClientCredentials(subscriptionKey),
 new System.Net.Http.DelegatingHandler[] { });

 // You must use the same region as you used to get your sub-
scription
 // keys. For example, if you got your subscription keys from
westus,
 // replace "Westcentralus" with "Westus".
 //
 // Free trial subscription keys are generated in the westcen-
tralus
 // region. If you use a free trial subscription key, you
shouldn't
 // need to change the region.

 // Specify the Azure region
 computerVision.AzureRegion = AzureRegions.Westcentralus;

 Console.WriteLine("Images being analyzed ...");
 var t1 = ExtractRemoteHandTextAsync(computerVision, remoteIma-
geUrl);
 var t2 = ExtractLocalHandTextAsync(computerVision, localImage-
Path);

 Task.WhenAll(t1, t2).Wait(5000);
 Console.WriteLine("Press any key to exit");
 Console.ReadLine();
 }

 // Recognize text from a remote image
 private static async Task ExtractRemoteHandTextAsync(
 ComputerVisionAPI computerVision, string imageUrl)
 {
 if (!Uri.IsWellFormedUriString(imageUrl, UriKind.Absolute))
 {
 Console.WriteLine(
 "\nInvalid remoteImageUrl:\n{0} \n", imageUrl);
 return;
 }

 // Start the async process to recognize the text
 RecognizeTextHeaders textHeaders = await computerVision.Recog-
nizeTextAsync(
 imageUrl, TextRecognitionMode.Handwritten);

 await GetTextAsync(computerVision, textHeaders.OperationLoca-
tion);

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

94  Module 5 Module Developing Azure Cognitive Services Solutions

 }

 // Recognize text from a local image
 private static async Task ExtractLocalHandTextAsync(
 ComputerVisionAPI computerVision, string imagePath)
 {
 if (!File.Exists(imagePath))
 {
 Console.WriteLine(
 "\nUnable to open or read localImagePath:\n{0} \n",
imagePath);
 return;
 }

 using (Stream imageStream = File.OpenRead(imagePath))
 {
 // Start the async process to recognize the text
 RecognizeTextInStreamHeaders textHeaders =
 await computerVision.RecognizeTextInStreamAsync(
 imageStream, TextRecognitionMode.Handwritten);

 await GetTextAsync(computerVision, textHeaders.OperationLo-
cation);
 }
 }

 // Retrieve the recognized text
 private static async Task GetTextAsync(
 ComputerVisionAPI computerVision, string operationLocation)
 {
 // Retrieve the URI where the recognized text will be
 // stored from the Operation-Location header
 string operationId = operationLocation.Substring(
 operationLocation.Length - numberOfCharsInOperationId);

 Console.WriteLine("\nCalling GetHandwritingRecognitionOpera-
tionResultAsync()");
 TextOperationResult result =
 await computerVision.GetTextOperationResultAsync(operation-
Id);

 // Wait for the operation to complete
 int i = 0;
 int maxRetries = 10;
 while ((result.Status == TextOperationStatusCodes.Running ||
 result.Status == TextOperationStatusCodes.NotStarted)
&& i++ < maxRetries)
 {
 Console.WriteLine(
 "Server status: {0}, waiting {1} seconds...", result.
Status, i);

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Computer Vision  95

 await Task.Delay(1000);

 result = await computerVision.GetTextOperationResultAsync(-
operationId);
 }

 // Display the results
 Console.WriteLine();
 var lines = result.RecognitionResult.Lines;
 foreach(Line line in lines)
 {
 Console.WriteLine(line.Text);
 }
 Console.WriteLine();
 }
 }
}

RecognizeTextAsync response
A successful response displays the lines of recognized text for each image.

Calling GetHandwritingRecognitionOperationResultAsync()

Calling GetHandwritingRecognitionOperationResultAsync()
Server status: Running, waiting 1 seconds...
Server status: Running, waiting 1 seconds...

dog
The quick brown fox jumps over the lazy
Pack my box with five dozen liquor jugs

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

96  Module 5 Module Developing Azure Cognitive Services Solutions

Develop Solutions using Bing Web Search
Bing Web Search API overview
The Bing Web Search API provides an experience similar to Bing.com/search by returning search results
that Bing determines are relevant to the user's query. The results may include Web pages, images, videos,
news, and entities, along with related search queries, spelling corrections, time zones, unit conversion,
translations, and calculations. The kinds of results you get are based on their relevance and also the tier
of the Bing Search APIs to which you subscribe.

If you're building a search results page that displays any content that's relevant to the user's search
query, call this API instead of calling the other content-specific Bing APIs. The only time you should need
to call the content-specific APIs, such as the Image Search API or News Search API, is if you need answers
from only that API. For example, if you're building an image-only search results page or a news-only
search results page.

If Bing didn't find content from one of the content-specific APIs relevant enough, it would not include it
in the search results. For example, the results could include webpages, news articles, and videos but not
images. However, it's possible that if you called the Image Search API directly with the same query, it
would return images.

If you don't need webpages but you do need answers from more than one of the other APIs, such as
images and news, you'd still call this API. For example, if you only wanted Images and News, you'd call
this API and set responseFilter query parameter to limit the results to only Images and News.

Search response
When you send Bing a search request, it sends back a response that contains a SearchResponse object in
the body of the response. The object includes a field for each answer that Bing thought was relevant to
the user's query term. The following shows an example of the response object if Bing returned all an-
swers.

{
 "_type": "SearchResponse",
 "queryContext": {...},
 "webPages": {...},
 "images": {...},
 "relatedSearches": {...},
 "videos": {...},
 "news": {...},
 "spellSuggestion": {...},
 "computation": {...},
 "timeZone": {...},
 "rankingResponse": {...}
}, ...

Typically, Bing returns a subset of the answers. For example, if the query term was sailing dinghies, the
response might include only webPages, images, and rankingResponse. Unless you've used respon-
seFilter to filter out webpages, the response always includes the webpages and rankingResponse
answers.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  97

Answer Description
Webpages The webPages answer contains a list of links to

webpages that Bing thought were relevant to the
query. Each webpage in the list includes the page's
name, url, display URL, short description of the
content and the date Bing found the content.

Images The images answer contains a list of images that
Bing thought were relevant to the query. Each
image in the list includes the URL of the image, its
size, its dimensions, and its encoding format. The
image object also includes the URL of a thumbnail
of the image and the thumbnail's dimensions.

Related searches The relatedSearches answer contains a list of
the most popular related queries made by other
users. Each query in the list includes a query string
(text), a query string with hit highlighting
characters (displayText), and a URL (web-
SearchUrl) to Bing's search results page for that
query.

Videos The videos answer contains a list of videos that
Bing thought were relevant to the query. Each
video in the list includes the URL of the video, its
duration, its dimensions, and its encoding format.
The video object also includes the URL of a
thumbnail of the video and the thumbnail's
dimensions.

News The news answer contains a list of news articles
that Bing thought were relevant to the query. Each
news article in the list includes the article's name,
description, and URL to the article on the host's
website. If the article contains an image, the object
includes a thumbnail of the image.

Computation If the user enters a mathematical expression or a
unit conversion query, the response may contain a
Computation answer. The computation answer
contains the normalized expression and its result.

TimeZone If the user enters a time or date query, the re-
sponse may contain a TimeZone answer. This
answer supports implicit or explicit queries. An
implicit query such as What time is it?, returns the
local time of the user's location. An explicit query
such as What time is it in Seattle?, returns the local
time of Seattle, WA.

Develop a Bing Web Search query in C#
The Bing Web Search API provides a experience similar to Bing.com/Search by returning search results
that Bing determines are relevant to the user's query. The results may include Web pages, images, videos,
news, and entities, along with related search queries, spelling corrections, time zones, unit conversion,

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

98  Module 5 Module Developing Azure Cognitive Services Solutions

translations, and calculations. The kinds of results you get are based on their relevance and the tier of the
Bing Search APIs to which you subscribe.

This lesson includes a simple console application that performs a Bing Web Search API query and displays
the returned raw search results, which are in JSON format. While this application is written in C#, the API
is a RESTful Web service compatible with any programming language that can make HTTP requests and
parse JSON.

The example program uses .NET Core classes only and runs on Windows using the .NET CLR or on Linux
or macOS using Mono.

Prerequisites
You will need Visual Studio 2017 to get this code running on Windows. (The free Community Edition will
work.)

You must have a Cognitive Services API account13 with Bing Search APIs. The free trial is sufficient for
this quickstart. You need the access key provided when you activate your free trial, or you may use a paid
subscription key from your Azure dashboard.

Running the application
To run this application, follow these steps.

1.	 Create a new Console solution in Visual Studio.

2.	 Replace Program.cs with the provided code.

3.	 Replace the accessKey value with an access key valid for your subscription.

4.	 Run the program.

using System;
using System.Text;
using System.Net;
using System.IO;
using System.Collections.Generic;

namespace BingSearchApisQuickstart
{

 class Program
 {
 // **
 // *** Update or verify the following values. ***
 // **

 // Replace the accessKey string value with your valid access key.
 const string accessKey = "enter key here";

 // Verify the endpoint URI. At this writing, only one endpoint is
used for Bing
 // search APIs. In the future, regional endpoints may be availa-
ble. If you

13	 https://docs.microsoft.com/azure/cognitive-services/cognitive-services-apis-create-account

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  99

 // encounter unexpected authorization errors, double-check this
value against
 // the endpoint for your Bing Web search instance in your Azure
dashboard.
 const string uriBase = "https://api.cognitive.microsoft.com/bing/
v7.0/search";

 const string searchTerm = "Microsoft Cognitive Services";

 // Used to return search results including relevant headers
 struct SearchResult
 {
 public String jsonResult;
 public Dictionary<String, String> relevantHeaders;
 }

 static void Main()
 {
 Console.OutputEncoding = System.Text.Encoding.UTF8;

 if (accessKey.Length == 32)
 {
 Console.WriteLine("Searching the Web for: " + searchTerm);

 SearchResult result = BingWebSearch(searchTerm);

 Console.WriteLine("\nRelevant HTTP Headers:\n");
 foreach (var header in result.relevantHeaders)
 Console.WriteLine(header.Key + ": " + header.Value);

 Console.WriteLine("\nJSON Response:\n");
 Console.WriteLine(JsonPrettyPrint(result.jsonResult));
 }
 else
 {
 Console.WriteLine("Invalid Bing Search API subscription
key!");
 Console.WriteLine("Please paste yours into the source
code.");
 }

 Console.Write("\nPress Enter to exit ");
 Console.ReadLine();
 }

 /// <summary>
 /// Performs a Bing Web search and return the results as a
SearchResult.
 /// </summary>
 static SearchResult BingWebSearch(string searchQuery)
 {

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

100  Module 5 Module Developing Azure Cognitive Services Solutions

 // Construct the URI of the search request
 var uriQuery = uriBase + "?q=" + Uri.EscapeDataString(search-
Query);

 // Perform the Web request and get the response
 WebRequest request = HttpWebRequest.Create(uriQuery);
 request.Headers["Ocp-Apim-Subscription-Key"] = accessKey;
 HttpWebResponse response = (HttpWebResponse)request.GetRespon-
seAsync().Result;
 string json = new StreamReader(response.GetResponseStream()).
ReadToEnd();

 // Create result object for return
 var searchResult = new SearchResult()
 {
 jsonResult = json,
 relevantHeaders = new Dictionary<String, String>()
 };

 // Extract Bing HTTP headers
 foreach (String header in response.Headers)
 {
 if (header.StartsWith("BingAPIs-") || header.StartsWith("X-
MSEdge-"))
 searchResult.relevantHeaders[header] = response.Head-
ers[header];
 }

 return searchResult;
 }

 /// <summary>
 /// Formats the given JSON string by adding line breaks and in-
dents.
 /// </summary>
 /// <param name="json">The raw JSON string to format.</param>
 /// <returns>The formatted JSON string.</returns>
 static string JsonPrettyPrint(string json)
 {
 if (string.IsNullOrEmpty(json))
 return string.Empty;

 json = json.Replace(Environment.NewLine, "").Replace("\t", "");

 StringBuilder sb = new StringBuilder();
 bool quote = false;
 bool ignore = false;
 char last = ' ';
 int offset = 0;
 int indentLength = 2;

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  101

 foreach (char ch in json)
 {
 switch (ch)
 {
 case '"':
 if (!ignore) quote = !quote;
 break;
 case '\\':
 if (quote && last != '\\') ignore = true;
 break;
 }

 if (quote)
 {
 sb.Append(ch);
 if (last == '\\' && ignore) ignore = false;
 }
 else
 {
 switch (ch)
 {
 case '{':
 case '[':
 sb.Append(ch);
 sb.Append(Environment.NewLine);
 sb.Append(new string(' ', ++offset * indentLe-
ngth));
 break;
 case '}':
 case ']':
 sb.Append(Environment.NewLine);
 sb.Append(new string(' ', --offset * indentLe-
ngth));
 sb.Append(ch);
 break;
 case ',':
 sb.Append(ch);
 sb.Append(Environment.NewLine);
 sb.Append(new string(' ', offset * indentLe-
ngth));
 break;
 case ':':
 sb.Append(ch);
 sb.Append(' ');
 break;
 default:
 if (quote || ch != ' ') sb.Append(ch);
 break;
 }
 }
 last = ch;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

102  Module 5 Module Developing Azure Cognitive Services Solutions

 }

 return sb.ToString().Trim();
 }
 }
}

JSON response
A sample response follows. To limit the length of the JSON, only a single result is shown, and other parts
of the response have been truncated.

{
 "_type": "SearchResponse",
 "queryContext": {
 "originalQuery": "Microsoft Cognitive Services"
 },
 "webPages": {
 "webSearchUrl": "https://www.bing.com/search?q=Microsoft+cognitive+ser-
vices",
 "totalEstimatedMatches": 22300000,
 "value": [
 {
 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0",
 "name": "Microsoft Cognitive Services",
 "url": "https://www.microsoft.com/cognitive-services",
 "displayUrl": "https://www.microsoft.com/cognitive-services",
 "snippet": "Knock down barriers between you and your ideas. Enable
natural and contextual interaction with tools that augment users' experi-
ences via the power of machine-based AI. Plug them in and bring your ideas
to life.",
 "deepLinks": [
 {
 "name": "Face API",
 "url": "https://azure.microsoft.com/services/cognitive-servic-
es/face/",
 "snippet": "Add facial recognition to your applications to
detect, identify, and verify faces using a Face API from Microsoft Azure.
... Cognitive Services; Face API;"
 },
 {
 "name": "Text Analytics",
 "url": "https://azure.microsoft.com/services/cognitive-servic-
es/text-analytics/",
 "snippet": "Cognitive Services; Text Analytics API; Text Ana-
lytics API . Detect sentiment, ... you agree that Microsoft may store it
and use it to improve Microsoft services, ..."
 },
 {
 "name": "Computer Vision API",
 "url": "https://azure.microsoft.com/services/cognitive-servic-

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  103

es/computer-vision/",
 "snippet": "Extract the data you need from images using optical
character recognition and image analytics with Computer Vision APIs from
Microsoft Azure."
 },
 {
 "name": "Emotion",
 "url": "https://www.microsoft.com/cognitive-services/en-us/
emotion-api",
 "snippet": "Cognitive Services Emotion API - microsoft.com"
 },
 {
 "name": "Bing Speech API",
 "url": "https://azure.microsoft.com/services/cognitive-servic-
es/speech/",
 "snippet": "Add speech recognition to your applications, in-
cluding text to speech, with a speech API from Microsoft Azure. ... Cogni-
tive Services; Bing Speech API;"
 },
 {
 "name": "Get Started for Free",
 "url": "https://azure.microsoft.com/services/cognitive-servic-
es/",
 "snippet": "Add vision, speech, language, and knowledge capa-
bilities to your applications using intelligence APIs and SDKs from Cogni-
tive Services."
 }
]
 }
]
 },
 "relatedSearches": {
 "id": "https://api.cognitive.microsoft.com/api/v7/#RelatedSearches",
 "value": [
 {
 "text": "microsoft bot framework",
 "displayText": "microsoft bot framework",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+bot+frame-
work"
 },
 {
 "text": "microsoft cognitive services youtube",
 "displayText": "microsoft cognitive services youtube",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+youtube"
 },
 {
 "text": "microsoft cognitive services search api",
 "displayText": "microsoft cognitive services search api",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+search+api"

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

104  Module 5 Module Developing Azure Cognitive Services Solutions

 },
 {
 "text": "microsoft cognitive services news",
 "displayText": "microsoft cognitive services news",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+news"
 },
 {
 "text": "ms cognitive service",
 "displayText": "ms cognitive service",
 "webSearchUrl": "https://www.bing.com/search?q=ms+cognitive+ser-
vice"
 },
 {
 "text": "microsoft cognitive services text analytics",
 "displayText": "microsoft cognitive services text analytics",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+text+analytics"
 },
 {
 "text": "microsoft cognitive services toolkit",
 "displayText": "microsoft cognitive services toolkit",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+toolkit"
 },
 {
 "text": "microsoft cognitive services api",
 "displayText": "microsoft cognitive services api",
 "webSearchUrl": "https://www.bing.com/search?q=microsoft+cogni-
tive+services+api"
 }
]
 },
 "rankingResponse": {
 "mainline": {
 "items": [
 {
 "answerType": "WebPages",
 "resultIndex": 0,
 "value": {
 "id": "https://api.cognitive.microsoft.com/api/v7/#WebPages.0"
 }
 }
]
 },
 "sidebar": {
 "items": [
 {
 "answerType": "RelatedSearches",
 "value": {
 "id": "https://api.cognitive.microsoft.com/api/v7/#Related-

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  105

Searches"
 }
 }
]
 }
 }
}

Filtering the answers in the search response
When you query the web, Bing returns all content that it thinks is relevant to the search. For example, if
the search query is “sailing+dinghies”, the response might contain the following answers:

{
 "_type" : "SearchResponse",
 "webPages" : {
 "webSearchUrl" : "https:\/\/www.bing.com\/cr?IG=3A43C...",
 "totalEstimatedMatches" : 262000,
 "value" : [...]
 },
 "images" : {
 "id" : "https:\/\/api.cognitive.microsoft.com\/api\/v7\/#Images",
 "readLink" : "https:\/\/api.cognitive.microsoft.com\/api\/v7\/
images\/search?q=sail...",
 "webSearchUrl" : "https:\/\/www.bing.com\/cr?IG=3A43CA-
5CA6464E5D...",
 "isFamilyFriendly" : true,
 "value" : [...]
 },
 "rankingResponse" : {
 "mainline" : {
 "items" : [...]
 }
 }
}

If you're interested in specific types of content such as images, videos, and news, you can request only
those answers by using the responseFilter query parameter. If Bing finds relevant content for the
specified answers, Bing returns it. The response filter is a comma-delimited list of answers. The following
shows how to use responseFilter to request images, videos, and news of sailing dinghies. When you
encode the query string, the commas change to %2C.

