	Support Cours Github Gitlab
	Référence :
	Version : 1.0

	Support Cours Github Gitlab

	Support de cours sur github gitlab

	

	Référence : TYPE-TECHNO-MODULE-1999

	Auteur :
David Duarte Teixeira

	Destinataires :
Formateurs
Apprenants

	
	
	Date de dernière modification : 10/10/23
	Version : 1.0

	

	[image: F:___save-a\Professionel_1901\Easyformer\2017-01-03 save Easyformer\Identité visuelle\easyFormer- texte only (middle).jpg]
La formation à 360°

EasyFormer – 12, Rue des Violettes – 95000 Cergy
 	 Email : info@easyformer.fr – Web : www.easyformer.fr
	Document réservé aux formateurs EasyFormer
[bookmark: _Toc124427854][bookmark: _Toc147792166]
Remerciements
EasyFormer est une organisation dont l’un des objectifs est de mutualiser les efforts de tous afin d’améliorer la qualité de la formation et d’aider les centres à proposer un contenu plus ciblé et exhaustif.

Nous tenons à remercier chaleureusement tous les généreux contributeurs bénévoles ou non (rédacteurs, formateurs, stagiaires, apprenants ou autres) qui ont participé à la rédaction, l’amélioration et la correction de nos supports de cours et de travaux pratiques.
[bookmark: _Toc147792167]Devenez contributeur
Pour contribuer à l’effort collectif et aider les mécanismes de formation nationaux vous pouvez :
· rédiger des paragraphes,
· proposer des améliorations à nos supports,
· signaler les coquilles orthographiques ou grammaticales,
· proposer des compléments (rédigés ou non),
· rectifier ou mettre à jour des informations techniques.

 Et envoyer votre travail à doc@easyformer.fr

Vous trouverez ci-dessous une liste non exhaustive (et qui ne respecte pas d’ordre précis) de contributeurs qui ont participé à la rédaction des documents EasyFormer : https://cloud.easyformer.fr/index.php/s/contributeurs

	[image: F:___save-a\Professionel_1901\Easyformer\2017-01-03 save Easyformer\Identité visuelle\easyFormer- texte only (middle).jpg]
La formation à 360°

EasyFormer – 12, Rue des Violettes – 95000 Cergy
 	 Email : info@easyformer.fr – Web : www.easyformer.fr
	Document réservé aux formateurs EasyFormer

Remerciements	2
Devenez contributeur	2
1	Introduction	5
1.1	Qu'est-ce que la gestion de version?	5
1.2	Pourquoi la gestion de version est-elle importante?	5
1.3	Les outils de gestion de version	5
2	Git - Le Fondement	6
2.1	Qu'est-ce que Git?	6
2.2	Installation de Git	6
2.3	Configuration de Git	7
3	Les Concepts Fondamentaux de Git	8
3.1	Répertoire (repository)	8
3.2	Commit	8
3.3	Branches	8
3.4	Fusion (Merge)	8
3.5	Conflits	8
3.6	Pull et Push	9
4	Utilisation de Git en Ligne de Commande	10
4.1	Initialisation d'un nouveau projet	10
4.2	Ajout de fichiers au suivi (staging)	10
4.3	Réalisation de commits	10
4.4	Création et gestion des branches	10
4.5	Résolution de conflits	11
5	Introduction à GitHub et GitLab	12
5.1	Qu'est-ce que GitHub?	12
5.2	Qu'est-ce que GitLab?	12
5.3	Création d'un compte	12
5.4	Création d'un nouveau projet	12
6	Collaborer avec GitHub et GitLab	13
6.1	Clonage de dépôts	13
6.2	Création de pull requests (GitHub) ou merge requests (GitLab)	13
6.3	Revue de code	13
6.4	Approbation et fusion de pull requests/merge requests	13
7	Gestion des Problèmes (Issues)	14
7.1	Création de problèmes	14
7.2	Attribution et suivi des problèmes	14
7.3	Intégration avec les pull requests/merge requests	14
8	Fonctionnalités Avancées de GitHub et GitLab	15
8.1	Actions GitHub/GitLab CI/CD	15
8.2	Gestion des secrets	15
9	Support et Ressources	16
9.1	Où trouver de l'aide	16

[bookmark: _Toc147792168]Introduction
[bookmark: _Toc147792169]Qu'est-ce que la gestion de version?
La gestion de version, également connue sous le nom de gestion de code source, est un processus essentiel dans le développement de logiciels qui permet de suivre et de gérer les modifications apportées à un ensemble de fichiers ou de code source au fil du temps. Cette pratique fondamentale offre une traçabilité des changements, facilite la collaboration en équipe et permet de revenir en arrière en cas de besoin.

