

La formation à 360°

Easyformer - 12 rue des violettes - 95000 Cergy

 Email : info@easyformer.fr Web : www.easyformer.fr

 Document réservé aux formateurs EasyFormer

Ansible

Automatisation MySQL

Référence : EF-TEST-TEST

Auteur(s) :
Yann BENHAMRON

Destinataire(s) :
Easyformer

 Date de modification : 13/02/24 Version : 1

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 2 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Sommaire page

1 ENONCE .. 4

2 OBJECTIFS ... 4

3 CONFIGURATION REQUISE .. 5

4 CONSIGNES ADDITIONNELLES ... 7

5 LIVRABLES ... 7

6 PROCEDURE .. 8

6.1 CREATION DES VMS AVEC VAGRANT (PROVIDER VMWARE) .. 8
6.1.1 Prérequis : ... 8

6.2 CONFIGURATION DU SERVER ... 10
6.2.1 Installation d’ansible ... 10
6.2.2 Génération de clé SSH ... 10
6.2.3 Partage de clé ssh sur les deux serveurs Galera et sur le serveur Backup................................... 11
6.2.4 Configuration du ficher hosts d'ansible ... 11

6.3 CREATION DU CLUSTER AVEC GALERA ... 12
6.3.1 Création du rôle galera ... 12
6.3.2 Configuration des serveurs Galera .. 12
6.3.3 Création du playbook galera ... 14

6.4 CREER DES BASES DE DONNEES ET DES TABLES .. 17
6.4.1 Création du playbook create_db_tables.yml .. 17
6.4.2 Vérification du cluster galera .. 19

6.5 CONFIGURATION DU BACKUP DANS LE SERVER BACKUP ... 23
6.5.1 Script de backup .. 24
6.5.2 Excution playbook de backup .. 25
6.5.1 Vérification des Backup ... 25

7 ANNEX ... 26

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 3 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

 .. 27

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 4 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

1 Enoncé

Pour cet exercice, nous allons élaborer un cas pratique qui englobe :

• La configuration d'un cluster Galera pour MariaDB sur deux nœuds à l'aide
d'Ansible

• La création automatisée de bases de données et de tables

• La mise en place d'une stratégie de sauvegarde automatisée avec
mysqldump et cron.

2 Objectifs

Les Objectifs sont les suivantes :

1. Configurer un cluster Galera pour MariaDB sur deux nœuds en utilisant
Ansible pour l'installation et la configuration.

2. Créer des bases de données et des tables de manière automatisée sur les
deux nœuds du cluster.

3. Automatiser les sauvegardes avec mysqldump et cron sur un serveur distant,
en s'exécutant toutes les 5 minutes.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 5 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

3 Configuration Requise

Serveur Ansible : 192.168.240.10
Premier nœud du cluster : 192.168.240.11
Deuxième nœud du cluster : 192.168.240.12
Serveur de sauvegarde : 192.168.240.13

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 6 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Suivre les étapes suivantes :
1. Configuration du Cluster Galera avec Ansible

a. Définir un playbook Ansible pour installer MariaDB et configurer le
cluster Galera sur les deux nœuds (192.168.240.11 et
192.168.240.12).

2. Création Automatisée de Bases de Données et de Tables
a. Définir un playbook Ansible qui exécute les commandes SQL pour

créer les éléments suivants sur chaque nœud du cluster
b. Etablir une clé de relation entre les tables Utilisateurs et Connexions

dans votre base de données galera_cluster_db

Base de données : galera_cluster_db

Table 1 : Utilisateurs
Table 2 : Connexions

Id (INT,
clé
primaire
, auto-
incréme
nte)

Nom
(VARCH
AR)

Email
(VARCHAR)

Date
inscript
ion
(DATE
)

Connexio
n_id (INT,
clé
primaire,
auto-
incrément
)

Utilisateur
_id (INT,
clé
étrangère
vers
Utilisateur
s.id)

Timesta
mp
(DATETI
ME).