GET https://api.cognitive.microsoft.com/bing/v7.0/search?q=sailing+din-
ghies&responseFilter=images%2Cvideos%2Cnews&mkt=en-us HTTP/1.1
Ocp-Apim-Subscription-Key: 123456789ABCDE
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0; Tri-
dent/6.0; IEMobile/10.0; ARM; Touch; NOKIA; Lumia 822)
X-Search-ClientIP: 999.999.999.999
X-Search-Location: 47.60357;long:-122.3295;re:100
X-MSEdge-ClientID: <blobFromPriorResponseGoesHere>

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

106  Module 5 Module Developing Azure Cognitive Services Solutions

Host: api.cognitive.microsoft.com

The following shows the response to the previous query. As you can see Bing didn't find relevant video
and news results, so the response doesn't include them.

{
 "_type" : "SearchResponse",
 "images" : {
 "id" : "https:\/\/api.cognitive.microsoft.com\/api\/v7\/#Images",
 "readLink" : "https:\/\/api.cognitive.microsoft.com\/api\/v7\/
images\/search?q=sail...",
 "webSearchUrl" : "https:\/\/www.bing.com\/cr?IG=3AD-
78B183C56456C...",
 "isFamilyFriendly" : true,
 "value" : [...]
 },
 "rankingResponse" : {
 "mainline" : {
 "items" : [{
 "answerType" : "Images",
 "value" : {
 "id" : "https:\/\/api.cognitive.microsoft.com\/api\/
v7\/#Images"
 }
 }]
 }
 }
}

Although Bing did not return video and news results in the previous response, it does not mean that
video and news content does not exist. It simply means that the page didn't include them. However, if
you page through more results, the subsequent pages would likely include them. Also, if you call the
Video Search API and News Search API endpoints directly, the response would likely contain results.

You are discouraged from using responseFilter to get results from a single API. If you want content
from a single Bing API, call that API directly. For example, to receive only images, send a request to the
Image Search API endpoint, https://api.cognitive.microsoft.com/bing/v7.0/images/
search or one of the other Images endpoints. Calling the single API is important not only for perfor-
mance reasons but because the content-specific APIs offer richer results. For example, you can use filters
that are not available to the Web Search API to filter the results.

To get search results from a specific domain, include the site: query operator in the query string.

https://api.cognitive.microsoft.com/bing/v7.0/search?q=sailing+din-
ghies+site:contososailing.com&mkt=en-us

Note: Depending on the query, if you use the site: query operator, there is the chance that the
response may contain adult content regardless of the safeSearch setting. You should use site: only if
you are aware of the content on the site and your scenario supports the possibility of adult content.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Bing Web Search  107

Limiting the number of answers in the response
Bing includes answers in the response based on ranking. For example, if you query sailing+dinghies, Bing
returns webpages, images, videos, and relatedSearches.

{
 "_type" : "SearchResponse",
 "queryContext" : {
 "originalQuery" : "sailing dinghies"
 },
 "webPages" : {...},
 "images" : {...},
 "relatedSearches" : {...},
 "videos" : {...},
 "rankingResponse" : {...}
}

To limit the number of answers that Bing returns to the top two answers (webpages and images), set the
answerCount query parameter to 2.

GET https://api.cognitive.microsoft.com/bing/v7.0/search?q=sailing+din-
ghies&answerCount=2&mkt=en-us HTTP/1.1
Ocp-Apim-Subscription-Key: 123456789ABCDE
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0; Tri-
dent/6.0; IEMobile/10.0; ARM; Touch; NOKIA; Lumia 822)
X-Search-ClientIP: 999.999.999.999
X-Search-Location: 47.60357;long:-122.3295;re:100
X-MSEdge-ClientID: <blobFromPriorResponseGoesHere>
Host: api.cognitive.microsoft.com

The response includes only webPages and images.

{
 "_type" : "SearchResponse",
 "queryContext" : {
 "originalQuery" : "sailing dinghies"
 },
 "webPages" : {...},
 "images" : {...},
 "rankingResponse" : {...}
}

If you add the responseFilter query parameter to the previous query and set it to webpages and
news, the response contains only webpages because news is not ranked.

{
 "_type" : "SearchResponse",
 "queryContext" : {
 "originalQuery" : "sailing dinghies"
 },
 "webPages" : {...},
 "rankingResponse" : {...}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

108  Module 5 Module Developing Azure Cognitive Services Solutions

}

Promoting answers that are not ranked
If the top ranked answers that Bing returns for a query are webpages, images, videos, and relatedSearch-
es, the response would include those answers. If you set answerCount to two (2), Bing returns the top
two ranked answers: webpages and images. If you want Bing to include images and videos in the
response, specify the promote query parameter and set it to images and videos.

GET https://api.cognitive.microsoft.com/bing/v7.0/search?q=sailing+din-
ghies&answerCount=2&promote=images%2Cvideos&mkt=en-us HTTP/1.1
Ocp-Apim-Subscription-Key: 123456789ABCDE
User-Agent: Mozilla/5.0 (compatible; MSIE 10.0; Windows Phone 8.0; Tri-
dent/6.0; IEMobile/10.0; ARM; Touch; NOKIA; Lumia 822)
X-Search-ClientIP: 999.999.999.999
X-Search-Location: 47.60357;long:-122.3295;re:100
X-MSEdge-ClientID: <blobFromPriorResponseGoesHere>
Host: api.cognitive.microsoft.com

The following is the response to the above request. Bing returns the top two answers, webpages and
images, and promotes videos into the answer.

{
 "_type" : "SearchResponse",
 "queryContext" : {
 "originalQuery" : "sailiing dinghies"
 },
 "webPages" : {...},
 "images" : {...},
 "videos" : {...},
 "rankingResponse" : {...}
}

If you set promote to news, the response doesn't include the news answer because it is not a ranked
answer—you can promote only ranked answers.

The answers that you want to promote do not count against the answerCount limit. For example, if the
ranked answers are news, images, and videos, and you set answerCount to 1 and promote to news, the
response contains news and images. Or, if the ranked answers are videos, images, and news, the response
contains videos and news.

You may use promote only if you specify the answerCount query parameter.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  109

Develop Solutions using Custom Speech Ser-
vice
Custom Speech Service overview
Custom Speech Service is a cloud-based service that provides users with the ability to customize speech
models for Speech-to-Text transcription. To use the Custom Speech Service, refer to the Custom Speech
Service Portal14.

The Custom Speech Service enables you to create customized language models and acoustic models
tailored to your application and your users. By uploading your specific speech and/or text data to the
Custom Speech Service, you can create custom models that can be used in conjunction with Microsoft’s
existing state-of-the-art speech models.

For example, if you’re adding voice interaction to a mobile phone, tablet or PC app, you can create a
custom language model that can be combined with Microsoft’s acoustic model to create a speech-to-text
endpoint designed especially for your app. If your application is designed for use in a particular environ-
ment or by a particular user population, you can also create and deploy a custom acoustic model with
this service.

How do speech recognition systems work?
Speech recognition systems are composed of several components that work together. Two of the most
important components are the acoustic model and the language model.

The acoustic model is a classifier that labels short fragments of audio into one of a number of phonemes,
or sound units, in a given language. For example, the word “speech” is composed of four phonemes “s p
iy ch”. These classifications are made on the order of 100 times per second.

The language model is a probability distribution over sequences of words. The language model helps the
system decide among sequences of words that sound similar, based on the likelihood of the word
sequences themselves. For example, “recognize speech” and “wreck a nice beach” sound alike but the
first hypothesis is far more likely to occur, and therefore will be assigned a higher score by the language
model.

Both the acoustic and language models are statistical models learned from training data. As a result, they
perform best when the speech they encounter when used in applications is similar to the data observed
during training. The acoustic and language models in the Microsoft Speech-To-Text engine have been
trained on an enormous collection of speech and text and provide state-of-the-art performance for the
most common usage scenarios, such as interacting with Cortana on your smart phone, tablet or PC,
searching the web by voice or dictating text messages to a friend.

Why use the Custom Speech Service?
While the Microsoft Speech-To-Text engine is world-class, it is targeted toward the scenarios described
above. However, if you expect voice queries to your application to contain particular vocabulary items,
such as product names or jargon that rarely occur in typical speech, it is likely that you can obtain
improved performance by customizing the language model.

14	 https://cris.ai/

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

110  Module 5 Module Developing Azure Cognitive Services Solutions

For example, if you were building an app to search MSDN by voice, it’s likely that terms like “object-ori-
ented” or “namespace” or “dot net” will appear more frequently than in typical voice applications.
Customizing the language model will enable the system to learn this.

Create a custom acoustic model
Creating a custom acoustic model is helpful if your application is designed for use in a particular environ-
ment, such as a noisy factory, or by a particular user population.

In this walkthrough, you learn how to:

●● Prepare the data

●● Import the acoustic data set

●● Create the custom acoustic model

If you don’t have a Cognitive Services account, create a free account15 before you begin.

Prerequisites
Ensure that your Cognitive Services account is connected to a subscription by opening the Cognitive
Services Subscriptions16 page.

If no subscriptions are listed, you can either have Cognitive Services create an account for you by clicking
the Get free subscription button. Or you can connect to a Custom Search Service subscription created in
the Azure portal by clicking the Connect existing subscription button.

Prepare the data
To customize the acoustic model to a particular domain, a collection of speech data is required. This
collection consists of a set of audio files of speech data, and a text file of transcriptions of each audio file.
The audio data should be representative of the scenario in which you would like to use the recognizer.

For example:

●● If you would like to better recognize speech in a noisy factory environment, the audio files should
consist of people speaking in a noisy factory.

●● If you are interested in optimizing performance for a single speaker, for example, you would like to
transcribe all of FDR’s Fireside Chats, then the audio files should consist of many examples of that
speaker only.

An acoustic data set for customizing the acoustic model consists of two parts: (1) a set of audio files
containing the speech data and (2) a file containing the transcriptions of all audio files.

Audio data recommendations
●● All audio files in the data set should be stored in the WAV (RIFF) audio format.

●● The audio must have a sampling rate of 8 kHz or 16 kHz and the sample values should be stored as
uncompressed PCM 16-bit signed integers (shorts).

●● Only single channel (mono) audio files are supported.

15	 https://cris.ai/
16	 https://cris.ai/Subscriptions

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  111

●● The audio files must be between 100 ms and 1 minute in length. Each audio file should ideally start
and end with at least 100ms of silence, and somewhere between 500ms and 1 second is common.

●● If you have background noise in your data, it is recommended to also have some examples with
longer segments of silence, for example, a few seconds, in your data, before and/or after the speech
content.

●● Each audio file should consist of a single utterance, for example, a single sentence for dictation, a
single query, or a single turn of a dialog system.

●● Each audio file to in the data set should have a unique filename and the extension “wav”.

●● The set of audio files should be placed in a single folder without subdirectories and the entire set of
audio files should be packaged as a single ZIP file archive.

Note: Data imports via the web portal are currently limited to 2 GB, so this is the maximum size of an
acoustic data set. This corresponds to approximately 17 hours of audio recorded at 16 kHz or 34 hours of
audio recorded at 8 kHz. The main requirements for the audio data are summarized in the following
table.

Property Value
File Format RIFF (WAV)
Sampling Rate 8000 Hz or 16000 Hz
Channels 1 (mono)
Sample Format PCM, 16-bit integers
File Duration 0.1 seconds < duration < 60 seconds
Silence Collar > 0.1 seconds
Archive Format Zip
Maximum Archive Size 2 GB

Transcriptions
The transcriptions for all WAV files should be contained in a single plain-text file. Each line of the tran-
scription file should have the name of one of the audio files, followed by the corresponding transcription.
The file name and transcription should be separated by a tab (\t).

For example:

speech01.wav speech recognition is awesome

speech02.wav the quick brown fox jumped all over the place

speech03.wav the lazy dog was not amused

The transcriptions will be text-normalized so they can be processed by the system. However, there are
some important normalizations that must be done by the user prior to uploading the data to the Custom
Speech Service. Consult the section on transcription guidelines17 for the appropriate language when
preparing your transcriptions.

The following steps are done using the Custom Speech Service Portal18.

17	 https://docs.microsoft.com/en-us/azure/cognitive-services/custom-speech-service/customspeech-how-to-topics/cognitive-services-
custom-speech-transcription-guidelines

18	 https://cris.ai/

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

112  Module 5 Module Developing Azure Cognitive Services Solutions

Import the acoustic data set
Once the audio files and transcriptions have been prepared, they are ready to be imported to the service
web portal.

To do so, first ensure you are signed into the Custom Speech Service Portal. Then click the “Custom
Speech” drop-down menu on the top ribbon and select “Adaptation Data”. If this is your first time
uploading data to the Custom Speech Service, you will see an empty table called “Datasets”.

Click the “Import” button in the “Acoustic Datasets” row, and the site displays a page for uploading a new
data set.

Enter a Name and Description in the appropriate text boxes. These are useful for keeping track of various
data sets you upload. Next, click “Choose File" for the “Transcription File” and “WAV files” and select your
plaint-text transcription file and zip archive of WAV files, respectively. When this is complete, click
“Import” to upload your data. Your data will then be uploaded. For larger data sets, this may take several
minutes.

When the upload is complete, you will return to the “Acoustic Datasets” table and will see an entry that
corresponds to your acoustic data set. Notice that it has been assigned a unique id (GUID). The data will
also have a status that reflects its current state. Its status will be “Waiting” while it is being queued for
processing, “Processing” while it is going through validation, and “Complete” when the data is ready for
use.

Data validation includes a series of checks on the audio files to verify the file format, length, and sampling
rate, and on the transcription files to verify the file format and perform some text normalization.

When the status is “Complete”, you can click “Details” to see the acoustic data verification report. The
number of utterances that passed and failed verification will be shown, along with details about the failed
utterances. In the example below, two WAV files failed verification because of improper audio format (in
this data set, one had an incorrect sampling rate and one was the incorrect file format).

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  113

At some point, if you would like to change the Name or Description of the data set, you can click the
“Edit” link and change these entries. Note that you cannot modify the audio files or transcriptions.

Once the status of your acoustic data set is “Complete”, it can be used to create a custom acoustic model.
To do so, click “Acoustic Models” in the “Custom Speech” drop-down menu. You will see a table called
"Your models” that lists all of your custom acoustic models. This table will be empty if this is your first use.
The current locale is shown in the table title. Currently, acoustic models can be created for US English
only.

To create a new model, click “Create New” under the table title. As before, enter a name and description
to help you identify this model. For example, the “Description”" field can be used to record which starting
model and acoustic data set were used to create the model. Next, select a “Base Acoustic Model” from
the drop-down menu. The base model is the model that is the starting point for your customization.
There are two base acoustic models to choose from. The Microsoft Search and Dictation AM is appropri-
ate for speech directed at an application, such as commands, search queries, or dictation. The Microsoft
Conversational model is appropriate for recognizing speech spoken in a conversational style. This type of
speech is typically directed at another person and occurs in call center or meetings. Note that latency for
partial results in Conversational models is higher than in Search and Dictation models.

