	Git
	Référence : TYPE-TECHNO-MODULE-1999
	Version : 1.0

	Git

	Git et ses fonctionnalités

	

	Référence : TYPE-TECHNO-MODULE-1999

	Auteur :
Souad Touat
Fany MEKUI
	Destinataires :
Formateurs : Alex FLAZON

	
	
	Date de dernière modification : 09/02/24
	Version : 1.0

	

	[image: F:___save-a\Professionel_1901\Easyformer\2017-01-03 save Easyformer\Identité visuelle\easyFormer- texte only (middle).jpg]
La formation à 360°

EasyFormer – 12, Rue des Violettes – 95000 Cergy
 	 Email : info@easyformer.fr – Web : www.easyformer.fr
	Document réservé aux formateurs EasyFormer
[bookmark: _Toc124427854][bookmark: _Toc158363040]
Remerciements
EasyFormer est une organisation dont l’un des objectifs est de mutualiser les efforts de tous afin d’améliorer la qualité de la formation et d’aider les centres à proposer un contenu plus ciblé et exhaustif.

Nous tenons à remercier chaleureusement tous les généreux contributeurs bénévoles ou non (rédacteurs, formateurs, stagiaires, apprenants ou autres) qui ont participé à la rédaction, l’amélioration et la correction de nos supports de cours et de travaux pratiques.
[bookmark: _Toc158363041]Devenez contributeur
Pour contribuer à l’effort collectif et aider les mécanismes de formation nationaux vous pouvez :
· rédiger des paragraphes,
· proposer des améliorations à nos supports,
· signaler les coquilles orthographiques ou grammaticales,
· proposer des compléments (rédigés ou non),
· rectifier ou mettre à jour des informations techniques.

 Et envoyer votre travail à doc@easyformer.fr

Vous trouverez ci-dessous une liste non exhaustive (et qui ne respecte pas d’ordre précis) de contributeurs qui ont participé à la rédaction des documents EasyFormer : https://cloud.easyformer.fr/index.php/s/contributeurs

	[image: F:___save-a\Professionel_1901\Easyformer\2017-01-03 save Easyformer\Identité visuelle\easyFormer- texte only (middle).jpg]
La formation à 360°

EasyFormer – 12, Rue des Violettes – 95000 Cergy
 	 Email : info@easyformer.fr – Web : www.easyformer.fr
	Document réservé aux formateurs EasyFormer

Remerciements	2
Devenez contributeur	2
1	Présentation de Git	4
1.1	Quelques points clés de Git	5
2	Les principaux concepts de Git	6
2.1	Dépôt (Repository)	6
2.1.1	Quelques commandes Git utilisées avec un dépôt	6
2.2	Commit	7
2.2.1	Quelques commandes Git utilisées pour effectuer un commit	7
2.3	La Branche	8
2.3.1	Les fonctionnalités d’une branche Git	8
2.3.2	Les différentes commandes utiles pour une branche	8
2.4	Merge	9
2.4.1	Les différentes commandes utilisées	9
2.5	Pull Request (Demande de tirage)	10
2.5.1	Les différentes commandes utilisées	10
2.5.1	Les différentes commandes utilisées	11
Présentation Github	12
2.6	Configuration de l'environnement de développement avec Git	13
2.6.1	Installation de Git	13
2.6.2	Configuration initiale de Git :	13
2.6.3	Configuration supplémentaire	13
2.6.4	Les bases de Git : les commandes essentielles	14
2.7	Comprendre les concepts de base de Git : Commit, Branch, Merge	15
2.7.1	Working Directory (Répertoire de Travail) : Cette zone correspond au dossier du projet sur votre ordinateur.	16
2.7.2	Stage (Zone de Préparation ou indexation) :	19
2.7.3	Repository (Dépôt)	21
2.8	Envoyez votre commit sur le dépôt distant avec la commande git push	21
2.8.1	Gestion des branches avec Git : Création, Fusion, Rébase	25
2.8.2	Collaborer avec Git : Fork, Pull Requests	26
2.9	Utilisation avancée de GitHub	26
2.10	Sécurité et bonnes pratiques avec Git et GitHub	28