1010
Yann yann@hotmail

.com
05/02/
24

1 1030 2024-02-
07
10:00:00

1020
David david@hotmail

.com
06/02/
24

2 1010 2024-02-
07
11:00:00

1030
Dorian dorian@hotma

il.com
07/02/
24

3 1020 2024-02-
07
12:00:00

Pour établir une clé de relation entre les tables Utilisateurs et Connexions dans
votre base de données galera_cluster_db, vous utilisez la colonne Utilisateur_id
dans la table Connexions comme clé étrangère qui pointe vers la colonne Id de la
table Utilisateurs. Cette relation permet de lier chaque enregistrement de connexion
à un utilisateur spécifique dans la base de données.
Une clé étrangère est un concept clé dans le domaine des bases de données
relationnelles, utilisé pour maintenir l'intégrité des données et établir une relation
logique entre deux tables.

3. Automatisation des Sauvegardes avec MysqlDumb et Cron
a. Définir un playbook Ansible pour concevoir un script shell. Ce script

emploiera mysqldump pour effectuer des sauvegardes de
galera_cluster_db sur chaque nœud, en stockant ces sauvegardes
dans des fichiers distincts au sein d'un dossier /etc/SAVE situé sur le
serveur de sauvegarde à l'adresse 192.168.240.13.

b. Configurer une tâche cron sur le serveur de sauvegarde pour exécuter
ce script toutes les 5 minutes.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 7 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

4 Consignes Additionnelles

Pour garantir l'efficacité de la stratégie de sauvegarde, il est recommandé de tester
la restauration d'une base de données à partir des fichiers de sauvegarde et de
documenter chaque étape du TP, permettant ainsi une reproduction ou une
vérification aisée par d'autres.

5 Livrables

À la fin du TP, vous devez soumettre les éléments suivants :

• Playbook Ansible pour l'installation et la configuration de MariaDB et du
cluster Galera.

• Playbook Ansible pour la création de bases de données et de tables.

• Playbook Ansible qui exécute les commandes SQL pour créer la base de
données, les tables, le contenue des tables et la clé étrangère qui permet de
faire la relation des deux tables

• Script de sauvegarde et configuration cron pour les sauvegardes
automatiques.

• Documentation détaillée des étapes, commandes SQL utilisées pour la
création des tables, et instructions pour la vérification de l'exercice.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 8 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6 Procédure
6.1 Création des Vms avec vagrant (Provider Vmware)

6.1.1 Prérequis :

Vagrant installé sur votre machine Vagrant et Vagrant_VMware_Utility
Plugin Vagrant VMware Desktop installé : vagrant plugin install vagrant-vmware-desktop

Étapes :
Configuration du Vagrantfile :

Assurez-vous que les ressources de chaque machine virtuelle (RAM, CPU) sont adaptées à
vos besoins.

Ouvrez un terminal dans le répertoire où se trouve le Vagrantfile.
Exécutez la commande suivante pour créer le Vagrantfile

vagrant init waounde221/ubuntu

Exécutez la commande suivante pour créer les machines virtuelles :

vagrant up --provider vmware_desktop

Connexion aux VMs :

Une fois la création terminée, utilisez la commande suivante pour vous connecter à une VM
spécifique (remplacez X par le numéro de la VM) :
Copy code

vagrant ssh srvX ou ssh vagrant@IPdela VM

Provisionnement automatique :

Les VMs seront automatiquement mises à jour, le port 22 sera ouvert, et la connexion SSH
en tant que root sera autorisée.
Personnalisation (si nécessaire) :

Si vous souhaitez personnaliser davantage les machines virtuelles, modifiez le script de
provisionnement dans le Vagrantfile en conséquence. Vous pouvez également utiliser un
script sh personnalisé avec Vagrant pour automatiser et configurer des tâches spécifiques
selon vos besoins.
Arrêt des VMs :
Pour arrêter les VMs, utilisez la commande :

vagrant halt

Suppression des VMs :
Si vous souhaitez supprimer complètement les VMs, utilisez la commande :

vagrant destroy -f

Vous pouvez personnaliser les paramètres du vagrantfile selon vos besoins spécifiques
avant de lancer la création des VMs.