Next, select the acoustic data you wish to use to perform the customization using the drop-down menu.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

114  Module 5 Module Developing Azure Cognitive Services Solutions

You can optionally choose to perform offline testing of your new model when the processing is complete.
This will run a speech-to-text evaluation on a specified acoustic data set using the customized acoustic
model and report the results. To perform this testing, select the “Accuracy Testing” check box. Then select
a language model from the drop-down menu. If you have not created any custom language models, only
the base language models will be in the drop-down list. See the description of the base language models
in the guide and select the one that is most appropriate.

Finally, select the acoustic data set you would like to use to evaluate the custom model. If you perform
accuracy testing, it is important to select an acoustic data that is different from the one used for the
model creation to get a realistic sense of the model’s performance. Also note that offline testing is limited
to 1000 utterances. If the acoustic dataset for testing is larger than that, only the first 1000 utterances will
be evaluated.

When you are ready to start running the customization process, press “Create”.

You will now see a new entry in the acoustic models table corresponding to this new model. The status of
the process is reflected in the table. The status states are “Waiting”, “Processing” and “Complete”.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  115

Create a custom language model
In this lesson, you create a custom language model for text queries or utterances you expect users to say
or type in an application. You can then use this custom language model in conjunction with existing
state-of-the-art speech models from Microsoft to add voice interaction to your application.

In this lesson, you learn how to:

●● Prepare the data

●● Import the language data set

●● Create the custom language model

If you don't have a Cognitive Services account, create a free account19 before you begin.

Prerequisites
Ensure that your Cognitive Services account is connected to a subscription by opening the Cognitive
Services Subscriptions20 page.

If no subscriptions are listed, you can either have Cognitive Services create an account for you by clicking
the Get free subscription button. Or you can connect to a Custom Search Service subscription created in
the Azure portal by clicking the Connect existing subscription button.

19	 https://cris.ai/
20	 https://cris.ai/Subscriptions

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

116  Module 5 Module Developing Azure Cognitive Services Solutions

Prepare the data
In order to create a custom language model for your application, you need to provide a list of example
utterances to the system, for example:

●● “He has had urticaria for the past week.”

●● “The patient had a well-healed herniorrhaphy scar.”

The sentences do not need to be complete sentences or grammatically correct, and should accurately
reflect the spoken input you expect the system to encounter in deployment. These examples should
reflect both the style and content of the task the users will perform with your application.

The language model data should be written in plain-text file using either the US-ASCII or UTF-8, depend-
ing on the locale. For en-US, both encodings are supported. For zh-CN, only UTF-8 is supported (BOM is
optional). The text file should contain one example (sentence, utterance, or query) per line.

If you wish some sentences to have a higher weight (importance), you can add it several times to your
data. A good number of repetitions is between 10 - 100. If you normalize it to 100, you can weight
sentence relative to this easily.

The main requirements for the language data are summarized in the following table.

Property Value
Text Encoding en-US: US-ACSII or UTF-8 or zh-CN: UTF-8
of Utterances per line 1
Maximum File Size 200 MB
Remarks avoid repeating characters more often than 4

times, for example 'aaaaa'
Remarks no special characters like '\t' or any other UTF-8

character above U+00A1 in Unicode characters
table (http://www.utf8-chartable.de/)

Remarks URIs will also be rejected since there is no unique
way to pronounce a URI

When the text is imported, it is text-normalized so it can be processed by the system. However, there are
some important normalizations that must be done by the user prior to uploading the data. See the
Transcription guidelines to determine appropriate language when preparing your language data.

Import the language data set
Click the “Import” button in the “Acoustic Datasets” row, and the site displays a page for uploading a new
data set.

When you are ready to import your language data set, log into the Custom Speech Service Portal21.
Then click the “Custom Speech” drop-down menu on the top ribbon and select “Adaptation Data”. If this
is your first time uploading data to the Custom Speech Service, you will see an empty table called
“Datasets”.

To import a new data set, click the “Import” button in the “Language Datasets” row, and the site displays
a page for uploading a new data set. Enter a Name and Description to help you identify the data set in
the future. Next, use the “Choose File” button to locate the text file of language data. After that, click
“Import” and the data set will be uploaded. Depending on the size of the data set, this may take several
minutes.

21	 https://cris.ai/

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  117

When the import is complete, you will return to the language data table and will see an entry that
corresponds to your language data set. Notice that it has been assigned a unique id (GUID). The data will
also have a status that reflects its current state. Its status will be “Waiting” while it is being queued for
processing, “Processing” while it is going through validation, and “Complete” when the data is ready for
use. Data validation performs a series of checks on the text in the file and some text normalization of the
data.

When the status is “Complete”, you can click “View Report” to see the language data verification report.
The number of utterances that passed and failed verification are shown, along with details about the
failed utterances. In the example below, two examples failed verification because of improper characters
(in this data set, the first had two emoticons and the second had several characters outside of the ASCII
printable character set).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

118  Module 5 Module Developing Azure Cognitive Services Solutions

When the status of the language data set is “Complete”, it can be used to create a custom language
model.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using Custom Speech Service  119

Once your language data is ready, click “Language Models” from the “Menu” drop-down menu to start
the process of custom language model creation. This page contains a table called “Language Models”
with your current custom language models. If you have not yet created any custom language models, the
table will be empty. The current locale is reflected in the table title. If you would like to create a language
model for a different language, click on “Change Locale”. Additional information on supported languages
can be found in the section on Changing Locale22. To create a new model, click the “Create New” link
below the table title.

On the “Create Language Model” page, enter a "Name" and “Description” to help you keep track of
pertinent information about this model, such as the data set used. Next, select the “Base Language
Model” from the drop-down menu. This model will be the starting point for your customization. There
are two base language models to choose from. The Microsoft Search and Dictation LM is appropriate for
speech directed at an application, such as commands, search queries, or dictation. The Microsoft Conver-
sational LM is appropriate for recognizing speech spoken in a conversational style. This type of speech is
typically directed at another person and occurs in call centers or meetings.

After you have specified the base language model, select the language data set you wish to use for the
customization using the “Language Data” drop-down menu

As with the acoustic model creation, you can optionally choose to perform offline testing of your new
model when the processing is complete. Because this is an evaluation of the speech-to-text performance,
offline testing requires an acoustic data set.

To perform offline testing of your language model, select the check box next to “Offline Testing”. Then
select an acoustic model from the drop-down menu. If you have not created any custom acoustic models,
the Microsoft base acoustic models will be the only model in the menu. In case you have picked a

22	 https://docs.microsoft.com/en-us/azure/cognitive-services/custom-speech-service/customspeech-how-to-topics/cognitive-services-
custom-speech-change-locale

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

120  Module 5 Module Developing Azure Cognitive Services Solutions

conversational LM base model, you need to use a conversational AM here. In case you use a search and
dictate LM model, you have to select a search and dictate AM model.

Finally, select the acoustic data set you would like to use to perform the evaluation.

When you are ready to start processing, press “Create”. This will return you to the table of language
models. There will be a new entry in the table corresponding to this model. The status reflects the
model’s state and will go through several states including “Waiting”, “Processing”, and “Complete”.

When the model has reached the “Complete” state, it can be deployed to an endpoint. Clicking on “View
Result” will show the results of offline testing, if performed.

If you would like to change the “Name” or "Description" of the model at some point, you can use the
“Edit” link in the appropriate row of the language models table.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  121

Develop Solutions using QnA Maker
QnA Maker overview
QnA Maker enables you to power a question and answer service from your semi-structured content like
FAQ (Frequently Asked Questions) documents or URLs and product manuals. You can build a model of
questions and answers that is flexible to user queries, providing responses that you'll train a bot to use in
a natural, conversational way.

An easy-to-use graphical user interface enables you to create, manage, train and get your service up and
running without any developer experience.

Create a new knowledge base in C#
This walkthrough walks you through creating a sample QnA maker knowledge base, programmatically,
that will appear in your Azure Dashboard of your Cognitive Services API account.

Two sample FAQ URLs are given below (‘urls’ in the string kb). QnA Maker automatically extracts ques-
tions and answers from semi-structured content, like FAQs, as explained more in this data sources23
document. You may also use your own FAQ URLs in this quickstart.

Prerequisites
If your preferred IDE is Visual Studio, you'll need Visual Studio 2017 to run this code sample on Windows.
(The free Community Edition will work.)

23	 https://docs.microsoft.com/en-us/azure/cognitive-services/QnAMaker/concepts/data-sources-supported

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

122  Module 5 Module Developing Azure Cognitive Services Solutions

You must have a Cognitive Services API account with QnA Maker chosen as your resource. You'll need a
paid subscription key from your new API account in your Azure dashboard. To retrieve your key, select
Keys under Resource Management in your dashboard. Either key will work for this quickstart.

Create knowledge base
The following code creates a new knowledge base, using the Create24 method.

1.	 Create a new .NET Framework C# console application in your preferred IDE.

2.	 Add the code provided below.

3.	 Replace the key value with your valid subscription key.

4.	 Run the program.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

// NOTE: Install the Newtonsoft.Json NuGet package.
using Newtonsoft.Json;

namespace QnAMaker
{
 class Program
 {
 // Represents the various elements used to create HTTP request URIs
 // for QnA Maker operations.
 static string host = "https://westus.api.cognitive.microsoft.com";

24	 https://westus.dev.cognitive.microsoft.com/docs/services/5a93fcf85b4ccd136866eb37/operations/5ac266295b4ccd1554da75ff

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  123

 static string service = "/qnamaker/v4.0";
 static string method = "/knowledgebases/create";

 // NOTE: Replace this value with a valid QnA Maker subscription
key.
 static string key = "YOUR SUBSCRIPTION KEY HERE";

 /// <summary>
 /// Defines the data source used to create the knowledge base.
 /// The data source includes a QnA pair, with metadata,
 /// the URL for the QnA Maker FAQ article, and
 /// the URL for the Azure Bot Service FAQ article.
 /// </summary>
 static string kb = @"
{
 'name': 'QnA Maker FAQ',
 'qnaList': [
 {
 'id': 0,
 'answer': 'You can use our REST APIs to manage your knowledge base.
See here for details: https://westus.dev.cognitive.microsoft.com/docs/
services/58994a073d9e04097c7ba6fe/operations/58994a073d9e041ad42d9baa',
 'source': 'Custom Editorial',
 'questions': [
 'How do I programmatically update my knowledge base?'
],
 'metadata': [
 {
 'name': 'category',
 'value': 'api'
 }
]
 }
],
 'urls': [
 'https://docs.microsoft.com/en-in/azure/cognitive-services/qnamaker/
faqs',
 'https://docs.microsoft.com/en-us/bot-framework/resources-bot-frame-
work-faq'
],
 'files': []
}
";

 /// <summary>
 /// Represents the HTTP response returned by an HTTP request.
 /// </summary>
 public struct Response
 {
 public HttpResponseHeaders headers;
 public string response;

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

124  Module 5 Module Developing Azure Cognitive Services Solutions

 public Response(HttpResponseHeaders headers, string response)
 {
 this.headers = headers;
 this.response = response;
 }
 }

 /// <summary>
 /// Formats and indents JSON for display.
 /// </summary>
 /// <param name="s">The JSON to format and indent.</param>
 /// <returns>A string containing formatted and indented JSON.</
returns>
 static string PrettyPrint(string s)
 {
 return JsonConvert.SerializeObject(JsonConvert.DeserializeOb-
ject(s), Formatting.Indented);
 }

 /// <summary>
 /// Asynchronously sends a POST HTTP request.
 /// </summary>
 /// <param name="uri">The URI of the HTTP request.</param>
 /// <param name="body">The body of the HTTP request.</param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 async static Task<Response> Post(string uri, string body)
 {
 using (var client = new HttpClient())
 using (var request = new HttpRequestMessage())
 {
 request.Method = HttpMethod.Post;
 request.RequestUri = new Uri(uri);
 request.Content = new StringContent(body, Encoding.UTF8,
"application/json");
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);

 var response = await client.SendAsync(request);
 var responseBody = await response.Content.ReadAsStrin-
gAsync();
 return new Response(response.Headers, responseBody);
 }
 }

 /// <summary>
 /// Asynchronously sends a GET HTTP request.
 /// </summary>
 /// <param name="uri">The URI of the HTTP request.</param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  125

(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 async static Task<Response> Get(string uri)
 {
 using (var client = new HttpClient())
 using (var request = new HttpRequestMessage())
 {
 request.Method = HttpMethod.Get;
 request.RequestUri = new Uri(uri);
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);

 var response = await client.SendAsync(request);
 var responseBody = await response.Content.ReadAsStrin-
gAsync();
 return new Response(response.Headers, responseBody);
 }
 }

 /// <summary>
 /// Creates a knowledge base.
 /// </summary>
 /// <param name="kb">The data source for the knowledge base.</
param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 /// <remarks>The method constructs the URI to create a knowledge
base in QnA Maker, and then
 /// asynchronously invokes the <see cref="QnAMaker.Program.
Post(string, string)"/> method
 /// to send the HTTP request.</remarks>
 async static Task<Response> PostCreateKB(string kb)
 {
 // Builds the HTTP request URI.
 string uri = host + service + method;

 // Writes the HTTP request URI to the console, for display
purposes.
 Console.WriteLine("Calling " + uri + ".");

 // Asynchronously invokes the Post(string, string) method,
using the
 // HTTP request URI and the specified data source.
 return await Post(uri, kb);
 }

 /// <summary>
 /// Gets the status of the specified QnA Maker operation.
 /// </summary>
 /// <param name="operation">The QnA Maker operation to check.</
param>

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

126  Module 5 Module Developing Azure Cognitive Services Solutions

 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 /// <remarks>The method constructs the URI to get the status of a
QnA Maker operation, and
 /// then asynchronously invokes the <see cref="QnAMaker.Program.
Get(string)"/> method
 /// to send the HTTP request.</remarks>
 async static Task<Response> GetStatus(string operation)
 {
 // Builds the HTTP request URI.
 string uri = host + service + operation;

 // Writes the HTTP request URI to the console, for display
purposes.
 Console.WriteLine("Calling " + uri + ".");

 // Asynchronously invokes the Get(string) method, using the
 // HTTP request URI.
 return await Get(uri);
 }

 /// <summary>
 /// Creates a knowledge base, periodically checking status
 /// until the knowledge base is created.
 /// </summary>
 async static void CreateKB()
 {
 try
 {
 // Starts the QnA Maker operation to create the knowledge
base.
 var response = await PostCreateKB(kb);

 // Retrieves the operation ID, so the operation's status
can be
 // checked periodically.
 var operation = response.headers.GetValues("Location").
First();

 // Displays the JSON in the HTTP response returned by the
 // PostCreateKB(string) method.
 Console.WriteLine(PrettyPrint(response.response));

 // Iteratively gets the state of the operation creating the
 // knowledge base. Once the operation state is set to
something other
 // than "Running" or "NotStarted", the loop ends.
 var done = false;
 while (true != done)
 {

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  127

 // Gets the status of the operation.
 response = await GetStatus(operation);

 // Displays the JSON in the HTTP response returned by
the
 // GetStatus(string) method.
 Console.WriteLine(PrettyPrint(response.response));

 // Deserialize the JSON into key-value pairs, to re-
trieve the
 // state of the operation.
 var fields = JsonConvert.DeserializeObject<Diction-
ary<string, string>>(response.response);

 // Gets and checks the state of the operation.
 String state = fields["operationState"];
 if (state.CompareTo("Running") == 0 || state.Compare-
To("NotStarted") == 0)
 {
 // QnA Maker is still creating the knowledge base.
The thread is
 // paused for a number of seconds equal to the
Retry-After header value,
 // and then the loop continues.
 var wait = response.headers.GetValues("Retry-Af-
ter").First();
 Console.WriteLine("Waiting " + wait + " sec-
onds...");
 Thread.Sleep(Int32.Parse(wait) * 1000);
 }
 else
 {
 // QnA Maker has completed creating the knowledge
base.
 done = true;
 }
 }
 }
 catch
 {
 // An error occurred while creating the knowledge base.
Ensure that
 // you included your QnA Maker subscription key where
directed in the sample.
 Console.WriteLine("An error occurred while creating the
knowledge base.");
 }
 finally
 {
 Console.WriteLine("Press any key to continue.");
 }

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

128  Module 5 Module Developing Azure Cognitive Services Solutions

 }

 static void Main(string[] args)
 {
 // Invoke the CreateKB() method to create a knowledge base,
periodically
 // checking the status of the QnA Maker operation until the
 // knowledge base is created.
 CreateKB();

 // The console waits for a key to be pressed before closing.
 Console.ReadLine();
 }
 }
}

Understand what QnA Maker returns
A successful response is returned in JSON, as shown in the following example. Your results may differ
slightly. If the final call returns a “Succeeded” state… your knowledge base was created successfully. To
troubleshoot refer to the Get Operation Details of the QnA Maker API25.