Introduction
Depuis sa création en 2008, GitHub est devenu l'une des ressources les plus précieuses pour les développeurs du monde entier, offrant une gamme de fonctionnalités puissantes pour faciliter le développement logiciel collaboratif.
Au cœur de GitHub se trouve son système de contrôle de version, basé sur Git, qui permet aux développeurs de suivre les modifications apportées au code source de manière efficace et de travailler ensemble en toute transparence.
GitHub et Git vont au-delà de la simple gestion des versions. Ils proposent également des outils robustes pour la collaboration, la gestion de projets, l'automatisation des workflows, le suivi des problèmes, et bien plus encore.
[bookmark: _Hlk116210896]
Présentation
Ce cours vise à vous familiariser avec les concepts fondamentaux de Git et GitHub tout en vous fournissant des connaissances à la fois basiques et avancées dans ce domaine.

[bookmark: _Toc158363042]Présentation de Git
Git est un outil informatique conçu pour gérer les différentes versions d'un ensemble de fichiers. Il permet de suivre les modifications apportées à ces derniers et de coordonner le travail entre plusieurs personnes sur des projets logiciels. Il est largement utilisé par les développeurs de logiciels, mais il peut également être utile pour la gestion de tout type de fichiers.
Git est comparé à un enregistrement de tous les changements apporter à un projet. Chaque fois qu’un fichier est modifié, vous pouvez enregistrer ces modifications dans Git. Cela vous permet de revenir en arrière pour consulter les versions précédentes, de comparer les différences entre les versions et même de fusionner les modifications apportées par différentes personnes.
Le serveur git gère les accès et les autorisations des utilisateurs autorisés à travailler sur les dépôts. Il permet de définir qui peut lire, écrire et administrer les dépôts, assurant ainsi la sécurité et la confidentialité des données du projet.

[image:]

[bookmark: _Toc158363043]Quelques points clés de Git
· Contrôle de version distribué : Contrairement aux systèmes de contrôle de version centralisés où les modifications sont enregistrées sur un seul serveur, Git permet à chaque utilisateur de disposer d'une copie complète de l'historique des modifications (le dépôt) localement sur son ordinateur. Cela offre une plus grande autonomie et facilite le travail hors ligne.
· Simplicité et rapidité : Git a été conçu pour être simple à utiliser tout en étant rapide et efficace, même pour les projets de grande taille.
· Branching et merging : Git encourage l'utilisation de branches pour isoler les fonctionnalités ou les correctifs, ce qui permet aux développeurs de travailler simultanément sur différentes fonctionnalités sans se gêner mutuellement. Les branches peuvent être fusionnées de manière fluide lorsqu'une fonctionnalité est prête à être intégrée au code principal.
· Sauvegarde et récupération : Git permet de sauvegarder et de récupérer facilement différentes versions de vos fichiers. Cela garantit que vous pouvez revenir à une version antérieure du code si nécessaire, ce qui est utile pour corriger les bugs ou pour retrouver une version fonctionnelle précédente.
· Collaboration : Git facilite la collaboration entre plusieurs développeurs sur un même projet. Les développeurs peuvent travailler sur leurs propres copies du dépôt, apporter des modifications et les partager avec les autres membres de l'équipe via des push et pull.
· Écosystème riche : Git dispose d'un écosystème riche avec de nombreuses fonctionnalités supplémentaires et des services hébergés tels que GitHub, GitLab et Bitbucket, qui offrent des fonctionnalités de gestion de projet, de suivi des problèmes, de revues de code et bien plus encore.
[bookmark: _Toc158363044]Les principaux concepts de Git
[bookmark: _Toc158363045]Dépôt (Repository)
Un dépôt Git, ou repository en anglais, est un espace où Git stocke l'historique des modifications de vos fichiers ainsi que les différentes versions de votre projet. Il peut être situé localement sur votre ordinateur ou sur un serveur distant. Un dépôt Git contient toutes les données nécessaires pour suivre les modifications de vos fichiers, les branches, les balises et autres informations relatives à votre projet.