https://releases.hashicorp.com/vagrant/2.4.1/vagrant_2.4.1_windows_amd64.msi
https://releases.hashicorp.com/vagrant-vmware-utility/1.0.22/vagrant-vmware-utility_1.0.22_windows_amd64.msi

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 9 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Ce Vagrantfile permet de créer 4 VM avec l’image box waounde221/ubuntu
L’user par default de vagrant est : user ➔ vagrant password ➔ vagrant

-*- mode: ruby -*-

vi: set ft=ruby :

Définition des ressources pour chaque machine virtuelle

RAM = 2048

CPU = 2

Configuration générale de Vagrant

Vagrant.configure("2") do |config|

 # Boucle pour créer 4 machines virtuelles

 (1..4).each do |i|

 config.vm.define "srv#{i}" do |srv|

 # Configuration de la box Vagrant pour chaque machine virtuelle

 srv.vm.box = "waounde221/ubuntu"

 # Attribution d'un nom d'hôte unique à chaque machine virtuelle

 srv.vm.hostname = "srv#{i}"

 # Configuration du fournisseur de la machine virtuelle (VMware Desktop)

 srv.vm.provider "vmware_desktop" do |v|

 # Activation de l'interface graphique

 v.gui = true

 # Spécification de la mémoire pour chaque machine virtuelle

 v.memory = RAM

 # Spécification du nombre de CPU pour chaque machine virtuelle

 v.cpus = CPU

 end
Provisionnement pour mettre à jour les 4 VMs, ouvrir le port 22 et autoriser la connexion SSH en tant que root

 srv.vm.provision "shell", inline: <<-SHELL

 # Mise à jour du système

 sudo apt update && sudo apt full-upgrade -y

 # Modification du fichier de configuration SSH pour autoriser la connexion en tant que root

 sudo sed -i 's/#PermitRootLogin prohibit-password/PermitRootLogin yes/' /etc/ssh/sshd_config

 # Redémarrage du service SSH

 sudo systemctl restart sshd

 # Création d'un mot de passe pour l'utilisateur root (remplacez 'vagrant' par votre mot de passe)

 sudo sh -c 'echo "root:vagrant" | chpasswd'

 SHELL

 end

 end

end

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 10 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.2 Configuration du server

6.2.1 Installation d’ansible

sudo apt install software-properties-common
sudo add-apt-repository --yes --update ppa:ansible/ansible
sudo apt install python3 -y
sudo apt install ansible -y
sudo apt install ansible-core -y

6.2.2 Génération de clé SSH

La clé SSH est une paire de clés cryptographiques utilisées pour sécuriser les
communications entre deux parties via le protocole SSH (Secure Shell). Cette paire de clés
se compose de deux parties complémentaires : la clé privée et la clé publique.
La commande SSH-KEYGEN -B 2048 est utilisée pour générer une paire de clés SSH (Secure
Shell) sur un système Unix ou Linux.
Voici ce que font les différents composants de cette commande :
SSH-KEYGEN : C'est l'utilitaire en ligne de commande pour la génération, la gestion et la
conversion de clés SSH.
-B 2048 : Cela spécifie la taille de la clé, en bits. Dans ce cas, la taille de la clé est définie à
2048 bits. La taille de la clé est liée à la sécurité : des clés plus longues offrent généralement
une meilleure sécurité

ssh-keygen -b 2048

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 11 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.2.3 Partage de clé ssh sur les deux serveurs Galera et sur le serveur Backup

Le partage de clés SSH fait référence à la distribution de la clé publique d'une paire de clés
SSH à d'autres systèmes ou utilisateurs afin de permettre des connexions sécurisées
La commande ssh-copy-id est utilisée pour installer la clé publique d'un utilisateur sur une
machine distante, permettant ainsi une connexion sans mot de passe à cette machine.
SSH-COPY-ID : C'est l'utilitaire qui copie la clé publique de l'utilisateur sur la machine distante.
-I ~/.SSH/ID_RSA.PUB : Cette option spécifie le chemin de la clé publique que vous souhaitez
installer sur la machine distante.
192.168.240.180 : C'est l'adresse IP de la machine distante à laquelle vous souhaitez copier
la clé publique.

ssh-copy-id -i ~/.ssh/id_rsa.pub 192.168.240.180

6.2.4 Configuration du ficher hosts d'ansible

Le fichier d'inventaire qui spécifie les hôtes sur lesquels les tâches Ansible doivent être
exécutées. C'est un fichier de configuration qui répertorie les machines cibles et peut
également inclure des informations supplémentaires telles que les utilisateurs SSH, les
ports, les groupes d'hôtes, et d'autres variables.