Calling https://westus.api.cognitive.microsoft.com/qnamaker/v4.0/knowledge-
bases/create.
{
 "operationState": "NotStarted",
 "createdTimestamp": "2018-06-25T10:30:15Z",
 "lastActionTimestamp": "2018-06-25T10:30:15Z",
 "userId": "0d85ec291c204197a70cfec51725cd22",
 "operationId": "d9d40918-01bd-49f4-88b4-129fbc434c94"
}
Calling https://westus.api.cognitive.microsoft.com/qnamaker/v4.0/opera-
tions/d9d40918-01bd-49f4-88b4-129fbc434c94.
{
 "operationState": "Running",
 "createdTimestamp": "2018-06-25T10:30:15Z",
 "lastActionTimestamp": "2018-06-25T10:30:15Z",
 "userId": "0d85ec291c184197a70cfeb51025cd22",
 "operationId": "d9d40918-01bd-49f4-88b4-129fbc434c94"
}
Waiting 30 seconds...
Calling https://westus.api.cognitive.microsoft.com/qnamaker/v4.0/opera-
tions/d9d40918-01bd-49f4-88b4-129fbc434c94.
{
 "operationState": "Running",
 "createdTimestamp": "2018-06-25T10:30:15Z",
 "lastActionTimestamp": "2018-06-25T10:30:15Z",
 "userId": "0d85ec221c284197a70gfeb51725cd22",

25	 https://westus.dev.cognitive.microsoft.com/docs/services/5a93fcf85b4ccd136866eb37/operations/operations_getoperationdetails

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  129

 "operationId": "d9d40918-01bd-49f4-88b4-129fbc434c94"
}
Waiting 30 seconds...
Calling https://westus.api.cognitive.microsoft.com/qnamaker/v4.0/opera-
tions/d9d40918-01bd-49f4-88b4-129fbc434c94.
{
 "operationState": "Succeeded",
 "createdTimestamp": "2018-06-25T10:30:15Z",
 "lastActionTimestamp": "2018-06-25T10:30:51Z",
 "resourceLocation": "/knowledgebases/1d9eb2a1-de2a-4709-91b2-f6ea8afb-
6fb9",
 "userId": "0d85ec294c284197a70cfeb51775cd22",
 "operationId": "d9d40918-01bd-49f4-88b4-129fbc434c94"
}
Press any key to continue.

Once your knowledge base is created, you can view it in your QnA Maker Portal, My knowledge bases26
page. Select your knowledge base name, for example QnA Maker FAQ, to view.

Update a knowledge base in C#
The following code updates an existing knowledge base, using the Update27 method.

1.	 Create a new .NET Framework C# console application in your favorite IDE.

2.	 Add the code provided below.

3.	 Replace the key value with a valid subscription key.

4.	 Replace the kb value with a valid knowledge base ID. Find this value by going to one of your QnA
Maker knowledge bases28. Select the knowledge base you want to update. Once on that page, find
the ‘kdid=’ in the URL as shown below. Use its value for your code sample.

5.	

6.	 Run the program.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

// NOTE: Install the Newtonsoft.Json NuGet package.
using Newtonsoft.Json;

namespace QnAMaker

26	 https://www.qnamaker.ai/Home/MyServices
27	 https://westus.dev.cognitive.microsoft.com/docs/services/5a93fcf85b4ccd136866eb37/operations/5ac266295b4ccd1554da7600
28	 https://www.qnamaker.ai/Home/MyServices

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

130  Module 5 Module Developing Azure Cognitive Services Solutions

{
 class Program
 {
 // Represents the various elements used to create HTTP request URIs
 // for QnA Maker operations.
 static string host = "https://westus.api.cognitive.microsoft.com";
 static string service = "/qnamaker/v4.0";
 static string method = "/knowledgebases/";

 // NOTE: Replace this with a valid subscription key.
 static string key = "ADD KEY HERE";

 // NOTE: Replace this with a valid knowledge base ID.
 static string kb = "ADD ID HERE";

 /// <summary>
 /// Defines the data source used to update the knowledge base.
 /// This JSON schema is based on your existing knowledge base.
 /// In the 'update' object, the existing name is changed.
 /// </summary>
 static string new_kb = @"
 {
 'add': {
 'qnaList': [
 {
 'id': 1,
 'answer': 'You can change the default message if you use
the QnAMakerDialog. See this for details: https://docs.botframework.com/
en-us/azure-bot-service/templates/qnamaker/#navtitle',
 'source': 'Custom Editorial',
 'questions': [
 'How can I change the default message from QnA Maker?'
],
 'metadata': []
 }
],
 'urls': []
 },
 'update' : {
 'name' : 'New KB Name'
 },
 'delete': {
 'ids': [
 0
]
 }
 }
 ";
 /// <summary>
 /// Represents the HTTP response returned by an HTTP request.
 /// </summary>

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  131

 public struct Response
 {
 public HttpResponseHeaders headers;
 public string response;

 public Response(HttpResponseHeaders headers, string response)
 {
 this.headers = headers;
 this.response = response;
 }
 }

 /// <summary>
 /// Formats and indents JSON for display.
 /// </summary>
 /// <param name="s">The JSON to format and indent.</param>
 /// <returns>A string containing formatted and indented JSON.</
returns>
 static string PrettyPrint(string s)
 {
 return JsonConvert.SerializeObject(JsonConvert.DeserializeOb-
ject(s), Formatting.Indented);
 }

 /// <summary>
 /// Asynchronously sends a PATCH HTTP request.
 /// </summary>
 /// <param name="uri">The URI of the HTTP request.</param>
 /// <param name="body">The body of the HTTP request.</param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 async static Task<Response> Patch(string uri, string body)
 {
 using (var client = new HttpClient())
 using (var request = new HttpRequestMessage())
 {
 request.Method = new HttpMethod("PATCH");
 request.RequestUri = new Uri(uri);
 request.Content = new StringContent(body, Encoding.UTF8,
"application/json");
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);

 var response = await client.SendAsync(request);
 var responseBody = await response.Content.ReadAsStrin-
gAsync();
 return new Response(response.Headers, responseBody);
 }
 }

 /// <summary>

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

132  Module 5 Module Developing Azure Cognitive Services Solutions

 /// Asynchronously sends a GET HTTP request.
 /// </summary>
 /// <param name="uri">The URI of the HTTP request.</param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 async static Task<Response> Get(string uri)
 {
 using (var client = new HttpClient())
 using (var request = new HttpRequestMessage())
 {
 request.Method = HttpMethod.Get;
 request.RequestUri = new Uri(uri);
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);

 var response = await client.SendAsync(request);
 var responseBody = await response.Content.ReadAsStrin-
gAsync();
 return new Response(response.Headers, responseBody);
 }
 }

 /// <summary>
 /// Updates a knowledge base.
 /// </summary>
 /// <param name="kb">The ID for the existing knowledge base.</
param>
 /// <param name="new_kb">The new data source for the updated knowl-
edge base.</param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>
 /// object that represents the HTTP response."</returns>
 /// <remarks>Constructs the URI to update a knowledge base in QnA
Maker,
 /// then asynchronously invokes the <see cref="QnAMaker.Program.
Patch(string, string)"/>
 /// method to send the HTTP request.</remarks>
 async static Task<Response> PostUpdateKB(string kb, string new_kb)
 {
 string uri = host + service + method + kb;
 Console.WriteLine("Calling " + uri + ".");
 return await Patch(uri, new_kb);
 }

 /// <summary>
 /// Gets the status of the specified QnA Maker operation.
 /// </summary>
 /// <param name="operation">The QnA Maker operation to check.</
param>
 /// <returns>A <see cref="System.Threading.Tasks.Task{TResult}
(QnAMaker.Program.Response)"/>

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  133

 /// object that represents the HTTP response."</returns>
 /// <remarks>Constructs the URI to get the status of a QnA Maker
 /// operation, then asynchronously invokes the <see cref="QnAMaker.
Program.Get(string)"/>
 /// method to send the HTTP request.</remarks>
 async static Task<Response> GetStatus(string operation)
 {
 string uri = host + service + operation;
 Console.WriteLine("Calling " + uri + ".");
 return await Get(uri);
 }

 /// <summary>
 /// Updates a knowledge base, periodically checking status
 /// until the knowledge base is updated.
 /// </summary>
 async static void UpdateKB(string kb, string new_kb)
 {
 try
 {
 // Starts the QnA Maker operation to update the knowledge
base.
 var response = await PostUpdateKB(kb, new_kb);

 // Retrieves the operation ID, so the operation's status
can be
 // checked periodically.
 var operation = response.headers.GetValues("Location").
First();

 // Displays the JSON in the HTTP response returned by the
 // PostUpdateKB(string, string) method.
 Console.WriteLine(PrettyPrint(response.response));

 // Iteratively gets the state of the operation updating the
 // knowledge base. Once the operation state is something
other
 // than "Running" or "NotStarted", the loop ends.
 var done = false;
 while (true != done)
 {
 // Gets the status of the operation.
 response = await GetStatus(operation);
 // Displays the JSON in the HTTP response returned by
the
 // GetStatus(string) method.
 Console.WriteLine(PrettyPrint(response.response));

 // Deserialize the JSON into key-value pairs, to re-
trieve the
 // state of the operation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

134  Module 5 Module Developing Azure Cognitive Services Solutions

 var fields = JsonConvert.DeserializeObject<Diction-
ary<string, string>>(response.response);

 // Gets and checks the state of the operation.
 String state = fields["operationState"];
 if (state.CompareTo("Running") == 0 || state.Compare-
To("NotStarted") == 0)
 {
 // QnA Maker is still updating the knowledge base.
The thread is
 // paused for a number of seconds equal to the
Retry-After
 // header value, and then the loop continues.
 var wait = response.headers.GetValues("Retry-Af-
ter").First();
 Console.WriteLine("Waiting " + wait + " sec-
onds...");
 Thread.Sleep(Int32.Parse(wait) * 1000);
 }
 else
 {
 // QnA Maker has completed updating the knowledge
base.
 done = true;
 }
 }
 }
 catch
 {
 // An error occurred while updating the knowledge base.
Ensure that
 // you included your QnA Maker subscription key and knowl-
edge base ID
 // where directed in the sample.
 Console.WriteLine("An error occurred while updating the
knowledge base.");
 }
 finally
 {
 Console.WriteLine("Press any key to continue.");
 }
 }

 static void Main(string[] args)
 {
 // Invoke the UpdateKB() method to update a knowledge base,
periodically
 // checking the status of the QnA Maker operation until the
 // knowledge base is updated.
 UpdateKB(kb, new_kb);

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  135

 // The console waits for a key to be pressed before closing.
 Console.ReadLine();
 }
 }
}

Understand what QnA Maker returns
A successful response is returned in JSON, as shown in the following example. Your results may differ
slightly. If the final call returns a “Succeeded” state… your knowledge base was updated successfully. To
troubleshoot, refer to the Update Knowledgebase29 response codes of the QnA Maker API.

{
 "operationState": "NotStarted",
 "createdTimestamp": "2018-04-13T01:49:48Z",
 "lastActionTimestamp": "2018-04-13T01:49:48Z",
 "userId": "2280ef5917bb4ebfa1aae41fb1cebb4a",
 "operationId": "5156f64e-e31d-4638-ad7c-a2bdd7f41658"
}
...
{
 "operationState": "Succeeded",
 "createdTimestamp": "2018-04-13T01:49:48Z",
 "lastActionTimestamp": "2018-04-13T01:49:50Z",
 "resourceLocation": "/knowledgebases/140a46f3-b248-4f1b-9349-614bf-
d6e5563",
 "userId": "2280ef5917bb4ebfa1aae41fb1cebb4a",
 "operationId": "5156f64e-e31d-4638-ad7c-a2bdd7f41658"
}
Press any key to continue.

Once your knowledge base is updated, you can view it on your QnA Maker Portal, My knowledge
bases30 page. Notice that your knowledge base name has changed, for example QnA Maker FAQ (or the
name of your pre-existing knowledge base) is now New KB Name.

Publish a knowledge base in C#
The following code publishes an existing knowledge base, using the Publish method.

1.	 Create a new C# project in your favorite IDE.

2.	 Add the code provided below.

3.	 Replace the key value with an access key valid for your subscription.

4.	 Run the program.

using System;
using System.Collections.Generic;
using System.Linq;

29	 https://westus.dev.cognitive.microsoft.com/docs/services/5a93fcf85b4ccd136866eb37/operations/5ac266295b4ccd1554da7600
30	 https://www.qnamaker.ai/Home/MyServices

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

136  Module 5 Module Developing Azure Cognitive Services Solutions

using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

// NOTE: Install the Newtonsoft.Json NuGet package.
using Newtonsoft.Json;

namespace QnAMaker
{
 class Program
 {
 static string host = "https://westus.api.cognitive.microsoft.com";
 static string service = "/qnamaker/v4.0";
 static string method = "/knowledgebases/";

 // NOTE: Replace this with a valid subscription key.
 static string key = "ENTER KEY HERE";

 // NOTE: Replace this with a valid knowledge base ID.
 static string kb = "ENTER ID HERE";

 static string PrettyPrint(string s)
 {
 return JsonConvert.SerializeObject(JsonConvert.DeserializeOb-
ject(s), Formatting.Indented);
 }

 async static Task<string> Post(string uri)
 {
 using (var client = new HttpClient())
 using (var request = new HttpRequestMessage())
 {
 request.Method = HttpMethod.Post;
 request.RequestUri = new Uri(uri);
 request.Headers.Add("Ocp-Apim-Subscription-Key", key);

 var response = await client.SendAsync(request);
 if (response.IsSuccessStatusCode)
 {
 return "{'result' : 'Success.'}";
 }
 else
 {
 return await response.Content.ReadAsStringAsync();
 }
 }
 }

 async static void PublishKB()

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions using QnA Maker  137

 {
 var uri = host + service + method + kb;
 Console.WriteLine("Calling " + uri + ".");
 var response = await Post(uri);
 Console.WriteLine(PrettyPrint(response));
 Console.WriteLine("Press any key to continue.");
 }

 static void Main(string[] args)
 {
 PublishKB();
 Console.ReadLine();
 }
 }
}

The publish a knowledge base response
A successful response is returned in JSON, as shown in the following example:

{
 "result": "Success."
}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

138  Module 5 Module Developing Azure Cognitive Services Solutions

Working with the Azure IoT Hub
Azure IoT Hub overview
IoT Hub is a managed service, hosted in the cloud, that acts as a central message hub for bi-directional
communication between your IoT application and the devices it manages. You can use Azure IoT Hub to
build IoT solutions with reliable and secure communications between millions of IoT devices and a
cloud-hosted solution backend. You can connect virtually any device to IoT Hub.

IoT Hub supports communications both from the device to the cloud and from the cloud to the device.
IoT Hub supports multiple messaging patterns such as device-to-cloud telemetry, file upload from
devices, and request-reply methods to control your devices from the cloud. IoT Hub monitoring helps
you maintain the health of your solution by tracking events such as device creation, device failures, and
device connections.

IoT Hub's capabilities help you build scalable, full-featured IoT solutions such as managing industrial
equipment used in manufacturing, tracking valuable assets in healthcare, and monitoring office building
usage.

Secure your communications
IoT Hub gives you a secure communication channel for your devices to send data.

●● Per-device authentication enables each device to connect securely to IoT Hub and for each device to
be managed securely.

●● You have complete control over device access and can control connections at the per-device level.

●● The IoT Hub Device Provisioning Service automatically provisions devices to the right IoT hub when
the device first boots up.

●● Multiple authentication types support a variety of device capabilities:

●● SAS token-based authentication to quickly get started with your IoT solution.

●● Individual X.509 certificate authentication for secure, standards-based authentication.

●● X.509 CA authentication for simple, standards-based enrollment.

Route device data
Built-in message routing functionality gives you flexibility to set up automatic rules-based message
fan-out:

●● Use message routing to control where your hub sends device telemetry.

●● There is no additional cost to route messages to multiple endpoints.

●● No-code routing rules take the place of custom message dispatcher code.

Integrate with other services
You can integrate IoT Hub with other Azure services to build complete, end-to-end solutions. For exam-
ple, use:

●● Azure Event Grid to enable your business to react quickly to critical events in a reliable, scalable, and
secure manner.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Working with the Azure IoT Hub  139

●● Azure Logic Apps to automate business processes.

●● Azure Machine Learning to add machine learning and AI models to your solution.

●● Azure Stream Analytics to run real-time analytic computations on the data streaming from your
devices.

Configure and control your devices
You can manage your devices connected to IoT Hub with an array of built-in functionality.

●● Store, synchronize, and query device metadata and state information for all your devices.

●● Set device state either per-device or based on common characteristics of devices.

●● Automatically respond to a device-reported state change with message routing integration.

Create an IoT hub
The first step is to use the Azure portal to create an IoT hub in your subscription. The IoT hub enables you
to ingest high volumes of telemetry into the cloud from many devices. The hub then enables one or more
back-end services running in the cloud to read and process that telemetry.

1.	 Sign in to the Azure portal31.

2.	 Select Create a resource > Internet of Things > IoT Hub.

3.	

4.	 In the IoT hub pane, enter the following information for your IoT hub:

●● Subscription: Choose the subscription that you want to use to create this IoT hub.

31	 http://portal.azure.com/

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

140  Module 5 Module Developing Azure Cognitive Services Solutions

●● Resource group: Create a resource group to contain the IoT hub or use an existing one. By
putting all related resources in a group together, such as TestResources, you can manage them all
together. For example, deleting the resource group deletes all resources contained in that group.