[bookmark: _Toc158363046]Quelques commandes Git utilisées avec un dépôt

· git init : Initialise un nouveau dépôt Git dans le répertoire courant.
· git clone <url> : Clone un dépôt Git distant sur votre machine locale.
· git add <fichier> : Ajoute des fichiers modifiés à l'index, les préparant pour le prochain commit.
· git commit -m "message" : Crée un nouveau commit avec les modifications actuellement dans l'index et un message décrivant les modifications.
· git push : Envoie les commits locaux vers un dépôt distant.
· git pull : Récupère les modifications à partir d'un dépôt distant et les fusionne avec votre branche locale.
· git status : Affiche l'état actuel du répertoire de travail et de l'index.
· git log : Affiche l'historique des commits.
· git branch : Affiche la liste des branches et permet de créer, supprimer ou renommer des branches.
· git checkout : Permet de basculer entre les branches ou de restaurer des fichiers à partir d'un commit spécifique.
· git merge : Fusionne les modifications d'une branche dans une autre.
· git fetch : Récupère les modifications à partir d'un dépôt distant sans les fusionner dans votre branche locale.
· git remote : Gère les dépôts distants.
· git tag : Crée, affiche ou supprime des balises (tags) pour marquer des points spécifiques dans l'historique des commits.

[bookmark: _Toc158363047]Commit
Un commit dans Git représente un point de contrôle dans l'historique des modifications de votre projet. C'est une action qui enregistre les modifications apportées à vos fichiers à un moment donné, avec un message descriptif pour expliquer ces modifications. Chaque commit contient une référence unique (hash) qui identifie de manière unique ce point de contrôle dans l'historique du projet.
Lorsqu’un commit est effectué, Git prend un instantané (snapshot) de l'état actuel de vos fichiers dans le répertoire de travail et enregistre ces changements dans le dépôt Git. Cela permet de revenir en arrière et de restaurer une version antérieure de vos fichiers à tout moment.
Autrement dit, un commit dans Git est comme une photo de l'état de votre projet à un moment précis, avec une explication de ce qui a été modifié depuis la dernière photo. Cela vous permet de suivre l'évolution de votre code, de collaborer avec d'autres développeurs et de revenir à des versions antérieures si nécessaire.

[bookmark: _Toc158363048]Quelques commandes Git utilisées pour effectuer un commit

· git add : Avant de créer un commit, vous devez ajouter les fichiers que vous souhaitez inclure dans le commit à l'index (également appelé la zone de staging). Vous pouvez ajouter des fichiers spécifiques ou tous les fichiers modifiés en utilisant git add.
· git commit : Une fois que vous avez ajouté vos fichiers à l'index, vous pouvez créer un commit avec la commande git commit. Vous devez fournir un message descriptif qui explique les modifications apportées dans ce commit.
· git commit -a : Cette commande combine l'étape d'ajout (git add) et de création de commit (git commit) en une seule étape. Elle ajoute tous les fichiers modifiés à l'index et crée un commit avec un message descriptif.
· git commit --amend : Vous permet de modifier le dernier commit en ajoutant des modifications supplémentaires ou en modifiant le message du commit. Cela peut être utile pour corriger des erreurs de frappe ou pour regrouper de petites modifications dans un seul commit.