[bookmark: _Toc147792170]Pourquoi la gestion de version est-elle importante?
La gestion de version est cruciale pour plusieurs raisons. Tout d'abord, elle permet de suivre l'évolution du code, ce qui signifie que chaque modification est enregistrée avec un horodatage et une description, ce qui facilite la compréhension des raisons des modifications. De plus, elle favorise la collaboration en équipe, permettant à plusieurs développeurs de travailler simultanément sur un projet sans se gêner mutuellement. En outre, elle offre une gestion efficace des conflits, car elle permet de gérer les cas où deux développeurs modifient la même partie du code en même temps. De plus, la gestion de version offre une sauvegarde et une récupération en cas de problèmes, car les versions précédentes du code sont stockées. Enfin, elle favorise la documentation des changements, car chaque modification est accompagnée d'un message de commit descriptif.

[bookmark: _Toc147792171]Les outils de gestion de version
Il existe de nombreux outils de gestion de version, mais deux des plus populaires et largement utilisés sont Git et ses plateformes d'hébergement en ligne, GitHub et GitLab.

[bookmark: _Toc147792172]Git - Le Fondement
[bookmark: _Toc147792173]Qu'est-ce que Git?
Git est un système de gestion de version distribué qui a été créé par Linus Torvalds en 2005. Il est devenu le choix prédominant pour le suivi des modifications dans les fichiers source d'un projet en raison de sa rapidité, de sa flexibilité et de sa robustesse.

[bookmark: _Toc147792174]Installation de Git
Pour commencer à utiliser Git, vous devez d'abord l'installer sur votre système. Suivez les étapes ci-dessous pour installer Git sur différentes plates-formes :
· Sur Windows : Téléchargez l'installateur Git pour Windows à partir du site officiel de Git (https://git-scm.com/download/win).
Exécutez le fichier d'installation téléchargé et suivez les étapes d'installation par défaut. Vous pouvez généralement accepter les paramètres par défaut à moins que vous ayez des préférences particulières.
Une fois l'installation terminée, ouvrez Git Bash pour accéder à l'interface en ligne de commande Git.

· Sur macOS : Installez Git en utilisant Homebrew (un gestionnaire de paquets pour macOS) en exécutant la commande suivante dans le terminal :
brew install git
Une fois l'installation terminée, vérifiez si Git a été installé avec succès en exécutant la commande :
git –version
· Sur Linux (Debian/Ubuntu) : Ouvrez un terminal. Utilisez la commande suivante pour installer Git :
sudo apt-get update
sudo apt-get install git
Vérifiez si Git a été installé avec succès en exécutant la commande :
git --version

[bookmark: _Toc147792175]Configuration de Git
Une fois Git installé, il est important de le configurer correctement pour qu'il puisse associer vos modifications à votre identité. Vous pouvez le faire en utilisant les commandes suivantes avec votre nom d'utilisateur et votre adresse e-mail :
git config --global user.name "Votre Nom"
git config --global user.email "votre@email.com"

[bookmark: _Toc147792176] Les Concepts Fondamentaux de Git
[bookmark: _Toc147792177] Répertoire (repository)
Un répertoire Git, souvent appelé "repo", est un espace de stockage qui contient tous les fichiers, dossiers et l'historique des modifications de votre projet. C'est là que Git conserve toutes les informations nécessaires pour suivre l'évolution de votre code.

[bookmark: _Toc147792178] Commit
Un commit est une action fondamentale dans Git. Il s'agit d'un enregistrement qui capture un instantané des modifications apportées à votre projet à un moment donné. Chaque commit est accompagné d'un message de commit qui explique en détail les changements effectués.

[bookmark: _Toc147792179]Branches
Les branches sont un concept clé de Git qui permet de créer des versions distinctes de votre projet. Elles sont utilisées pour travailler sur des fonctionnalités ou des correctifs isolés sans affecter la branche principale du projet. Chaque branche peut être considérée comme une ligne de développement indépendante.

[bookmark: _Toc147792180]Fusion (Merge)
La fusion est le processus de combinaison des modifications d'une branche dans une autre. Elle permet d'intégrer les modifications d'une fonctionnalité ou d'une branche de développement dans la branche principale du projet.

[bookmark: _Toc147792181]Conflits
Les conflits surviennent lorsque Git ne peut pas automatiquement fusionner des modifications en raison de divergences entre les branches. Les conflits doivent être résolus manuellement en choisissant les modifications à conserver.
[bookmark: _Toc147792182]Pull et Push
· Pull : La commande git pull est utilisée pour récupérer les modifications depuis un dépôt distant et les intégrer à votre copie locale du projet.
· Push : La commande git push permet d'envoyer vos modifications locales vers un dépôt distant. Cela permet aux autres contributeurs d'accéder à vos modifications et de les intégrer dans leur propre copie du projet.