●● Region: Select the closest location to your devices.

●● Name: Create a unique name for your IoT hub. If the name you enter is available, a green check
mark appears.

●● Important: The IoT hub will be publicly discoverable as a DNS endpoint, so make sure to avoid
any sensitive information while naming it.

5.	

6.	 Select Next: Size and scale to continue creating your IoT hub.

7.	 Choose your Pricing and scale tier. For this walkthrough, select the F1 - Free tier if it's still available
on your subscription.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Working with the Azure IoT Hub  141

8.	

9.	 Select Review + create.

10.	Review your IoT hub information, then click Create. Your IoT hub might take a few minutes to create.
You can monitor the progress in the Notifications pane.

Register a device
A device must be registered with your IoT hub before it can connect. In this walkthrough, you use the
Azure CLI to register a simulated device.

1.	 Add the IoT Hub CLI extension and create the device identity. Replace {YourIoTHubName} with the
name you chose for your IoT hub:

az extension add --name azure-cli-iot-ext
az iot hub device-identity create --hub-name {YourIoTHubName} --device-id
MyDotnetDevice

1.	 If you choose a different name for your device, update the device name in the sample applications
before you run them.

2.	 Run the following command to get the device connection string for the device you just registered:

az iot hub device-identity show-connection-string --hub-name {YourIoTHub-
Name} --device-id MyDotnetDevice --output table

3.	 Make a note of the device connection string, which looks like Hostname=...=. You use this value
later in the walkthrough.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

142  Module 5 Module Developing Azure Cognitive Services Solutions

4.	 You also need the Event Hubs-compatible endpoint, Event Hubs-compatible path, and iothubowner
primary key from your IoT hub to enable the back-end application to connect to your IoT hub and
retrieve the messages. The following commands retrieve these values for your IoT hub:

az iot hub show --query properties.eventHubEndpoints.events.endpoint --name
{YourIoTHubName}

az iot hub show --query properties.eventHubEndpoints.events.path --name
{YourIoTHubName}

az iot hub policy show --name iothubowner --query primaryKey --hub-name
{your IoT Hub name}

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Review Questions  143

Review Questions
Module 5 Review Questions
Computer Vision API v2 overview

You are designing an application that will use facial recognition to identify repeat customers for a retail
store. The solution will recommend products and services to the customers.

The application must be able to process a large number of images. You plan to implement the Computer
Vision API v2.

What criteria must the images meet to use Computer Vision API v2?

Suggested Answer ↓
The Computer Vision API supports images of various file types up to 4MB in size. Images must be at least
50 x 50 pixels.

Analyze an image with C#

You plan to implement Computer Vision API v2.

What are the prerequisites for Computer Vision API v2?

Suggested Answer ↓
To use the Computer Vision API, you must procure a subscription key. You can use Visual Studio 2015 or
2017 to develop solutions that use the API. You must import the Microsoft.Azure.CognitiveServices.Vision.
ComputerVision client library NuGet package into your Visual Studio solution.

QnA Maker
You are designing a solution that provides users answer to questions about common health issues. You
plan to use QnA Maker.

What types of data sources can you use as input for QnA Maker? What type of developer experience is
required to implement QnA Maker.

Suggested Answer ↓
QnA Maker is a service that allows you to create a question and answer service. You can build out the
service without any developer experience. You create a knowledgebase and publish it.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

Module 6 Module Develop for Azure Storage

Develop Solutions that use Azure Cosmos DB
Storage
Azure Cosmos DB
Microsoft Azure Cosmos DB is a database service native to Azure that focuses on providing a high-per-
formance database regardless of your selected API or data model. Azure Cosmos DB offers multiple APIs
and models that can be used interchangeably for various application scenarios.

Core Functionality

Global replication
Azure Cosmos DB has a feature referred to as turnkey global distribution that automatically replicates data
to other Azure datacenters across the globe without the need to manually write code or build a replica-
tion infrastructure.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

146  Module 6 Module Develop for Azure Storage

Consistency levels
Commercial distributed databases fall into two categories: databases that do not offer well-defined,
provable consistency choices at all and databases that offer two extreme programmability choices (strong
versus eventual consistency). The former burdens application developers with the minutia of their
replication protocols and expects them to make difficult tradeoffs among consistency, availability, latency,
and throughput. The latter pressure them to choose one of the two extremes.

Azure Cosmos DB provides five consistency levels: strong, bounded-staleness, session, consistent prefix,
and eventual. Bounded-staleness, session, consistent prefix, and eventual are referred to as relaxed
consistency models, because they provide less consistency than strong, which is the most highly consist-
ent model available.

The consistency levels range from very strong consistency—where reads are guaranteed to be visible
across replicas before a write is fully committed across all replicas—to eventual consistency, where writes
are readable immediately, and replicas are eventually consistent with the primary.

Consistency Level Description
Strong When a write operation is performed on your

primary database, the write operation is replicated
to the replica instances. The write operation is
committed (and visible) on the primary only after
it has been committed and confirmed by all
replicas.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Azure Cosmos DB Storage  147

Consistency Level Description
Bounded Stateless This level is similar to the Strong level with the

major difference that you can configure how stale
documents can be within replicas. Staleness refers
to the quantity of time (or the version count) a
replica document can be behind the primary
document.

Session This level guarantees that all read and write
operations are consistent within a user session.
Within the user session, all reads and writes are
monotonic and guaranteed to be consistent across
primary and replica instances.

Consistent Prefix This level has loose consistency but guarantees
that when updates show up in replicas, they will
show up in the correct order (that is, as prefixes of
other updates) without any gaps.

Eventual This level has the loosest consistency and essen-
tially commits any write operation against the
primary immediately. Replica transactions are
asynchronously handled and will eventually (over
time) be consistent with the primary. This tier has
the best performance, because the primary
database does not need to wait for replicas to
commit to finalize it's transactions.

Choose the Right Consistency Level for your Ap-
plication
Distributed databases relying on replication for high availability, low latency or both, make the funda-
mental tradeoff between the read consistency vs. availability, latency, and throughput. Most commercially
available distributed databases ask developers to choose between the two extreme consistency models:
strong consistency and eventual consistency. Azure Cosmos DB allows developers to choose among the
five well-defined consistency models: strong, bounded staleness, session, consistent prefix, and eventual.
Each of these consistency models is well-defined, intuitive and can be used for specific real-world scenari-
os. Each of the five consistency models provide availability and performance tradeoffs and are backed by
comprehensive SLAs. The following simple considerations will help you make the right choice in many
common scenarios.

SQL API and Table API
Consider the following points if your application is built by using Cosmos DB SQL API or Table API

●● For many real-world scenarios, session consistency is optimal and it's the recommended option.

●● If your application requires strong consistency, it is recommended that you use bounded staleness
consistency level.

●● If you need stricter consistency guarantees than the ones provided by session consistency and
single-digit-millisecond latency for writes, it is recommended that you use bounded staleness consist-
ency level.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

148  Module 6 Module Develop for Azure Storage

●● If your application requires eventual consistency, it is recommended that you use consistent prefix
consistency level.

●● If you need less strict consistency guarantees than the ones provided by session consistency, it is
recommended that you use consistent prefix consistency level.

●● If you need the highest availability and lowest latency, then use eventual consistency level.

Consistency guarantees in practice
You may get stronger consistency guarantees in practice. Consistency guarantees for a read operation
correspond to the freshness and ordering of the database state that you request. Read-consistency is tied
to the ordering and propagation of the write/update operations.

●● When the consistency level is set to bounded staleness, Cosmos DB guarantees that the clients
always read the value of a previous write, with a lag bounded by the staleness window.

●● When the consistency level is set to strong, the staleness window is equivalent to zero, and the clients
are guaranteed to read the latest committed value of the write operation.

●● For the remaining three consistency levels, the staleness window is largely dependent on your
workload. For example, if there are no write operations on the database, a read operation with
eventual, session, or consistent prefix consistency levels is likely to yield the same results as a read
operation with strong consistency level.

If your Cosmos DB account is configured with a consistency level other than the strong consistency, you
can find out the probability that your clients may get strong and consistent reads for your workloads by
looking at the Probabilistic Bounded Staleness (PBS) metric. This metric is exposed in the Azure portal.

Probabilistic bounded staleness shows how eventual is your eventual consistency. This metric provides an
insight into how often you can get a stronger consistency than the consistency level that you have
currently configured on your Cosmos DB account. In other words, you can see the probability (measured
in milliseconds) of getting strongly consistent reads for a combination of write and read regions.

Consistency Levels and Azure Cosmos DB APIs
Five consistency models offered by Azure Cosmos DB are natively supported by the Azure Cosmos DB
SQL API. When you use Azure Cosmos DB, the SQL API is the default.

Azure Cosmos DB also provides native support for wire protocol-compatible APIs for popular databases.
Databases include MongoDB, Apache Cassandra, Gremlin, and Azure Table storage. These databases
don't offer precisely defined consistency models or SLA-backed guarantees for consistency levels. They
typically provide only a subset of the five consistency models offered by Azure Cosmos DB. For the SQL
API, Gremlin API, and Table API, the default consistency level configured on the Azure Cosmos DB
account is used.

The following sections show the mapping between the data consistency requested by an OSS client
driver for Apache Cassandra 4.x and MongoDB 3.4. This document also shows the corresponding Azure
Cosmos DB consistency levels for Apache Cassandra and MongoDB.

Mapping between Apache Cassandra and Azure Cosmos
DB consistency levels
This table shows the “read consistency” mapping between the Apache Cassandra 4.x client and the
default consistency level in Azure Cosmos DB. The table shows multi-region and single-region deploy-
ments.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Azure Cosmos DB Storage  149

Apache Cassandra 4.x Azure Cosmos DB (multi-re-
gion)

Azure Cosmos DB (single
region)

ONE, TWO, THREE Consistent prefix Consistent prefix
LOCAL_ONE Consistent prefix Consistent prefix
QUORUM, ALL, SERIAL Bounded staleness is the default.

Strong is in private preview.
Strong

LOCAL_QUORUM Bounded staleness Strong
LOCAL_SERIAL Bounded staleness Strong

Mapping between MongoDB 3.4 and Azure Cosmos DB
consistency levels
The following table shows the “read concerns” mapping between MongoDB 3.4 and the default consist-
ency level in Azure Cosmos DB. The table shows multi-region and single-region deployments.

MongoDB 3.4 Azure Cosmos DB (multi-re-
gion)

Azure Cosmos DB (single
region)

Linearizable Strong Strong
Majority Bounded staleness Strong
Local Consistent prefix Consistent prefix

Azure Cosmos DB Supported APIs
Today, Azure Cosmos DB can be accessed by using five different APIs. The underlying data structure in
Azure Cosmos DB is a data model based on atom record sequences that enabled Azure Cosmos DB to
support multiple data models. Because of the flexible nature of atom record sequences, Azure Cosmos
DB will be able to support many more models and APIs over time.

MongoDB API
The MongoDB API in Azure Cosmos DB acts as a massively scalable MongoDB service powered by the
Azure Cosmos DB platform. It is compatible with existing MongoDB libraries, drivers, tools, and applica-
tions.

Table API
The Table API in Azure Cosmos DB is a key-value database service built to provide premium capabilities
(for example, automatic indexing, guaranteed low latency, and global distribution) to existing Azure Table
storage applications without making any app changes.

Gremlin API
The Gremlin API in Azure Cosmos DB is a fully managed, horizontally scalable graph database service that
makes it easy to build and run applications that work with highly connected datasets supporting Open
Graph APIs (based on the Apache TinkerPop specification, Apache Gremlin).

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

150  Module 6 Module Develop for Azure Storage

Apache Cassandra API
The Cassandra API in Azure Cosmos DB is a globally distributed Apache Cassandra service powered by
the Azure Cosmos DB platform. Compatible with existing Apache Cassandra libraries, drivers, tools, and
applications.

SQL API
The SQL API in Azure Cosmos DB is a JavaScript and JavaScript Object Notation (JSON) native API based
on the Azure Cosmos DB database engine. The SQL API also provides query capabilities rooted in the
familiar SQL query language. Using SQL, you can query for documents based on their identifiers or make
deeper queries based on properties of the document, complex objects, or even the existence of specific
properties. The SQL API supports the execution of JavaScript logic within the database in the form of
stored procedures, triggers, and user-defined functions.

Migrating from NoSQL
Many NoSQL database engines are simple to get started with, but they provide problems as you scale,
including:

●● Tedious set-up and maintenance requirements for a multiple-server database cluster

●● Expensive and complex high-availability solutions

●● Challenges in achieving end-to-end security, including encryption at rest and in flight

●● Required resource overprovisioning and unpredictable costs to achieve scale

Azure Cosmos DB has a MongoDB API and a Cassandra API to provide a NoSQL service offering for two
of the most popular NoSQL database platforms. Both APIs are protocol compatible with the Cassandra
API supporting CQLv4 and the MongoDB API supporting MongoDB v5. Many applications can be “lifted
and shifted” to Azure Cosmos DB without the need to rewrite code.

To achieve a successful migration, it is important to keep a few tips in mind:

●● Instead of writing custom code, you should use native tools, such as the Cassandra shell, mon-
godump, and mongoexport.

●● Azure Cosmos DB containers should be allocated prior to the migration with the appropriate through-
put levels set. Many of the tools will create containers for you with default settings that are not ideal.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Azure Cosmos DB Storage  151

●● Prior to migrating, you should increase the container’s throughput to at least 1,000 Request Units
(RUs) per second so that the import tools are not throttled. The throughput can be reverted back to
the typical values after the import is complete.

Resource Hierarchy
The JSON documents stored in the Azure Cosmos DB SQL API are managed through a well-defined
hierarchy of database resources. The Azure Cosmos DB hierarchical resource model consists of sets of
resources under a database account, each addressable via a logical and stable URI. A set of resources is
referred to as a feed.

Resource Description
Account A database account is associated with a set of

databases and a fixed amount of large object
(blob) storage for attachments. You can create one
or more database accounts by using your Azure
subscription. For more information, visit the
pricing page.

Database A database is a logical container of document
storage partitioned across collections. It is also a
users container.

Collection (container) A collection is a container of JSON documents and
the associated JavaScript application logic.
Collections can span one or more partitions or
servers and can scale to handle practically unlimit-
ed volumes of storage or throughput.

Document (item) User-defined (arbitrary) JSON content. By default,
no schema needs to be defined nor do secondary
indexes need to be provided for all the documents
added to a collection.

Stored procedure (sproc) Application logic written in JavaScript that is
registered with a collection and executed within
the database engine as a transaction.

Trigger Application logic written in JavaScript executed
before or after either an insert, replace, or delete
operation.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

152  Module 6 Module Develop for Azure Storage

Resource Description
User-defined function Application logic written in JavaScript. User-de-

fined functions enable you to model a custom
query operator and thereby extend the core SQL
API query language.

Collections
In the Azure Cosmos DB SQL API, databases are essentially containers for collections. Collections are
where you place individual documents. A collection is intrinsically elastic—it automatically grows and
shrinks as you add or remove documents.

Each collection is assigned a throughput value, and that value dictates the maximum throughput for that
collection and its corresponding documents. Alternatively, you can assign the throughput at the database
level and share the throughput values among the collections in the database. If you have a set of docu-
ments that needs throughput beyond the limits of an individual collection, you can distribute the docu-
ments among multiple collections. Each collection has its own distinct throughput level.

If a particular collection is seeing spikes in throughput, you can manage its throughput level in isolation
by increasing or decreasing the value. This change to the throughput level of a particular collection will
not cause side effects for the other collections. This allows you to adjust to meet the performance needs
of any workload in isolation.

You can also scale workloads across collections, if you have a workload that needs to be partitioned, you
can scale that workload by distributing its associated documents across multiple collections. The SQL API

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Azure Cosmos DB Storage  153

for Azure Cosmos DB includes a client-side partition resolver that allows you to manage transactions and
point them in code to the correct partition based on a partition key field.

Collection types
Azure Cosmos DB containers can be created as fixed or unlimited in the Azure portal. Fixed-size contain-
ers have a maximum limit of 10 GB and a 10,000 RU/s throughput. To create a container as unlimited, you
must specify a partition key and a minimum throughput of 1,000 RU/s. Azure Cosmos DB containers can
also be configured to share throughput among the containers in a database.

If you created a fixed container with no partition key or a throughput less than 1,000 RU/s, the container
will not automatically scale. To migrate the data from a fixed container to an unlimited container, you
need to use the data migration tool or the Change Feed library.

Partitioning
Azure Cosmos DB provides containers for storing data called collections (for documents), graphs, or
tables. Containers are logical resources and can span one or more physical partitions or servers. The
number of partitions is determined by Azure Cosmos DB based on the storage size and throughput
provisioned for a container or set of containers.

If you are already familiar with the sharding pattern, the idea of dynamic partitioning is not very different.