[bookmark: _Toc158363049]La Branche
Une branche dans Git est une référence mobile qui pointe vers un commit spécifique dans l'historique de votre projet. Elle permet de travailler sur différentes fonctionnalités de manière isolée, sans affecter le code de la branche principale (généralement nommée "master" ou "main"). Les branches sont utilisées pour organiser le travail, tester de nouvelles fonctionnalités et collaborer avec d'autres développeurs.
[bookmark: _Toc158363050]Les fonctionnalités d’une branche Git
· Isolation des fonctionnalités : Les branches permettent aux développeurs de travailler sur des fonctionnalités ou des correctifs de manière isolée, sans affecter le code de la branche principale. Cela facilite le développement parallèle de plusieurs fonctionnalités.
· Flexibilité : Vous pouvez créer, modifier et supprimer des branches à tout moment dans votre dépôt Git. Il est recommandé de créer une nouvelle branche pour chaque nouvelle fonctionnalité ou tâche que vous travaillez.
· Collaboration : Les branches facilitent la collaboration entre plusieurs développeurs sur un même projet. Chaque développeur peut travailler sur sa propre branche et fusionner ses modifications avec la branche principale une fois qu'elles sont prêtes.
· Expérimentation : Les branches offrent la possibilité d'expérimenter de nouvelles idées ou fonctionnalités sans risque pour le code principal. Vous pouvez créer une branche temporaire, tester vos idées et les abandonner si elles ne fonctionnent pas comme prévu.
· Maintenance du code : Les branches peuvent être utilisées pour effectuer des correctifs de bugs ou des améliorations de manière isolée, ce qui permet de réduire les risques d'introduction de nouveaux problèmes dans le code principal.
· Déploiement : Les branches peuvent également être utilisées pour déployer différentes versions de votre projet. Par exemple, vous pouvez avoir une branche "production" pour votre code en production et une branche "développement" pour votre code en cours de développement.
[bookmark: _Toc158363051]Les différentes commandes utiles pour une branche
· git branch : Permet de créer une branche.
· git checkout : Permet de basculer vers la branche crée.
· git checkout -b : Combine les deux commande ci-après, elle permet de créer une branche et de basculer automatiquement vers cette nouvelle branche.

[bookmark: _Toc158363052]Merge
La fusion merge est utilisée pour fusionner les modifications d'une branche dans une autre. Cela permet d'intégrer les modifications effectuées dans une branche (appelée branche source) dans une autre branche (appelée branche cible). Elle pour intégrer les modifications de différentes branches, ce qui permet de collaborer efficacement sur un projet et de maintenir un historique propre et organisé des modifications.
[bookmark: _Toc158363053]Les différentes commandes utilisées

· git merge <nom de la branche> : Cette commande fusionne la branche spécifiée dans la branche actuelle.
· git merge --abort : Si vous rencontrez des conflits lors de la fusion et que vous souhaitez annuler le processus de fusion en cours, cette commande permet d'annuler la fusion et de revenir à l'état précédent.
· git merge --no-ff <nom de la branche> : Cette commande force Git à créer un commit de fusion même s'il est possible de fusionner les branches sans créer de commit supplémentaire. Cela permet de conserver une trace claire des branches fusionnées.
· git merge --squash <nom de la branche> : Lorsque vous fusionnez une branche avec cette option, Git crée un seul commit de fusion contenant tous les changements de la branche fusionnée, plutôt que de créer un commit pour chaque commit de la branche fusionnée.
· git mergetool : Cette commande ouvre un outil de fusion graphique qui facilite la résolution des conflits. Vous pouvez configurer votre outil de fusion préféré dans Git pour l'utiliser avec cette commande.
· git log --merges : Pour afficher uniquement les commits de fusion dans l'historique des commits, vous pouvez utiliser cette commande. Cela peut être utile pour visualiser rapidement les points où les branches ont été fusionnées.
· git merge-base <commit1> <commit2> : Cette commande permet de trouver le commit de base commun entre deux commits. Cela peut être utile pour résoudre les conflits manuellement ou pour comprendre l'historique des modifications entre les branches.

[bookmark: _Toc158363054]Push Request
Une demande de modification est une fonctionnalité couramment utilisée dans les systèmes de gestion de versions distribués pour proposer des modifications à un dépôt centralisé. Cela permet à d'autres collaborateurs de réviser les changements avant de les fusionner dans la branche principale.