Nano /etc/ansible/hosts

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 12 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.3 Création du cluster avec Galera

6.3.1 Création du rôle galera

Nous allons créer notre rôle avec ansible-galaxy pour se faciliter le travail on va se déplacer
dans le répertoire des rôles ansibles.

cd /etc/ansible/roles/

ansible-galaxy init galera

ansible all -m ping -u root

Pour tester la connectivité avec les hôtes et de vérifier que Ansible peut les atteindre et
exécuter des commandes de base.

6.3.2 Configuration des serveurs Galera

Configurez le fichier de configuration Galera (galera.cnf) pour spécifier les options de cluster,
les détails sur le serveur actuel et les autres serveurs du cluster

BINLOG_FORMAT=ROW : Spécifie le format de journal binaire à utiliser. Ici, ROW indique que
les modifications aux données seront enregistrées sous forme de lignes modifiées.
DEFAULT-STORAGE-ENGINE=INNODB : Définit le moteur de stockage par défaut à InnoDB, qui
est recommandé pour être utilisé avec Galera Cluster.
INNODB_AUTOINC_LOCK_MODE=2 : Configure le mode de verrouillage pour les colonnes
auto-incrémentées dans InnoDB. La valeur 2 signifie que le verrouillage est optimisé pour les
performances dans un environnement multi-maître.
BIND-ADDRESS=0.0.0.0 : Spécifie que MySQL écoute sur toutes les interfaces réseau. Cela
permet aux autres nœuds du cluster d'accéder à ce nœud par son adresse IP.
WSREP_ON=ON : Active la prise en charge de Galera Cluster pour ce serveur MySQL.
WSREP_PROVIDER=/USR/LIB/GALERA/LIBGALERA_SMM.SO : Indique le chemin vers la
bibliothèque partagée de Galera Cluster.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 13 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

WSREP_CLUSTER_NAME="TEST_CLUSTER" : Donne un nom au cluster Galera, permettant
aux nœuds de se joindre au même cluster.
WSREP_CLUSTER_ADDRESS="GCOMM://192.168.240.180,192.168.240.181" : Indique les
adresses IP des nœuds du cluster. Dans cet exemple, le cluster est composé de deux
nœuds, avec les adresses IP 192.168.240.180 et 192.168.240.181.
WSREP_SST_METHOD=RSYNC : Spécifie la méthode de transfert de données lors de la
synchronisation. Ici, rsync est utilisé.
WSREP_NODE_ADDRESS="192.168.240.180" : L'adresse IP de ce nœud du cluster.
WSREP_NODE_NAME="srv2" : Un nom unique pour identifier ce nœud au sein du cluster.

nano / galera/templates/galera2.cnf.j2

Configuration du fichier galera2.cnf.j2 qui sera copier avec le playbook dans le serveur 2
/etc/mysql/conf.d/galera.cnf
 nous allons créez le fichier galera2.cnf.j2 pour notre premier nœud srv2 et on va faire de
même pour le fichier galera3.cnf.j2 pour le srv3 .

[mysqld]

binlog_format=ROW

default-storage-engine=innodb

innodb_autoinc_lock_mode=2

bind-address=0.0.0.0

Galera Provider Configuration

wsrep_on=ON

wsrep_provider=/usr/lib/galera/libgalera_smm.so

Galera Cluster Configuration

wsrep_cluster_name="test_cluster"

wsrep_cluster_address="gcomm://192.168.240.180,192.168.240.181"