A physical partition is a fixed amount of reserved solid-state drive (SSD) backend storage combined with
a variable amount of compute resources (CPU and memory). Each physical partition is replicated for high
availability. A physical partition is an internal concept of Azure Cosmos DB, and physical partitions are
transient. Azure Cosmos DB will automatically scale the number of physical partitions based on your
workload.

A logical partition is a partition within a physical partition that stores all the data associated with a single
partition key value. Partition ranges can be dynamically subdivided to seamlessly grow the database as
the application grows while simultaneously maintaining high availability. When a container meets the

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

154  Module 6 Module Develop for Azure Storage

partitioning prerequisites, partitioning is completely transparent to your application. Azure Cosmos DB
handles distributing data across physical and logical partitions and routing query requests to the right
partition.

Manage Collections and Documents by using
the Microsoft .NET SDK
To get started with the Azure Cosmos DB SQL API, you will need the Microsoft.Azure.DocumentDB.
Core1 package from NuGet.

First, you will need to add the following using directives to the top of your class file:

using Microsoft.Azure.Documents;
using Microsoft.Azure.Documents.Client;

Then, you can create a DocumentClient instance by using the endpoint from your Azure Cosmos DB
account and one of your keys:

DocumentClient client = new DocumentClient(new Uri("[endpoint]"), "[key]");

To reference any resource in the software development kit (SDK), you will need a URI. The UriFactory
class contains a series of static helper methods that can create URIs for common Azure Cosmos DB
resources. In this example, we will create a URI for a collection:

Uri collectionUri = UriFactory.CreateDocumentCollectionUri(databaseName,
collectionName);

1	 https://www.nuget.org/packages/Microsoft.Azure.DocumentDB.Core

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Azure Cosmos DB Storage  155

Now, you can use the CreateDocumentAsync method of the DocumentClient class to insert a C#
object into the collection. You can use any C# type you want for your documents, because the SDK
doesn't require a specific base type:

var document = new {
firstName = "Alex",
lastName = "Leh"
}

await this.client.CreateDocumentAsync(collectionUri, document);

If you want to query the database, you can perform SQL queries by using the SqlQuerySpec class:

var query = client.CreateDocumentQuery<Family>(
	 collectionUri,
	 new SqlQuerySpec()
	 {
		 QueryText = "SELECT * FROM f WHERE (f.surname = @lastName)",
		 Parameters = new SqlParameterCollection()
		 {
			 new SqlParameter("@lastName", "Andt")
		 }
	 },
	 DefaultOptions
);

var families = query.ToList();

Alternatively, you can use the language-integrated query (LINQ) feature of C# with the SDK. The LINQ
expressions will be automatically translated into the appropriate SQL query:

var query = client.CreateDocumentQuery<Family>(collectionUri)
	 .Where(d => d.Surname = "Andt")
	 .Select(d => new { Name = d.Id, City = d.Address?.City)
	 .AsDocumentQuery();

var families = query.ToList();

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

156  Module 6 Module Develop for Azure Storage

Develop Solutions that use a Relational Data-
base
The Azure SQL Database Service
SQL Database is a general-purpose relational database managed service in Microsoft Azure that supports
structures such as relational data, JSON, spatial, and XML. SQL Database delivers dynamically scalable
performance within two different purchasing models: a vCore-based purchasing model and a DTU-based
purchasing model. SQL Database also provides options such as columnstore indexes for extreme analytic
analysis and reporting, and in-memory OLTP for extreme transactional processing. Microsoft handles all
patching and updating of the SQL code base seamlessly and abstracts away all management of the
underlying infrastructure.

Azure SQL Database provides the following deployment options for an Azure SQL database:

●● As a single database with its own set of resources managed via a logical server

●● As a pooled database in an elastic pool with a shared set of resources managed via a logical server

●● As a part of a collection of databases known as a managed instance that contains system and user
databases and sharing a set of resources

The following illustration shows these deployment options:

SQL Database shares its code base with the Microsoft SQL Server database engine. With Microsoft's
cloud-first strategy, the newest capabilities of SQL Server are released first to SQL Database, and then to
SQL Server itself. This approach provides you with the newest SQL Server capabilities with no overhead
for patching or upgrading - and with these new features tested across millions of databases.

Choosing the Right SQL Server Option in Azure
In Azure, you can have your SQL Server workloads running in a hosted infrastructure (IaaS) or running as
a hosted service (PaaS). The key question that you need to ask when deciding between PaaS or IaaS is do
you want to manage your database, apply patches, take backups, or you want to delegate these opera-
tions to Azure? Depending on the answer, you have the following options:

●● Azure SQL Database: A fully-managed SQL database engine, based on the latest stable Enterprise
Edition of SQL Server. This is a relational database-as-a-service (DBaaS) hosted in the Azure cloud that
falls into the industry category of Platform-as-a-Service (PaaS). SQL database is built on standardized
hardware and software that is owned, hosted, and maintained by Microsoft. With SQL Database, you
can use built-in features and functionality that require extensive configuration in SQL Server. When
using SQL Database, you pay-as-you-go with options to scale up or out for greater power with no

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use a Relational Database  157

interruption. SQL Database has additional features that are not available in SQL Server, such as built-in
intelligence and management. Azure SQL Database offers several deployment options:

●● You can deploy a single database to a logical server. A logical server containing single and pooled
databases offers most of database-scoped features of SQL Server. This option is optimized for
modern application development of new cloud-born applications.

●● You can deploy to a Azure SQL Database Managed Instances. With Azure SQL Database Managed
Instance, Azure SQL Database offers shared resources for databases and additional in-
stance-scoped features. Azure SQL Database Managed Instance supports database migration from
on-premises with minimal to no database change. This option provides all of the PaaS benefits of
Azure SQL Database but adds capabilities that were previously only available in SQL VMs. This
includes a native virtual network (VNet) and near 100% compatibility with on-premises SQL Server.

●● SQL Server on Azure Virtual Machines falls into the industry category Infrastructure-as-a-Service
(IaaS) and allows you to run SQL Server inside a fully-managed virtual machine in the Azure cloud.
SQL Server virtual machines also run on standardized hardware that is owned, hosted, and maintained
by Microsoft. When using SQL Server on a VM, you can either pay-as you-go for a SQL Server license
already included in a SQL Server image or easily use an existing license. You can also stop or resume
the VM as needed.SQL Server installed and hosted in the cloud on Windows Server or Linux virtual
machines (VMs) running on Azure, also known as an infrastructure as a service (IaaS). SQL Server on
Azure virtual machines is a good option for migrating on-premises SQL Server databases and applica-
tions without any database change. All recent versions and editions of SQL Server are available for
installation in an IaaS virtual machine. The most significant difference from SQL Database is that SQL
Server VMs allow full control over the database engine. You can choose when maintenance/patching
will start, to change the recovery model to simple or bulk logged to enable faster load less log, to
pause or start engine when needed, and you can fully customize the SQL Server database engine.
With this additional control comes with added responsibility to manage the virtual machines.

The main differences between these options are listed in the following table:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

158  Module 6 Module Develop for Azure Storage

SQL Server on VM Azure SQL Database (Managed
Instance)

Azure SQL Database (Logical
server)

You have full control over the
SQL Server engine.

Up to 99.95% availability.

Full parity with the
 matching version of
on-premises SQL Server.

Fixed, well-known database
engine version.

Easy
 migration from SQL
Server on-premises.

Private IP address within Azure
VNet.

You have ability to
 deploy application or
services on the host where SQL
Server is placed.

High compatibility with SQL
Server on-premises.

99.99% availability guaranteed.

Built-in backups,
 patching, recovery.

Latest stable Database Engine
version.

Easy migration from SQL Server.

Private
 IP address within Azure
VNet.

Built-in advanced intelligence
and security.

Online change of
 resources (CPU/
storage).

The most commonly used SQL
Server features are available.

99.99% availability guaranteed.

Built-in
 backups, patching,
recovery.

Latest stable Database Engine
version.

Ability to assign necessary
 resources (CPU/
storage) to individual databases.

Built-in advanced intelligence
and security.

Online
 change of resources
(CPU/storage).

You need to manage your
backups and patches.

You need to implement your
own High-Availability
 solution.

There is a downtime while
changing the resources(CPU/
storage)

There is still some minimal
number of SQL Server features
that are not available.

No guaranteed
 exact maintenance
time (but nearly transparent).

Compatibility with the SQL
Server version can be
 achieved only using
database compatibility levels.

Migration from SQL Server might
be hard.

Some SQL Server features are
not available.

No
 guaranteed exact
maintenance time (but nearly
transparent).

Compatibility with the SQL
Server
 version can be
achieved only using database
compatibility levels.

Private IP address cannot be
 assigned (you can limit
the access using firewall rules).

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use a Relational Database  159

Copy a transactionally Consistent Copy of an Az-
ure SQL Database
Azure SQL Database provides several methods for creating a transactionally consistent copy of an
existing Azure SQL database on either the same server or a different server. You can copy a SQL database
by using the Azure portal, PowerShell, or T-SQL.

Overview
A database copy is a snapshot of the source database as of the time of the copy request. You can select
the same server or a different server, its service tier and compute size, or a different compute size within
the same service tier (edition). After the copy is complete, it becomes a fully functional, independent
database. At this point, you can upgrade or downgrade it to any edition. The logins, users, and permis-
sions can be managed independently.

Note: Automated database backups are used when you create a database copy.

Logins in the database copy
When you copy a database to the same logical server, the same logins can be used on both databases.
The security principal you use to copy the database becomes the database owner on the new database.
All database users, their permissions, and their security identifiers (SIDs) are copied to the database copy.

When you copy a database to a different logical server, the security principal on the new server becomes
the database owner on the new database. If you use contained database users for data access, ensure
that both the primary and secondary databases always have the same user credentials, so that after the
copy is complete you can immediately access it with the same credentials.

If you use Azure Active Directory, you can completely eliminate the need for managing credentials in the
copy. However, when you copy the database to a new server, the login-based access might not work,
because the logins do not exist on the new server. To learn about managing logins when you copy a
database to a different logical server, see How to manage Azure SQL database security after disaster
recovery.

After the copying succeeds and before other users are remapped, only the login that initiated the
copying, the database owner, can log in to the new database.

Copy a database by using the Azure portal
To copy a database by using the Azure portal, open the page for your database, and then click Copy.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

160  Module 6 Module Develop for Azure Storage

Copy a database by using PowerShell
To copy a database by using PowerShell, use the New-AzureRmSqlDatabaseCopy cmdlet.

New-AzureRmSqlDatabaseCopy -ResourceGroupName "myResourceGroup" `
 -ServerName $sourceserver `
 -DatabaseName "MySampleDatabase" `
 -CopyResourceGroupName "myResourceGroup" `
 -CopyServerName $targetserver `
 -CopyDatabaseName "CopyOfMySampleDatabase"

Resolve logins
After the new database is online on the destination server, use the ALTER USER statement to remap the
users from the new database to logins on the destination server. To resolve orphaned users, see Trouble-
shoot Orphaned Users.

All users in the new database retain the permissions that they had in the source database. The user who
initiated the database copy becomes the database owner of the new database and is assigned a new
security identifier (SID). After the copying succeeds and before other users are remapped, only the login
that initiated the copying, the database owner, can log in to the new database.

Entity Framework
Entity Framework is an object-relational mapper library for Microsoft .NET that is designed to reduce the
impedance mismatch between the relational and object-oriented worlds. The goal of the library is to
enable developers to interact with data stored in relational databases by using strongly-typed .NET
objects that represent the application's domain and to eliminate the need for a large portion of the data
access “plumbing” code that they usually need to write to access data in a database.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use a Relational Database  161

Entity Framework Core and Entity Framework
Entity Framework Core (EF Core) is a recent rewrite of the entire Entity Framework library to target .NET
Standard. Entity Framework Core can be used with .NET Framework applications and .NET Core applica-
tions. Entity Framework Core was built to be more lightweight and agile than the full Entity Framework by
dropping many of the earlier features from Entity Framework and implementing new, modern, and
extensible features at an agile pace. For new applications, we recommend considering using Entity
Framework Core over Entity Framework.

Note: The examples in this section will assume that you are using Entity Framework Core.

Entity Framework Providers
The Entity Framework provider model allows Entity Framework to be used with different types of data-
base servers. For example, one provider can be plugged in to allow Entity Framework to be used against
Microsoft SQL Server, whereas another provider can be plugged in to allow Entity Framework to be used
against Oracle Database. There are many current providers in the market for databases, including:

●● SQL Server

●● SQLite

●● PostgreSQL

●● MySQL

●● MariaDB

●● MyCAT Server

●● SQL Server Compact

●● Firebird

●● DB2

●● Informix

●● Oracle

●● Microsoft Access

Note: If a provider you need is not available, you can certainly write a provider yourself, although it
should not be considered a trivial undertaking.

Entity Framework Core also ships with an InMemory provider. This database provider allows Entity
Framework Core to be used with an in-memory database. The InMemory provider is useful when you
want to test components by using something that approximates connecting to the real database without
the overhead of actual database operations.

Note: EF Core database providers do not have to be relational databases. InMemory is designed to be a
general-purpose database for testing and is not designed to mimic a relational database.

SQL Server provider
This database provider allows Entity Framework Core to be used with Microsoft SQL Server (including
Microsoft Azure SQL Database). The provider is maintained as an open-source project as part of the
Entity Framework Core repository on GitHub (https://github.com/aspnet/EntityFrameworkCore).

Many of the examples you will find online assume that you are using the SQL Server provider with Entity
Framework Core. It is important to remember that Entity Framework Core has a provider model that

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

162  Module 6 Module Develop for Azure Storage

abstracts the underlying database away from the actual database access logic. The code samples you see
can be used with many of the database providers.

MySQL and PostgreSQL providers
The MySQL team maintains a database provider for both Entity Framework and Entity Framework Core as
part of the MySQL Connector for .NET library. Along with the MySQL team, other third-party groups have
written providers for MySQL. Two of the MySQL providers are:

●● MySql.Data.EntityFrameworkCore (https://www.nuget.org/packages/MySql.Data.EntityFrame-
workCore).

●● Pomelo.EntityFrameworkCore.MySql (https://www.nuget.org/packages/Pomelo.EntityFramework-
Core.MySql/).

There are multiple third-party organizations that have written .NET libraries to access PostgreSQL. Many
of them have rewritten their Entity Framework providers to support Entity Framework Core. These
libraries include:

●● Npgsql.EntityFrameworkCore.PostgreSQL (https://www.nuget.org/packages/Npgsql.EntityFrame-
workCore.PostgreSQL/).

●● Devart.Data.PostgreSql.EFCore (https://www.nuget.org/packages/Devart.Data.PostgreSql.
EFCore/).

These providers allow you to use Entity Framework Core with a MySQL or PostgreSQL database in the
same manner as you would use the library with a SQL database.

Modeling a Database by using Entity Framework
Core
To use Entity Framework to query, insert, update, and delete data using .NET objects, you first need to
create a model that maps the entities and relationships defined in your model to tables in a database.

Entity Framework uses a set of conventions to build a model based on the shapes of your entity classes.
You can specify additional configuration to supplement and override what was discovered by convention.
The conventions can be applied to a model targeting any data store and when targeting any relational
database. Providers might also enable a configuration that is specific to a particular data store.

First, let's look at how we can model a database with a single table named Blogs.

BlogId Url Description
1 /first-post This is my first post on this

platform
2 /follow-up-post NULL

If we want to use plain-old CLR objects (POCOs), such as existing domain objects, to model this table, we
would have a class that looks like this:

public class Blog
{
	 public int BlogId { get; set; }

	 public string Url { get; set; }

	 public string Description { get; set; }

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use a Relational Database  163

}

Logically, our database has a table that is a collection of these blog instances. Without knowing anything
about Entity Framework, we would probably create a class that looks like this:

public class BlogDatabase
{
	 public IEnumerable<Blog> Blogs { get; set; }
}

Now, we need to find a way to mark these classes in C# as models of our database. Including a type in
the model means that Entity Framework has metadata about that type and will attempt to read and write
instances from and to the database. There are two methods for modeling a database: the fluent API or
data annotations.

Fluent API
You can override the OnModelCreating method in your derived context class and use the ModelBuilder
API to configure your model. This is the most powerful method of configuration and allows the configu-
ration to be specified without modifying your entity classes. The fluent API configuration has the highest
precedence and will override conventions and data annotations:

protected override void OnModelCreating(ModelBuilder modelBuilder)
{
	 modelBuilder.Entity<Blog>()
		 .HasKey(c => c.BlogId)
		 .Property(b => b.Url)
		 .IsRequired()
		 .Property(b => b.Description);
}

Data annotations
You can apply attributes (known as data annotations) to your classes and properties. data annotations will
override conventions but will be overwritten by a fluent API configuration (if it exists):

public class Blog
{
	 [Key]
	 public int BlogId { get; set; }

	 [Required]
	 public string Url { get; set; }

	 public string Description { get; set; }
}

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

164  Module 6 Module Develop for Azure Storage

DbContext implementation
After you have a model, the primary class your application interacts with is System.Data.Entity.
DbContext (often referred to as the context class). You can use a DbContext class associated to a
model to:

●● Write and execute queries.