[bookmark: _Toc158363055]Les différentes commandes utilisées

· git fetch : Cette commande permet de récupérer les dernières modifications depuis le dépôt distant, y compris les Pull Requests ouvertes. Cela met à jour les références locales aux branches distantes.
· git checkout <nom-de-branche> : Vous pouvez utiliser cette commande pour passer à une branche spécifique, y compris les branches associées à une Pull Request. Cela vous permet d'inspecter les modifications localement.
· git merge <branche> : Si vous êtes satisfait des modifications apportées par une Pull Request et que vous souhaitez les fusionner dans la branche principale, vous pouvez utiliser cette commande pour fusionner la branche de la Pull Request dans votre branche actuelle.
· git push origin <nom-de-branche> : Si vous avez apporté des modifications à une branche locale et que vous souhaitez les soumettre sous forme de Pull Request, utilisez cette commande pour pousser vos modifications vers le dépôt distant. Cela rendra vos modifications accessibles pour une Pull Request.
· git branch -d <nom-de-branche> : Après avoir fusionné une Pull Request avec succès et que vous n'avez plus besoin de la branche associée, vous pouvez utiliser cette commande pour supprimer la branche de manière sécurisée.
· git rebase <branche> : Cette commande permet de rebase une branche sur une autre. Cela peut être utile pour réorganiser l'historique des commits avant de soumettre une Pull Request.

Remote (Dépôt distant)

Un dépôt distant est une copie du dépôt local qui est hébergée sur un serveur distant. Il est utilisé pour faciliter le travail collaboratif entre plusieurs développeurs.

0. [bookmark: _Toc158363056]Les différentes commandes utilisées
git remote add <nom> <url> : Cette commande permet d'ajouter un nouveau dépôt distant. Vous spécifiez un nom pour le dépôt distant (par exemple, origin) et l'URL du dépôt distant.
git remote -v : Cette commande affiche la liste des dépôts distants associés à votre dépôt local, ainsi que les URL correspondantes.
git remote remove <nom> : Utilisez cette commande pour supprimer un dépôt distant spécifié par son nom de la liste des dépôts distants associés à votre dépôt local.
git fetch <nom> : Cette commande récupère les données du dépôt distant spécifié, mais ne fusionne pas automatiquement les modifications avec votre branche locale. Cela met à jour vos références locales avec les nouvelles données du dépôt distant.
git pull <remote> <branche> : Cette commande envoie vos modifications locales sur le dépôt distant spécifié. Vous devez spécifier la branche locale à pousser et la branche correspondante sur le dépôt distant.
git remote rename <ancien-nom> <nouveau-nom> : Cette commande renomme un dépôt distant spécifié. Par exemple, pour renommer un dépôt distant appelé origin en upstream, vous pouvez utiliser git remote rename origin upstream.
git remote show <nom> : Cette commande affiche des informations détaillées sur un dépôt distant spécifié, y compris les URL, les branches suivies et d'autres informations utiles.
git remote prune <nom> : Utilisez cette commande pour supprimer les références locales des branches distantes qui ont été supprimées sur le dépôt distant spécifié.

[bookmark: _Toc158363057]
Présentation Github
GitHub est une plateforme de développement logiciel basée sur Git, qui fournit des fonctionnalités supplémentaires telles que le stockage de code, le suivi des problèmes, la gestion des versions, l'intégration continue et bien d'autres encore. C'est l'un des principaux services d'hébergement de dépôts Git.

[image:]

[bookmark: _Toc158363058]Configuration de l'environnement de développement avec Git
[bookmark: _Toc158363059]Installation de Git
Pour commencer, vous devez installer Git sur votre système. Git est disponible pour Windows, Mac OS X et Linux, et peut être téléchargé depuis le site officiel de Git (https://git-scm.com/).
Une fois que vous avez téléchargé l'installateur approprié pour votre système d'exploitation, suivez les instructions d'installation pour installer Git sur votre machine.
Vérification de l'installation :
Après avoir installé Git, vous pouvez vérifier si l'installation a réussi en ouvrant un terminal (ou une invite de commande sur Windows) et en exécutant la commande.