[bookmark: _Toc147792183]Utilisation de Git en Ligne de Commande
[bookmark: _Toc147792184]Initialisation d'un nouveau projet
Pour créer un nouveau répertoire Git, vous pouvez utiliser la commande git init. Cette commande initialise un répertoire vide et configure Git pour le suivi des modifications.

[bookmark: _Toc147792185]Ajout de fichiers au suivi (staging)
Lorsque vous avez apporté des modifications à vos fichiers et que vous souhaitez les enregistrer dans un commit, vous devez les ajouter au suivi (staging) en utilisant la commande git add nom_fichier. Cette étape permet à Git de savoir quels fichiers seront inclus dans le prochain commit.

[bookmark: _Toc147792186]Réalisation de commits
Une fois que vous avez ajouté des fichiers au suivi, vous pouvez réaliser un commit en utilisant la commande git commit -m "Message de commit". Le message de commit doit être informatif et concis, expliquant les modifications apportées dans ce commit.

[bookmark: _Toc147792187]Création et gestion des branches
Créer une nouvelle branche : Vous pouvez créer une nouvelle branche en utilisant la commande git branch nom_branche. Par exemple, pour créer une branche appelée "nouvelle-fonctionnalite" :
git branch nouvelle-fonctionnalite
Changer de branche : Pour passer d'une branche à une autre, utilisez la commande git checkout nom_branche. Par exemple, pour passer à la branche "nouvelle-fonctionnalite" :
git checkout nouvelle-fonctionnalite
Fusionner une branche : La fusion de branches se fait avec la commande git merge nom_branche. Par exemple, pour fusionner la branche "nouvelle-fonctionnalite" dans la branche principale :
git merge nouvelle-fonctionnalite

[bookmark: _Toc147792188]Résolution de conflits
Lorsque vous fusionnez des branches et que des conflits surviennent, Git vous informe des fichiers en conflit. Ouvrez ces fichiers dans un éditeur de texte, résolvez les conflits manuellement en choisissant les modifications à conserver, puis réalisez un commit pour valider la résolution des conflits.
Travailler avec des dépôts distants
Cloner un dépôt distant : Pour copier un dépôt distant sur votre machine locale, utilisez la commande git clone url_du_depot. Par exemple, pour cloner un dépôt situé à l'adresse "https://github.com/utilisateur/mon-projet.git" :
git clone https://github.com/utilisateur/mon-projet.git
Récupérer les modifications distantes : Utilisez git pull pour récupérer les modifications depuis le dépôt distant et les fusionner avec votre copie locale.
Envoyer des modifications locales : Utilisez git push pour envoyer vos modifications locales vers un dépôt distant. Cela permet aux autres collaborateurs d'accéder à vos modifications et de les intégrer dans leur propre copie du projet.

[bookmark: _Toc147792189]Introduction à GitHub et GitLab
[bookmark: _Toc147792190]Qu'est-ce que GitHub?
GitHub est une plateforme d'hébergement de code source basée sur Git. Elle offre des fonctionnalités avancées de collaboration en ligne, de suivi des problèmes (issues), de gestion de projet et d'intégration continue. Les développeurs du monde entier utilisent GitHub pour héberger leurs projets, collaborer efficacement avec d'autres et contribuer à des projets open source.

[bookmark: _Toc147792191]Qu'est-ce que GitLab?
GitLab est une plateforme similaire à GitHub, mais avec une différence clé : GitLab peut être auto-hébergé. Cela signifie que les organisations peuvent installer GitLab sur leurs propres serveurs, ce qui leur donne un contrôle total sur la gestion de leurs projets, y compris la sécurité et la confidentialité. GitLab propose également des fonctionnalités de gestion de projet, d'intégration continue et de déploiement continu.

[bookmark: _Toc147792192]Création d'un compte
Pour commencer à utiliser GitHub ou GitLab, la première étape est de créer un compte sur leur site web respectif. Vous devrez fournir votre adresse e-mail, choisir un nom d'utilisateur et un mot de passe.

[bookmark: _Toc147792193]Création d'un nouveau projet
· Sur GitHub, la création d'un nouveau dépôt est simple. Il suffit de cliquer sur "New" pour créer un nouveau dépôt. Vous devrez lui donner un nom, une description, et vous pouvez choisir de le rendre public (visible par tous) ou privé (accessible uniquement aux collaborateurs autorisés). Vous pouvez également choisir d'initialiser le dépôt avec un fichier README et de sélectionner une licence.
· Sur GitLab, la création d'un nouveau projet se fait à partir du tableau de bord. En cliquant sur "New project", vous aurez la possibilité de configurer diverses options, notamment la visibilité, le nom du projet et la description.