●● Materialize query results as entity objects.

●● Track changes that are made to those objects.

●● Persist object changes back on the database.

●● Bind objects in memory to UI controls.

The recommended way to work with the context is to define a class that derives from DbContext and
exposes DbSet properties that represent collections of the specified entities in the context:

public class BlogContext : DbContext
{
 public DbSet<Blog> Blogs { get; set; }
}

By convention, types that are exposed in DbSet properties on your context are included in your model.
In addition, types that are mentioned in the OnModelCreating method are also included. Finally, any
types that are found by recursively exploring the navigation properties of discovered types are also
included in the model.

Querying Databases by using Entity Framework
Core
The DbSet<> generic class includes methods that will allow you to query your database by using
language-integrated query (LINQ).

If you are already familiar with the LINQ syntax, you can perform many queries in Entity Framework Core
without the need to learn too much. This is because the DbSet<> generic class implements the IEnu-
merable<> interface, giving you access to many of the existing LINQ queries.

For example, you can load all the data from a table by enumerating the collection with a call to the
ToList method:

List<Blog> allblogs = context.Blogs.ToList();

You can use LINQ methods such as the Where method to filter your resulting list:

IEnumerable<Blog> someblogs = context.Blogs
 .Where(b => b.Url.Contains("dotnet"))

You can also use the Single method to get a single instance that matches a specific filter:

Blog specificblog = context.Blogs
 .Single(b => b.BlogId == 1);

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use a Relational Database  165

When you call LINQ operators, you are simply building up an in-memory representation of the query. The
query is sent to the database only when the results are consumed (enumerated). The most common
operations that result in the query being sent to the database are:

●● Iterating the results in a for loop.

●● Using an operator such as ToList, ToArray, Single, or Count.

●● Data binding the results of a query to a UI.

Although Entity Framework does help protect against SQL injection attacks, it does not do any general
validation of input. Therefore, if values being passed to APIs, used in LINQ queries, assigned to entity
properties, and so on come from an untrusted source, the appropriate validation per your application
requirements should be performed. This includes any user input used to dynamically construct queries.
Even when using LINQ, if you are accepting user input to build expressions, you need to make sure that
only intended expressions can be constructed.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

166  Module 6 Module Develop for Azure Storage

Develop Solutions that use Microsoft Azure
Blob Storage
Introduction to Azure Blob Storage
Azure Blob storage is Microsoft's object storage solution for the cloud. Blob storage is optimized for
storing massive amounts of unstructured data. Unstructured data is data that does not adhere to a
particular data model or definition, such as text or binary data.

About Blob storage
Blob storage is designed for:

●● Serving images or documents directly to a browser.

●● Storing files for distributed access.

●● Streaming video and audio.

●● Writing to log files.

●● Storing data for backup and restore, disaster recovery, and archiving.

●● Storing data for analysis by an on-premises or Azure-hosted service.

Users or client applications can access objects in Blob storage via HTTP/HTTPS, from anywhere in the
world. Objects in Blob storage are accessible via the Azure Storage REST API, Azure PowerShell, Azure CLI,
or an Azure Storage client library. Client libraries are available for a variety of languages, including .NET,
Java, Node.js, Python, Go, PHP, and Ruby.

About Azure Data Lake Storage Gen2
Blob storage supports Azure Data Lake Storage Gen2, Microsoft's enterprise big data analytics solution
for the cloud. Azure Data Lake Storage Gen2 offers a hierarchical file system as well as the advantages of
Blob storage, including low-cost, tiered storage; high availability; strong consistency; and disaster recov-
ery capabilities.

Blob storage resources
Blob storage offers three types of resources:

●● The storage account.

●● A container in the storage account

●● A blob in a container

The following diagram shows the relationship between these resources.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  167

Storage accounts
A storage account provides a unique namespace in Azure for your data. Every object that you store in
Azure Storage has an address that includes your unique account name. The combination of the account
name and the Azure Storage service endpoint forms the endpoints for your storage account.

For example, if your storage account is named mystorageaccount, then the default endpoint for Blob
storage is:

http://mystorageaccount.blob.core.windows.net

To learn more about storage accounts, see Azure storage account overview2.

Containers
A container organizes a set of blobs, similar to a directory in a file system. A storage account can include
an unlimited number of containers, and a container can store an unlimited number of blobs.

Note: The container name must be lowercase.

Blobs
Azure Storage supports three types of blobs:

●● Block blobs store text and binary data, up to about 4.7 TB. Block blobs are made up of blocks of data
that can be managed individually.

●● Append blobs are made up of blocks like block blobs, but are optimized for append operations.
Append blobs are ideal for scenarios such as logging data from virtual machines.

●● Page blobs store random access files up to 8 TB in size. Page blobs store the virtual hard drive (VHD)
files serve as disks for Azure virtual machines.

2	 https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview?toc=%2fazure%2fstorage%2fblobs%2ftoc.json

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

168  Module 6 Module Develop for Azure Storage

Move data to Blob storage
A number of solutions exist for migrating existing data to Blob storage:

●● AzCopy is an easy-to-use command-line tool for Windows and Linux that copies data to and from
Blob storage, across containers, or across storage accounts.

●● The Azure Storage Data Movement library is a .NET library for moving data between Azure Storage
services. The AzCopy utility is built with the Data Movement library.

●● Azure Data Factory supports copying data to and from Blob storage by using the account key,
shared access signature, service principal, or managed identities for Azure resources authentications.

●● Blobfuse is a virtual file system driver for Azure Blob storage. You can use blobfuse to access your
existing block blob data in your Storage account through the Linux file system.

●● Azure Data Box Disk is a service for transferring on-premises data to Blob storage when large
datasets or network constraints make uploading data over the wire unrealistic. You can use Azure Data
Box Disk to request solid-state disks (SSDs) from Microsoft. You can then copy your data to those
disks and ship them back to Microsoft to be uploaded into Blob storage.

●● The Azure Import/Export service provides a way to export large amounts of data from your storage
account to hard drives that you provide and that Microsoft then ships back to you with your data.

Azure Blob Storage Tiers

Overview
Azure storage offers different storage tiers which allow you to store Blob object data in the most cost-ef-
fective manner. The available tiers include:

●● Hot storage: is optimized for storing data that is accessed frequently.

●● Cool storage is optimized for storing data that is infrequently accessed and stored for at least 30
days.

●● Archive storage is optimized for storing data that is rarely accessed and stored for at least 180 days
with flexible latency requirements (on the order of hours).

The following considerations accompany the different storage tiers:

●● The Archive storage tier is only available at the blob level and not at the storage account level.

●● Data in the Cool storage tier can tolerate slightly lower availability, but still requires high durability
and similar time-to-access and throughput characteristics as Hot data. For Cool data, a slightly lower
availability SLA and higher access costs compared to Hot data are acceptable trade-offs for lower
storage costs.

●● Archive storage is offline and offers the lowest storage costs but also the highest access costs.

●● Only the Hot and Cool storage tiers can be set at the account level. Currently the Archive tier cannot
be set at the account level.

●● Hot, Cool, and Archive tiers can be set at the object level.

Data stored in the cloud grows at an exponential pace. To manage costs for your expanding storage
needs, it's helpful to organize your data based on attributes like frequency-of-access and planned
retention period to optimize costs. Data stored in the cloud can be different in terms of how it is generat-
ed, processed, and accessed over its lifetime. Some data is actively accessed and modified throughout its

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  169

lifetime. Some data is accessed frequently early in its lifetime, with access dropping drastically as the data
ages. Some data remains idle in the cloud and is rarely, if ever, accessed once stored.

Each of these data access scenarios benefits from a different storage tier that is optimized for a particular
access pattern. With Hot, Cool, and Archive storage tiers, Azure Blob storage addresses this need for
differentiated storage tiers with separate pricing models.

Storage accounts that support tiering
You may only tier your object storage data to Hot, Cool, or Archive in Blob storage or General Purpose v2
(GPv2) accounts. General Purpose v1 (GPv1) accounts do not support tiering. However, customers can
easily convert their existing GPv1 or Blob storage accounts to GPv2 accounts through a simple one-click
process in the Azure portal. GPv2 provides a new pricing structure for blobs, files, and queues, and access
to a variety of other new storage features as well. Furthermore, going forward some new features and
prices cuts will only be offered in GPv2 accounts. Therefore, customers should evaluate using GPv2
accounts but only use them after reviewing the pricing for all services as some workloads can be more
expensive on GPv2 than GPv1.

Blob storage and GPv2 accounts expose the Access Tier attribute at the account level, which allows you
to specify the default storage tier as Hot or Cool for any blob in the storage account that does not have
an explicit tier set at the object level. For objects with the tier set at the object level, the account tier will
not apply. The Archive tier can only be applied at the object level. You can switch between these storage
tiers at any time.

Hot access tier
Hot storage has higher storage costs than Cool and Archive storage, but the lowest access costs. Example
usage scenarios for the Hot storage tier include:

●● Data that is in active use or expected to be accessed (read from and written to) frequently.

●● Data that is staged for processing and eventual migration to the Cool storage tier.

Cool access tier
Cool storage tier has lower storage costs and higher access costs compared to Hot storage. This tier is
intended for data that will remain in the Cool tier for at least 30 days. Example usage scenarios for the
Cool storage tier include:

●● Short-term backup and disaster recovery datasets.

●● Older media content not viewed frequently anymore but is expected to be available immediately
when accessed.

●● Large data sets that need to be stored cost effectively while more data is being gathered for future
processing. (For example, long-term storage of scientific data, raw telemetry data from a manufactur-
ing facility)

Archive access tier
Archive storage has the lowest storage cost and higher data retrieval costs compared to Hot and Cool
storage. This tier is intended for data that can tolerate several hours of retrieval latency and will remain in
the Archive tier for at least 180 days.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

170  Module 6 Module Develop for Azure Storage

While a blob is in Archive storage, it is offline and cannot be read (except the metadata, which is online
and available), copied, overwritten, or modified. Nor can you take snapshots of a blob in Archive storage.
However, you may use existing operations to delete, list, get blob properties/metadata, or change the tier
of your blob.

Example usage scenarios for the Archive storage tier include:

●● Long-term backup, secondary backup, and archival datasets

●● Original (raw) data that must be preserved, even after it has been processed into final usable form.
(For example, Raw media files after transcoding into other formats)

●● Compliance and archival data that needs to be stored for a long time and is hardly ever accessed. (For
example, Security camera footage, old X-Rays/MRIs for healthcare organizations, audio recordings,
and transcripts of customer calls for financial services)

Blob rehydration
To read data in Archive storage, you must first change the tier of the blob to Hot or Cool. This process is
known as rehydration and can take up to 15 hours to complete. Large blob sizes are recommended for
optimal performance. Rehydrating several small blobs concurrently may add additional time.

During rehydration, you may check the Archive Status blob property to confirm if the tier has changed.
The status reads “rehydrate-pending-to-hot” or "rehydrate-pending-to-cool" depending on the destina-
tion tier. Upon completion, the Archive status property is removed, and the Access Tier blob property
reflects the new Hot or Cool tier.

Comparison of the storage tiers
The following table shows a comparison of the Hot, Cool, and Archive storage tiers.

Hot storage tier Cool storage tier Archive storage tier
Availability 99.9% 99% N/A
Availability
(RA-GRS reads) 99.99% 99.9% N/A
Usage charges Higher storage costs,

lower access and
transaction costs

Lower storage costs,
higher access and
transaction costs

Lowest storage costs,
highest access and
transaction costs

Minimum object size N/A N/A N/A
Minimum storage
duration

N/A 30 days (GPv2 only) 180 days

Latency
(Time to first byte) milliseconds milliseconds < 15 hrs
Scalability and perfor-
mance targets

Same as general-pur-
pose storage accounts

Same as general-pur-
pose storage accounts

Same as general-pur-
pose storage accounts

Understanding Block Blobs, Append Blobs, and
Page Blobs
he storage service offers three types of blobs, block blobs, append blobs, and page blobs. You specify the
blob type when you create the blob. Once the blob has been created, its type cannot be changed, and it

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  171

can be updated only by using operations appropriate for that blob type, i.e., writing a block or list of
blocks to a block blob, appending blocks to a append blob, and writing pages to a page blob.

All blobs reflect committed changes immediately. Each version of the blob has a unique tag, called an
ETag, that you can use with access conditions to assure you only change a specific instance of the blob.

Any blob can be leased for exclusive write access. When a blob is leased, only calls that include the
current lease ID can modify the blob or (for block blobs) its blocks. Any blob can be duplicated in a
snapshot.

Note: Blobs in the Azure storage emulator are limited to a maximum size of 2 GB.

About Block Blobs
Block blobs let you upload large blobs efficiently. Block blobs are comprised of blocks, each of which is
identified by a block ID. You create or modify a block blob by writing a set of blocks and committing
them by their block IDs. Each block can be a different size, up to a maximum of 100 MB (4 MB for
requests using REST versions before 2016-05-31), and a block blob can include up to 50,000 blocks. The
maximum size of a block blob is therefore slightly more than 4.75 TB (100 MB X 50,000 blocks). For REST
versions before 2016-05-31, the maximum size of a block blob is a little more than 195 GB (4 MB X
50,000 blocks). If you are writing a block blob that is no more than 256 MB (64 MB for requests using
REST versions before 2016-05-31) in size, you can upload it in its entirety with a single write operation.

Storage clients default to a 128 MB maximum single blob upload, settable using the SingleBlobUp-
loadThresholdInBytes property of the BlobRequestOptions object. When a block blob upload is
larger than the value in this property, storage clients break the file into blocks. You can set the number of
threads used to upload the blocks in parallel on a per-request basis using the ParallelOperation-
ThreadCount property of the BlobRequestOptions object.

When you upload a block to a blob in your storage account, it is associated with the specified block blob,
but it does not become part of the blob until you commit a list of blocks that includes the new block's ID.
New blocks remain in an uncommitted state until they are specifically committed or discarded. Writing a
block does not update the last modified time of an existing blob.

Block blobs include features that help you manage large files over networks. With a block blob, you can
upload multiple blocks in parallel to decrease upload time. Each block can include an MD5 hash to verify
the transfer, so you can track upload progress and re-send blocks as needed. You can upload blocks in
any order, and determine their sequence in the final block list commitment step. You can also upload a
new block to replace an existing uncommitted block of the same block ID. You have one week to commit
blocks to a blob before they are discarded. All uncommitted blocks are also discarded when a block list
commitment operation occurs but does not include them.

You can modify an existing block blob by inserting, replacing, or deleting existing blocks. After uploading
the block or blocks that have changed, you can commit a new version of the blob by committing the new
blocks with the existing blocks you want to keep using a single commit operation. To insert the same
range of bytes in two different locations of the committed blob, you can commit the same block in two
places within the same commit operation. For any commit operation, if any block is not found, the entire
commitment operation fails with an error, and the blob is not modified. Any block commitment over-
writes the blob’s existing properties and metadata, and discards all uncommitted blocks.

Block IDs are strings of equal length within a blob. Block client code usually uses base-64 encoding to
normalize strings into equal lengths. When using base-64 encoding, the pre-encoded string must be 64
bytes or less. Block ID values can be duplicated in different blobs. A blob can have up to 100,000 uncom-
mitted blocks, but their total size cannot exceed 200,000 MB.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

172  Module 6 Module Develop for Azure Storage

If you write a block for a blob that does not exist, a new block blob is created, with a length of zero bytes.
This blob will appear in blob lists that include uncommitted blobs. If you don’t commit any block to this
blob, it and its uncommitted blocks will be discarded one week after the last successful block upload. All
uncommitted blocks are also discarded when a new blob of the same name is created using a single step
(rather than the two-step block upload-then-commit process).

About Page Blobs
Page blobs are a collection of 512-byte pages optimized for random read and write operations. To create
a page blob, you initialize the page blob and specify the maximum size the page blob will grow. To add
or update the contents of a page blob, you write a page or pages by specifying an offset and a range that
align to 512-byte page boundaries. A write to a page blob can overwrite just one page, some pages, or
up to 4 MB of the page blob. Writes to page blobs happen in-place and are immediately committed to
the blob. The maximum size for a page blob is 8 TB.

About Append Blobs
An append blob is comprised of blocks and is optimized for append operations. When you modify an
append blob, blocks are added to the end of the blob only, via the Append Block operation. Updating
or deleting of existing blocks is not supported. Unlike a block blob, an append blob does not expose its
block IDs.

Each block in an append blob can be a different size, up to a maximum of 4 MB, and an append blob can
include up to 50,000 blocks. The maximum size of an append blob is therefore slightly more than 195 GB
(4 MB X 50,000 blocks).

Reacting to Blob Storage Events
Azure Storage events allow applications to react to the creation and deletion of blobs using modern
serverless architectures. It does so without the need for complicated code or expensive and inefficient
polling services. Instead, events are pushed through Azure Event Grid to subscribers such as Azure
Functions, Azure Logic Apps, or even to your own custom http listener, and you only pay for what you
use.

Blob storage events are reliably sent to the Event grid service which provides reliable delivery services to
your applications through rich retry policies and dead-letter delivery.