Galera Synchronization Configuration

wsrep_sst_method=rsync

Galera Node Configuration

wsrep_node_address="192.168.240.180"

wsrep_node_name="srv2"a

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 14 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Configuration de galera3.cnf.j2

nano / galera/templates/galera3.cnf.j2

6.3.3 Création du playbook galera

Ce playbook Ansible déploie un cluster MariaDB avec Galera sur plusieurs nœuds. Je vais
expliquer les différentes parties du playbook :
Déployer le cluster MariaDB

hosts : servers: Spécifie que les tâches de ce bloc seront exécutées sur tous les hôtes du
groupe servers définis dans l'inventaire Ansible.

become: yes: Indique que les tâches doivent être exécutées en tant que superutilisateur
(root).

gather_facts: false: Désactive la collecte automatique de faits par Ansible. Cela peut être
utile pour les playbooks qui n'ont pas besoin d'informations détaillées sur les hôtes avant
l'exécution des tâches.

Tâches :
Installer MariaDB : Utilise le module Ansible apt pour installer le paquet mariadb-server.
Installer le paquet python3-mysqldb : Installe le paquet python3-mysqldb nécessaire pour
utiliser MySQL avec Python.
Installer Galera-4 : Utilise le module Ansible apt pour installer le paquet galera-4.

2. Configuration de Galera sur les nœuds 2 et 3
hosts: server2 et hosts: server3: Ces blocs spécifient que les tâches suivantes doivent être
exécutées respectivement sur server2 et server3.

[mysqld]

binlog_format=ROW

default-storage-engine=innodb

innodb_autoinc_lock_mode=2

bind-address=0.0.0.0

Galera Provider Configuration

wsrep_on=ON

wsrep_provider=/usr/lib/galera/libgalera_smm.so

Galera Cluster Configuration

wsrep_cluster_name="test_cluster"

wsrep_cluster_address="gcomm://192.168.240.180,192.168.240.181"

Galera Synchronization Configuration

wsrep_sst_method=rsync

Galera Node Configuration

wsrep_node_address="192.168.240.181"

wsrep_node_name="srv3"

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 15 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

nano /etc/ansible/roles/galera/tasks/galera.yml

Déployer le cluster MariaDB
- name: Déployer le cluster MariaDB
 hosts: servers
 become: yes
 gather_facts: false
 tasks:
 - name: Installer MariaDB
 apt:
 name: mariadb-server
 state: present

 - name: Arrêter le service MariaDB
 systemd:
 name: mysql
 state: stopped

 - name: Installer le paquet python3-mysqldb
 apt:
 name: python3-mysqldb
 state: present

 - name: Installer Galera-4
 apt:
 name: galera-4
 state: present

Configuration de Galera sur le nœud 2
- name: Configurer MariaDB pour Galera sur le nœud 2
 hosts: server2
 tasks:
 - name: Créer le répertoire /etc/mysql/conf.d s'il n'existe pas
 file:
 path: "/etc/mysql/conf.d"
 state: directory
 mode: 0755 # Les permissions peuvent être ajustées selon vos besoins

 - name: Copier Galera sur le nœud 2
 template:
 src: "/etc/ansible/roles/galera/templates/galera2.cnf.j2"
 dest: "/etc/mysql/conf.d/galera.cnf"

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 16 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

 ansible-playbook /etc/ansible/roles/galera/tasks/galera.yml

L'exécution de la commande ansible-playbook /etc/ansible/roles/galera/tasks/galera.yml

lance un playbook Ansible dédié à la configuration cluster Galera pour MariaDB sur deux
nœuds

Configuration de Galera sur le nœud 3

- name: Configurer MariaDB pour Galera sur le nœud 3

 hosts: server3

 tasks:

 - name: Créer le répertoire /etc/mysql/conf.d s'il n'existe pas

 file:

 path: "/etc/mysql/conf.d"

 state: directory

 mode: 0755 # Les permissions peuvent être ajustées selon vos besoins

 - name: Copier Galera sur le nœud 3

 template:

 src: "/etc/ansible/roles/galera/templates/galera3.cnf.j2"

 dest: "/etc/mysql/conf.d/galera.cnf"

Exécuter la commande sur le nœud 2

- name: Exécuter la commande sur le nœud 2

 hosts: server2

 become: yes

 tasks:

 - name: Lancer la commande shell

 command: |

 galera_new_cluster

Démarrer le service MariaDB sur les nœuds 2 et 3

- name: Démarrer le service MariaDB sur les nœuds 2 et 3

 hosts: servers

 become: yes

 tasks:

 - name: Démarrer le service MariaDB

 systemd:

 name: mysql

 state: started

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 17 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.4 Créer des bases de données et des tables

6.4.1 Création du playbook create_db_tables.yml

Ce playbook Ansible automatise la création d'une base de données, de tables et l'insertion
de données dans ces tables sur le serveur server2.

nano /etc/ansible/roles/galera/tasks/create_db_tables.yml

- name: Création Automatisée de Bases de Données et de Tables

 hosts: server2

 become: yes

 vars:

 db_name: 'dbz'

 db_user: 'root'

 db_password: 'vagrant'

 tasks:

 - name: Debug - Afficher les variables

 debug:

 var: item

 with_items:

 - db_name

 - db_user

 - db_password

 - name: Créer la base de données {{ db_name }}

 mysql_db:

 name: "{{ db_name }}"

 state: present

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 register: db_creation_result

 - name: Créer la table Utilisateurs

 mysql_query:

 login_db: "{{ db_name }}"

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 query: >

 CREATE TABLE IF NOT EXISTS Utilisateurs (

 Id INT AUTO_INCREMENT PRIMARY KEY,

 Nom VARCHAR(255),

 Email VARCHAR(255),

 Date_inscription DATE

)

 when: db_creation_result.changed

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 18 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

 - name: Ajouter les utilisateurs dans la table Utilisateurs

 mysql_query:

 login_db: "{{ db_name }}"

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 query: >

 INSERT INTO Utilisateurs (Nom, Email, Date_inscription) VALUES

 ('goku', 'goku@dbz.sn', NOW()),

 ('gohan', 'gohan@dbz.sn', NOW()),

 ('vegeta', 'vegeta@dbz.sn', NOW())

 when: db_creation_result.changed

 - name: Créer la table Connexions

 mysql_query:

 login_db: "{{ db_name }}"

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 query: >

 CREATE TABLE IF NOT EXISTS Connexions (

 Connexion_id INT AUTO_INCREMENT PRIMARY KEY,

 Utilisateur_id INT,

 Utilisateur_nom VARCHAR(255),

 Utilisateur_email VARCHAR(255),

 Timestamp DATETIME,

 FOREIGN KEY (Utilisateur_id) REFERENCES Utilisateurs(Id)

)

 when: db_creation_result.changed

 - name: Afficher les utilisateurs avant la création de la table Connexions

 mysql_query:

 login_db: "{{ db_name }}"

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 query: >

 SELECT Nom, Email FROM Utilisateurs

 register: users_result

 when: db_creation_result.changed

 - name: Debug - Afficher les résultats de la sélection des utilisateurs

 debug:

 var: users_result.stdout_lines

 when: db_creation_result.changed

 - name: Créer les connexions dans la table Connexions

 mysql_query:

 login_db: "{{ db_name }}"

 login_user: "{{ db_user }}"

 login_password: "{{ db_password }}"

 query: >

 INSERT INTO Connexions (Utilisateur_id, Utilisateur_nom, Utilisateur_email, Timestamp)

 SELECT Id, Nom, Email, NOW() FROM Utilisateurs

 when: db_creation_result.changed

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 19 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

ansible-playbook /etc/ansible/roles/galera/tasks/create_db_tables.yml

L'exécution de la commande ansible-playbook
/etc/ansible/roles/galera/tasks/create_db_tables.yml lance un playbook Ansible dédié à la
création automatique de bases de données et de tables dans un environnement Galera.

6.4.2 Vérification du cluster galera

mysql -u root -proot -e "SHOW STATUS LIKE 'wsrep_cluster_size'"

MYSQL : C'est le client en ligne de commande pour MySQL.

-U ROOT : Cela spécifie l'utilisateur MySQL à utiliser lors de la connexion, dans ce cas, "root".