[bookmark: _Toc147792194]Collaborer avec GitHub et GitLab
[bookmark: _Toc147792195]Clonage de dépôts
Pour commencer à travailler sur un projet hébergé sur GitHub ou GitLab, vous devez d'abord cloner le dépôt sur votre machine locale en utilisant la commande git clone. Assurez-vous d'avoir les droits d'accès appropriés au dépôt.
git clone url_du_depot

[bookmark: _Toc147792196]Création de pull requests (GitHub) ou merge requests (GitLab)
Lorsque vous souhaitez proposer des modifications à un projet, que ce soit pour corriger des bogues, ajouter de nouvelles fonctionnalités ou effectuer d'autres améliorations, vous utilisez une pull request (PR) sur GitHub ou une merge request (MR) sur GitLab. Ces fonctionnalités vous permettent de soumettre vos modifications pour examen et intégration dans le projet principal.

[bookmark: _Toc147792197]Revue de code
La revue de code est une étape critique du processus de collaboration. Les membres de l'équipe examinent les modifications proposées dans une PR ou MR. Ils posent des questions, suggèrent des améliorations et vérifient que les normes de codage sont respectées. La revue de code garantit la qualité du code et facilite l'apprentissage en permettant aux développeurs de partager leurs connaissances.

[bookmark: _Toc147792198]Approbation et fusion de pull requests/merge requests
Une fois que les modifications ont été examinées, testées et approuvées, un membre de l'équipe peut approuver la PR ou MR et la fusionner dans la branche principale du projet. Cela intègre officiellement les modifications dans le projet.

[bookmark: _Toc147792199]Gestion des Problèmes (Issues)
[bookmark: _Toc147792200]Création de problèmes
Les problèmes, également appelés issues, sont des demandes de fonctionnalités, des rapports de bogues ou des tâches à réaliser dans un projet. Lorsque vous identifiez un problème, vous pouvez le créer pour documenter le travail à effectuer. Les problèmes servent de moyen de communication entre les membres de l'équipe et les contributeurs.

[bookmark: _Toc147792201]Attribution et suivi des problèmes
Pour organiser le travail, vous pouvez attribuer des problèmes à des contributeurs spécifiques. Vous pouvez également ajouter des étiquettes pour catégoriser les problèmes, indiquer leur statut (ouvert, en cours, fermé, etc.) et suivre leur progression.

[bookmark: _Toc147792202]Intégration avec les pull requests/merge requests
Les problèmes peuvent être liés aux PR ou MR pour indiquer que des modifications spécifiques résolvent un problème particulier. Cette intégration permet de suivre facilement la relation entre les problèmes et les modifications apportées au code.

[bookmark: _Toc147792203]Fonctionnalités Avancées de GitHub et GitLab
[bookmark: _Toc147792204]Actions GitHub/GitLab CI/CD
Les actions GitHub et les pipelines GitLab CI/CD sont des fonctionnalités avancées qui permettent d'automatiser les tests, les déploiements et d'autres tâches liées au développement de logiciels. Vous pouvez configurer ces workflows pour qu'ils s'exécutent automatiquement à chaque modification du code, assurant ainsi une intégration continue et un déploiement continu (CI/CD).

[bookmark: _Toc147792205]Gestion des secrets
La sécurité est une préoccupation majeure dans le développement de logiciels. Pour protéger les informations sensibles, GitHub et GitLab offrent des fonctionnalités de gestion des secrets. Ces fonctionnalités permettent de stocker en toute sécurité des informations telles que des clés d'API, des mots de passe et des tokens nécessaires aux déploiements et aux intégrations.

[bookmark: _Toc147792206]Support et Ressources
[bookmark: _Toc147792207]Où trouver de l'aide
Si vous rencontrez des problèmes ou avez des questions sur Git, GitHub, ou GitLab, voici quelques ressources où vous pouvez trouver de l'aide :
· Documentation officielle : Consultez la documentation officielle de Git (https://git-scm.com/docs) pour des informations détaillées sur les commandes Git et les concepts.
· Forums de support : Les forums de support de Git, GitHub et GitLab sont d'excellents endroits pour poser des questions et obtenir de l'aide de la communauté.
· Tutoriels en ligne : De nombreux tutoriels en ligne couvrent Git et ses plateformes associées. Vous pouvez trouver des vidéos, des blogs et des cours en ligne pour approfondir vos connaissances.
· Livres : Il existe de nombreux livres sur Git et la gestion de version. Recherchez des titres recommandés pour une lecture approfondie.
· ormation en entreprise : Si vous travaillez dans une entreprise qui utilise Git, GitHub ou GitLab, il est possible qu'ils offrent une formation interne pour vous aider à maîtriser ces outils.
N'oubliez pas de consulter la documentation officielle de Git, GitHub et GitLab pour plus d'informations et de ressources supplémentaires.
	

	Support de cours sur github gitlab
	Page 4 sur 4

	
	© EASYFORMER 2023 - Tous droits réservés
	Date : 10/10/23

image1.png

image2.png
)Z-W

image3.png