Common Blob storage event scenarios include image or video processing, search indexing, or any
file-oriented workflow. Asynchronous file uploads are a great fit for events. When changes are infrequent,
but your scenario requires immediate responsiveness, event-based architecture can be especially effi-
cient.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  173

Blob storage accounts
Blob storage events are available in general-purpose v2 storage accounts and Blob storage accounts.
General-purpose v2 storage accounts support all features for all storage services, including Blobs, Files,
Queues, and Tables. A Blob storage account is a specialized storage account for storing your unstructured
data as blobs (objects) in Azure Storage. Blob storage accounts are like general-purpose storage accounts
and share all the great durability, availability, scalability, and performance features that you use today
including 100% API consistency for block blobs and append blobs.

Available Blob storage events
Event grid uses event subscriptions to route event messages to subscribers. Blob storage event subscrip-
tions can include two types of events:

Event Name Description
Microsoft.Storage.BlobCreated Fired when a blob is created or replaced through

the PutBlob, PutBlockList, or CopyBlob
operations

Microsoft.Storage.BlobDeleted Fired when a blob is deleted through a Delete-
Blob operation

Event Schema
Blob storage events contain all the information you need to respond to changes in your data. You can
identify a Blob storage event because the eventType property starts with “Microsoft.Storage”. Additional
information about the usage of Event Grid event properties is documented in Event Grid event schema3.

3	 https://docs.microsoft.com/en-us/azure/event-grid/event-schema

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

174  Module 6 Module Develop for Azure Storage

Filtering events
Blob event subscriptions can be filtered based on the event type and by the container name and blob
name of the object that was created or deleted. Filters can be applied to event subscriptions either during
the creation of the event subscription or at a later time. Subject filters in Event Grid work based on
“begins with” and "ends with" matches, so that events with a matching subject are delivered to the
subscriber. The subject of Blob storage events uses the format:

/blobServices/default/containers/<containername>/blobs/<blobname>

To match all events for a storage account, you can leave the subject filters empty. To match events from
blobs created in a set of containers sharing a prefix, use a subjectBeginsWith filter like:

/blobServices/default/containers/containerprefix

To match events from blobs created in specific container, use a subjectBeginsWith filter like:

/blobServices/default/containers/containername/

To match events from blobs created in specific container sharing a blob name prefix, use a subjectBe-
ginsWith filter like:

/blobServices/default/containers/containername/blobs/blobprefix

To match events from blobs created in specific container sharing a blob suffix, use a subjectEndsWith
filter like “.log” or ".jpg".

Practices for consuming events
Applications that handle Blob storage events should follow a few recommended practices:

●● As multiple subscriptions can be configured to route events to the same event handler, it is important
not to assume events are from a particular source, but to check the topic of the message to ensure
that it comes from the storage account you are expecting.

●● Similarly, check that the eventType is one you are prepared to process, and do not assume that all
events you receive will be the types you expect.

●● As messages can arrive out of order and after some delay, use the etag fields to understand if your
information about objects is still up-to-date. Also, use the sequencer fields to understand the order of
events on any particular object.

●● Use the blobType field to understand what type of operations are allowed on the blob, and which
client library types you should use to access the blob. Valid values are either BlockBlob or Page-
Blob.

●● Use the url field with the CloudBlockBlob and CloudAppendBlob constructors to access the blob.

●● Ignore fields you don't understand. This practice will help keep you resilient to new features that
might be added in the future.

Shared Access Signatures
A Shared Access Signature (SAS) is a URI that grants restricted access rights to containers, binary large
objects (blobs), queues, and tables for a specific time interval. By providing a client with a Shared Access

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  175

Signature, you can enable them to access resources in your storage account without sharing your
account key with them.

The Shared Access Signature URI query parameters incorporate all of the information necessary to grant
controlled access to a storage resource. The URI query parameters specify the time interval over which
the Shared Access Signature is valid, the permissions that it grants, the resource that is to be made availa-
ble, and the signature that the storage services should use to authenticate the request.

Here is an example of a SAS URI that provides read and write permissions to a blob. The table breaks
down each part of the URI to understand how it contributes to the SAS:

https://myaccount.blob.core.windows.net/sascontainer/sasblob.txt?sv=2012-02
-12&st=2013-04-29T22%3A18%3A26Z&se=2013-04-30T02%3A23%3A26Z&s-
r=b&sp=rw&sig=Z%2FRHIX5Xcg0Mq2rqI3OlWTjEg2tYkboXr1P9ZUXDtkk%3

Component Content Description
Blob URI https://myaccount.blob.core.

windows.net/sascontainer/
sasblob.txt

The address of the blob. Note
that using HTTPS is highly
recommended.

Storage services version sv=2012-02-12 For Azure Storage services
version 2012-02-12 and later,
this parameter indicates the
version to use.

Start time st=2013-04-
29T22%3A18%3A26Z

Specified in an International
Organization for Standardization
(ISO) 8061 format. If you want
the SAS to be valid immediately,
omit the start time.

Expiration time se=2013-04-
30T02%3A23%3A26Z

Specified in an ISO 8061 format.

Resource sr=b The resource is a blob.
Permissions sp=rw The permissions granted by the

SAS include Read (r) and Write
(w).

Signature sig=Z%2FRHIX5Xcg0Mq2rqI3Ol-
WTjEg2tYkboXr1P9ZUXDtkk%3D

Used to authenticate access to
the blob. The signature is a
HMAC function computed over a
string to sign and a key by using
the SHA256 algorithm and then
encoded by using Base64
encoding.

Valet key pattern that uses Shared Access Signatures
A common scenario where an SAS is useful is a service where users read and write their own data to your
storage account. In a scenario where a storage account stores user data, there are two typical design
patterns:

●● Clients upload and download data via a front-end proxy service, which performs authentication. This
front-end proxy service has the advantage of allowing the validation of business rules, but for large

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

176  Module 6 Module Develop for Azure Storage

amounts of data or high-volume transactions, creating a service that can scale to match demand
might be expensive or difficult.

●● Using the valet key pattern, a lightweight service authenticates the client as needed and then gener-
ates an SAS. After the client receives the SAS, they can access storage account resources directly with
the permissions defined by the SAS and for the interval allowed by the SAS. The SAS mitigates the
need for routing all data through the front-end proxy service.

●●

Stored access policies
A Shared Access Signature can take one of two forms:

●● An ad hoc SAS. When you create an ad hoc SAS, the start time, expiration time, and permissions for
the SAS are all specified on the SAS URI (or implied in the case where the start time is omitted). This
type of SAS can be created on a container, blob, table, or queue.

●● An SAS with a stored access policy. A stored access policy is defined on a resource container—a
blob container, table, or queue—and can be used to manage constraints for one or more Shared
Access Signatures. When you associate an SAS with a stored access policy, the SAS inherits the
constraints—the start time, expiration time, and permissions—defined for the stored access policy.

The difference between the two forms is important for one key scenario: revocation. An SAS is a URL, so
anyone who obtains the SAS can use it regardless of who requested it to begin with. If an SAS is pub-
lished publicly, it can be used by anyone in the world. Stored access policies give you the option to
revoke permissions without having to regenerate the storage account keys. Set the expiration on these to
be a very long time (or infinite), and make sure that it is regularly updated to move it further into the
future.

Setting and Retrieving Properties and Metadata
for Blob Resources by using REST
Containers and blobs support custom metadata, represented as HTTP headers. Metadata headers can be
set on a request that creates a new container or blob resource, or on a request that explicitly creates a
property on an existing resource.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  177

Metadata Header Format
Metadata headers are name/value pairs. The format for the header is:

x-ms-meta-name:string-value

Beginning with version 2009-09-19, metadata names must adhere to the naming rules for C# identifiers.

Names are case-insensitive. Note that metadata names preserve the case with which they were created,
but are case-insensitive when set or read. If two or more metadata headers with the same name are
submitted for a resource, the Blob service returns status code 400 (Bad Request).

The metadata consists of name/value pairs. The total size of all metadata pairs can be up to 8KB in size.

Metadata name/value pairs are valid HTTP headers, and so they adhere to all restrictions governing HTTP
headers.

Operations on Metadata
Metadata on a blob or container resource can be retrieved or set directly, without returning or altering
the content of the resource.

Note that metadata values can only be read or written in full; partial updates are not supported. Setting
metadata on a resource overwrites any existing metadata values for that resource.

Retrieving Properties and Metadata
The GET and HEAD operations both retrieve metadata headers for the specified container or blob. These
operations return headers only; they do not return a response body. The URI syntax for retrieving meta-
data headers on a container is as follows:

GET/HEAD https://myaccount.blob.core.windows.net/mycontainer?restype=con-
tainer

The URI syntax for retrieving metadata headers on a blob is as follows:

GET/HEAD https://myaccount.blob.core.windows.net/mycontainer/my-
blob?comp=metadata

Setting Metadata Headers
The PUT operation sets metadata headers on the specified container or blob, overwriting any existing
metadata on the resource. Calling PUT without any headers on the request clears all existing metadata on
the resource.

The URI syntax for setting metadata headers on a container is as follows:

PUT https://myaccount.blob.core.windows.net/mycontainer?comp=metadata-
?restype=container

The URI syntax for setting metadata headers on a blob is as follows:

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

178  Module 6 Module Develop for Azure Storage

PUT https://myaccount.blob.core.windows.net/mycontainer/myblob?comp=metada-
ta

Standard HTTP Properties for Containers and Blobs
Containers and blobs also support certain standard HTTP properties. Properties and metadata are both
represented as standard HTTP headers; the difference between them is in the naming of the headers.
Metadata headers are named with the header prefix x-ms-meta- and a custom name. Property headers
use standard HTTP header names, as specified in the Header Field Definitions section 14 of the HTTP/1.1
protocol specification.

The standard HTTP headers supported on containers include:

●● ETag

●● Last-Modified

The standard HTTP headers supported on blobs include:

●● ETag

●● Last-Modified

●● Content-Length

●● Content-Type

●● Content-MD5

●● Content-Encoding

●● Content-Language

●● Cache-Control

●● Origin

●● Range

Manipulating Blob Container Properties in .NET
The CloudStorageAccount class contains the CreateCloudBlobClient method that gives you
programmatic access to a client that manages your file shares:

CloudBlobClient client = storageAccount.CreateCloudBlobClient();

To reference a specific blob container, you can use the GetContainerReference method of the
CloudBlobClient class:

CloudBlobContainer container = client.GetContainerReference("images");

After you have a reference to the container, you can ensure that the container exists. This will create the
container if it does not already exist in the Azure storage account:

container.CreateIfNotExists();

With a hydrated reference, you can perform actions such as fetching the properties (metadata) of the
container by using the FetchAttributesAsync method of the CloudBlobContainer class:

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Develop Solutions that use Microsoft Azure Blob Storage  179

await container.FetchAttributesAsync();

After the method is invoked, the local variable is hydrated with values for various container metadata.
This metadata can be accessed by using the Properties property of the CloudBlobContainer class,
which is of type BlobContainerProperties:

container.Properties

This class has properties that can be set to change the container, including (but not limited to) those in
the following table.

Property Description
ETag This is a standard HTTP header that gives a value

that is unchanged unless a property of the
container is changed. This value can be used to
implement optimistic concurrency with the blob
containers.

LastModified This property indicates when the container was
last modified.

PublicAccess This property indicates the level of public access
that is allowed on the container. Valid values
include Blob, Container, Off, and Unknown.

HasImmutabilityPolicy This property indicates whether the container has
an immutability policy. An immutability policy will
help ensure that blobs are stored for a minimum
amount of retention time.

HasLegalHold This property indicates whether the container has
an active legal hold. A legal hold will help ensure
that blobs remain unchanged until the hold is
removed.

Manipulating Blob Container Metadata in .NET
Using the existing CloudBlobContainer variable (named container), you can set and retrieve custom
metadata for the container instance. This metadata is hydrated when you call the FetchAttributes or
FetchAttributesAsync method on your blob or container to populate the Metadata collection.

The following code example sets metadata on a container. In this example, we use the collection's Add
method to set a metadata value:

container.Metadata.Add("docType", "textDocuments");

In the next example, we set the metadata value by using implicit key/value syntax:

container.Metadata["category"] = "guidance";

To persist the newly set metadata, you must call the SetMetadataAsync method of the CloudBlobCon-
tainer class:

await container.SetMetadataAsync();

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

180  Module 6 Module Develop for Azure Storage

Review Questions
Module 6 - Review Questions

Shared Access Signature
A Shared Access Signature (SAS) is a URI that grants restricted access rights to containers, binary large
objects (blobs), queues, and tables for a specific time interval. By providing a client with a Shared Access
Signature, you can enable them to access resources in your storage account without sharing your
account key with them. What are the two forms an SAS can take?

> Click to see suggested answer
●● An ad hoc SAS. When you create an ad hoc SAS, the start time, expiration time, and permissions for

the SAS are all specified on the SAS URI (or implied in the case where the start time is omitted). This
type of SAS can be created on a container, blob, table, or queue.

●● An SAS with a stored access policy. A stored access policy is defined on a resource container—a
blob container, table, or queue—and can be used to manage constraints for one or more Shared
Access Signatures. When you associate an SAS with a stored access policy, the SAS inherits the
constraints—the start time, expiration time, and permissions—defined for the stored access policy.

Copying Blobs between containers
Like with Azure Files, you can use AzCopy to copy blobs between storage containers. By default, does
AzCopy copy data synchronously or asynchronously?

> Click to see suggested answer
By default, AzCopy copies data between two storage endpoints asynchronously. Therefore, the copy
operation runs in the background by using spare bandwidth capacity that has no Service Level Agree-
ment (SLA) in terms of how fast a blob is copied, and AzCopy periodically checks the copy status until the
copying has completed or failed.

Azure SQL database
SQL Database is a general-purpose relational database managed service in Microsoft Azure that supports
structures such as relational data, JSON, spatial, and XML. What are the three deployment options for
Azure SQL database?

> Click to see suggested answer
Azure SQL Database provides the following deployment options for an Azure SQL database:

●● As a single database with its own set of resources managed via a logical server

●● As a pooled database in an elastic pool with a shared set of resources managed via a logical server

●● As a part of a collection of databases known as a managed instance that contains system and user
databases and sharing a set of resources

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

Review Questions  181

DbContext implementation
To use Entity Framework to query, insert, update, and delete data using .NET objects, you first need to
create a model that maps the entities and relationships defined in your model to tables in a database.
After you have a model, the primary class your application interacts with is System.Data.Entity.
DbContext (often referred to as the context class). You can use a DbContext class associated to a
model to (name as many as you can):

> Click to see suggested answer
●● Write and execute queries.

●● Materialize query results as entity objects.

●● Track changes that are made to those objects.

●● Persist object changes back on the database.

●● Bind objects in memory to UI controls.

The recommended way to work with the context is to define a class that derives from DbContext and
exposes DbSet properties that represent collections of the specified entities in the context.

Azure Cosmos DB Core functionality
Azure Cosmos DB has a feature referred to as turnkey global distribution that automatically replicates
data to other Azure datacenters across the globe without the need to manually write code or build a
replication infrastructure. Can you name, and describe, the different consistency levels?

> Click to see suggested answer
Consistency Level Description
Strong When a write operation is performed on your

primary database, the write operation is replicated
to the replica instances. The write operation is
committed (and visible) on the primary only after
it has been committed and confirmed by all
replicas.

Bounded Stateless This level is similar to the Strong level with the
major difference that you can configure how stale
documents can be within replicas. Staleness refers
to the quantity of time (or the version count) a
replica document can be behind the primary
document.

Session This level guarantees that all read and write
operations are consistent within a user session.
Within the user session, all reads and writes are
monotonic and guaranteed to be consistent across
primary and replica instances.

M
CT U

SE O
N

LY. STU
D

EN
T U

SE PRO
H

IBITED

182  Module 6 Module Develop for Azure Storage

Consistency Level Description
Consistent Prefix This level has loose consistency but guarantees

that when updates show up in replicas, they will
show up in the correct order (that is, as prefixes of
other updates) without any gaps.

Eventual This level has the loosest consistency and essen-
tially commits any write operation against the
primary immediately. Replica transactions are
asynchronously handled and will eventually (over
time) be consistent with the primary. This tier has
the best performance, because the primary
database does not need to wait for replicas to
commit to finalize it's transactions.

Partitioning
Azure Cosmos DB provides containers for storing data called collections (for documents), graphs, or
tables. Containers are logical resources and can span one or more physical partitions or servers. Can you
describe the differences between physical and logical partitions?

> Click to see suggested answer
A physical partition is a fixed amount of reserved solid-state drive (SSD) backend storage combined with
a variable amount of compute resources (CPU and memory). Each physical partition is replicated for high
availability.

A logical partition is a partition within a physical partition that stores all the data associated with a single
partition key value. Partition ranges can be dynamically subdivided to seamlessly grow the database as
the application grows while simultaneously maintaining high availability.

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

M
CT

 U
SE

 O
N

LY
. S

TU
D

EN
T

U
SE

 P
RO

H
IB

IT
ED