-PROOT : CELA SPECIFIE LE MOT DE PASSE A UTILISER LORS DE LA CONNEXION, DANS CE

CAS, "ROOT". NOTEZ QUE cette méthode de spécification du mot de passe sur la ligne de
commande peut être un risque de sécurité dans un environnement partagé.

-E "SHOW STATUS LIKE 'WSREP_CLUSTER_SIZE'" : Cela spécifie la requête SQL à
exécuter. Dans ce cas, la requête est "SHOW STATUS LIKE 'wsrep_cluster_size'",

Cette commande exécute une requête SQL pour afficher la taille du cluster Galera.

La commande si on est déjà connecté à la base de donnais est : 'wsrep_cluster_size';

mysql -u root -p

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 20 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

connexion à la base de donnais avec le user root

show databases ;

Est utilisée pour afficher la liste de toutes les bases de données disponibles sur le serveur
MySQL auquel vous êtes connecté

USE dbz;

Est utilisée pour sélectionner une base de données spécifique avec laquelle vous souhaitez
interagir

SELECT * FROM Utilisateurs;

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 21 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Est une requête SQL qui demande à MariaDB d'afficher toutes les lignes et colonnes de la
table appelée "Utilisateurs" dans la base de données actuellement sélectionnée, qui est
"dbz" dans votre cas.

SELECT * FROM Connexions;

Est une requête SQL qui demande à MariaDB d'afficher toutes les lignes et colonnes de la
table "Connexions" dans la base de données actuellement sélectionnée, qui est "dbz" dans
votre cas.

show status like 'wsrep_cluster_status';

Est une requête SQL spécifique à Galera Cluster dans MariaDB/MySQL. Elle permet de
vérifier l'état du cluster Galera, indiquant si le nœud actuel est en cours de synchronisation
avec d'autres nœuds du cluster.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 22 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

show variables like 'default_storage_engine';

Est une requête SQL qui permet de consulter la valeur actuelle de la variable système
default_storage_engine dans le serveur MariaDB/MySQL.

show status like 'wsrep_local_state_comment';

Est une requête SQL spécifique à Galera Cluster dans MariaDB/MySQL. Elle permet
d'obtenir des informations détaillées sur l'état local du nœud dans le cluster Galera.
SYNCED: Le nœud a rejoint le cluster et est synchronisé.

show status like 'wsrep_local_recv_queue_avg';

Est une requête SQL spécifique à Galera Cluster dans MariaDB/MySQL. Elle permet
d'obtenir des informations sur la taille moyenne de la file de réception locale du nœud dans
le cluster Galera.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 23 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.5 Configuration du backup dans le server backup

Playbook ansible pour automatiser les sauvegardes avec MySQL dump et cron sur le
serveur backup

nano /etc/ansible/roles/galera/tasks/backup.yml

Automatisation des Sauvegardes avec Mysqldump et Cron

- name: Automatisation des Sauvegardes avec Mysqldump et Cron

 hosts: server4

 become: true

 vars:

 backup_folder: "/etc/backuptpsql"

 cron_schedule: "*/5 * * * *"

 tasks:

 - name: Create Backup Folder

 file:

 path: "{{ backup_folder }}"

 state: directory

 mode: '0755'

 - name: Create Backup Script

 template:

 src: "/etc/ansible/roles/galera/templates/backup_script.sh.j2"

 dest: "{{ backup_folder }}/backup_script.sh"

 - name: Set Permissions on Backup Script

 file:

 path: "{{ backup_folder }}/backup_script.sh"

 mode: '0755'

 - name: Configure Cron Job

 cron:

 name: "mysql_backup"

 job: "{{ backup_folder }}/backup_script.sh"

 minute: "{{ cron_schedule.split(' ')[0] }}"

 hour: "{{ cron_schedule.split(' ')[1] }}"

 day: "{{ cron_schedule.split(' ')[2] }}"

 month: "{{ cron_schedule.split(' ')[3] }}"

 weekday: "{{ cron_schedule.split(' ')[4] }}"

 user: "root"

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 24 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.5.1 Script de backup

Ce script réalise des sauvegardes de la base de données MySQL spécifiée en utilisant
mysqldump et conserve uniquement les deux sauvegardes les plus récentes dans le dossier
spécifié.

nano /etc/ansible/roles/galera/templates/backup_script.sh.j2

#!/bin/bash

Définir le dossier de sauvegarde

backup_folder="{{ backup_folder }}"

Définir le format de date pour les fichiers de sauvegarde

date_format=$(date +"%Y%m%d_%H%M%S")

Définir les identifiants MySQL

mysql_user="root"

mysql_password="vagrant"

mysql_host="localhost"

mysql_database="dbz"

Créer une sauvegarde en utilisant mysqldump

mysqldump -u"${mysql_user}" -p"${mysql_password}" -h"${mysql_host}"

"${mysql_database}" > "${backup_folder}/backup_${date_format}.sql"

Conserver les fichiers avec l'extension .sql

for file in "${backup_folder}"/*.sql; do

 # Vérifier si le fichier a une extension .sql

 if [[-f "$file"]]; then

 # Conserver les deux sauvegardes les plus récentes, supprimer les autres

 ls -t "${backup_folder}"/*.sql | tail -n +3 | xargs -I {} rm "{}"

 fi

done

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 25 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

6.5.2 Excution playbook de backup

ansible-playbook /etc/ansible/roles/galera/tasks/backup.yml

6.5.1 Vérification des Backup

ls /etc/backuptpsql/ lt

-lt: Options de tri.
-l : Affiche les détails de chaque fichier ou répertoire, y compris les permissions, le nombre
de liens, le propriétaire, le groupe, la taille, et la date de dernière modification.
-t : Trie les fichiers et répertoires en fonction de la date et de l'heure de la dernière
modification, du plus récent au plus ancien.

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 26 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

7 Annex

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 27 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Nano /etc/ssh/sshd_config

Pour activer le port 22 et le PermitRootLogin

Ansible Référence : EF-TEST-TEST Version : 1

Automatisation MySQL Page 28 sur 28

© EASYFORMER 2024 - Tous droits réservés Date : 13/02/24

Commande Vagrant

 vagrant --version: Affiche la version actuelle de Vagrant installée sur votre système.

vagrant list-commands: Affiche une liste de toutes les commandes Vagrant disponibles.

vagrant global-status: Affiche l'état global de toutes les machines Vagrant sur votre système,
indépendamment du répertoire de travail actuel.

vagrant global-status --prune: Actualise l'état global en supprimant les références aux
machines Vagrant qui n'existent plus.

vagrant global-status -h: Affiche l'aide pour la commande vagrant global-status.

vagrant init waounde221/ubuntu: Initialise un nouveau fichier Vagrantfile dans le répertoire
actuel, basé sur la box spécifiée.

vagrant init waounde221/ubuntu -m: Initialise un nouveau fichier Vagrantfile avec des options
spécifiées pour la box.

vagrant plugin install vagrant-vmware-desktop: Installe le plugin Vagrant pour la prise en
charge de VMware Desktop.

vagrant plugin list: Affiche la liste des plugins Vagrant installés.

vagrant up --provider=vmware_workstation: Démarre la machine Vagrant en utilisant le
fournisseur VMware Workstation.

vagrant halt: Arrête la machine Vagrant en douceur.

vagrant destroy -f: Détruit complètement la machine Vagrant, y compris toutes les
ressources associées, sans confirmation.

vagrant box add waounde221/ubuntu https://app.vagrantup.com/waounde221/boxes/ubuntu :
Ajoute une nouvelle box Vagrant à partir d'un fichier téléchargé depuis un lien spécifié.

vagrant box list: Affiche la liste des box Vagrant disponibles en local.

vagrant box remove waounde221/ubuntu: Supprime une box Vagrant.

vagrant package --output waounde221/ubuntu: est utilisée pour créer une nouvelle box
Vagrant en empaquetant une machine virtuelle existante.

Cette commande générera une nouvelle box Vagrant en utilisant la machine virtuelle
actuellement configurée dans votre environnement Vagrant. La box résultante sera
enregistrée dans un fichier avec le nom spécifié, "waounde221/ubuntu" dans cet exemple.
Vous pouvez ajuster le nom du fichier de sortie selon vos besoins.