Git –-version
Après avoir installé Git, vous pouvez vérifier si l'installation a réussi en ouvrant un terminal (ou une invite de commande sur Windows) et en exécutant la commande.

[bookmark: _Toc158363060]Configuration initiale de Git :
Avant de pouvoir utiliser Git, vous devez effectuer une configuration initiale pour définir votre nom d'utilisateur et votre adresse e-mail. Vous pouvez le faire en exécutant les commandes suivantes dans votre terminal :

git config --global user.name "Votre Nom"
git config --global user.email "votre@email.com"
[bookmark: _Toc158363061]Configuration supplémentaire
 En plus de votre nom d'utilisateur et de votre adresse e-mail, vous pouvez également configurer d'autres options Git telles que votre éditeur par défaut, vos préférences de fusion, etc.

· Définir votre éditeur par défaut sur Vim

git config --global core.editor "vim"	

· Nous vous recommandons d’activer les couleurs afin d’améliorer la lisibilité des différentes branches. Pour cela, passez ces trois lignes dans Git Bash

$ git config --global color.diff auto
$ git config --global color.status auto
$ git config –global color.branch auto

· Par défaut, Git utilise Vim comme éditeur et Vimdiff comme outil de merge. Vous-pouvez les modifier en utilisent

$ git config --global core.editor notepad++
$ git config --global merge.tool vimdifféfaut, Git utilise Vim comme éditeur et Vimdiff comme outil de merge.

Résultat de la commande

[image:]
[bookmark: _Toc158363062]Les bases de Git : les commandes essentielles
Voici une liste de commandes Git essentielles pour travailler avec GitHub :

git init : Initialise un nouveau dépôt Git dans un répertoire local.
git clone [URL] : Clone un dépôt distant (sur GitHub ou toute autre plateforme) dans un répertoire local.
git add [fichier] : Ajoute des fichiers modifiés à l'index pour être pris en compte dans le prochain commit.
git commit -m "[message]" : Crée un nouveau commit avec les modifications ajoutées à l'index et un message de description.
git push : Envoie les commits locaux vers un dépôt distant, généralement sur GitHub.
git pull : Récupère les dernières modifications depuis le dépôt distant et les fusionne dans la branche locale.
git branch [nom] : Crée une nouvelle branche locale.
git checkout [branche] : Bascule vers une autre branche ou restaure les fichiers à l'état d'une certaine révision.
git merge [branche] : Fusionne une branche spécifiée dans la branche actuelle.
git status : Affiche l'état des fichiers dans le répertoire de travail et de l'index.
git log : Affiche l'historique des commits.
git remote add [nom] [URL] : Ajoute une nouvelle référence distante.
git remote -v : Affiche les références distantes configurées.
git fetch : Récupère les données distantes sans fusionner.
git branch -d [branche] : Supprime une branche locale.
git push origin --delete [branche] : Supprime une branche distante.
git stash : Met en pause les modifications non engagées dans une pile temporaire.
git cherry-pick [commit] : Applique les changements d'un commit spécifique à la branche actuelle.
git tag [nom] : Crée une nouvelle étiquette pour marquer des points dans l'historique des commits.
git revert [commit] : Annule les modifications apportées par un commit spécifique en créant un nouveau commit.

[bookmark: _Toc158363063]Comprendre les concepts de base de Git : Commit, Branch, Merge

[image:]

Les trois étapes principales dans le cycle de vie d'un fichier dans Git sont le "working directory" (répertoire de travail), le "stage" (zone de préparation), et le "repository" (dépôt). Voici une explication de chacune de ces étapes :
[bookmark: _Toc158363064]Working Directory (Répertoire de Travail) : Cette zone correspond au dossier du projet sur votre ordinateur.
Il existe deux méthodes pour créer un dépôt local
· Cloner un dépôt distant, c’est-à-dire rapatrier l’historique d’un dépôt distant en local
· Créer un dépôt local vide pour accueillir un nouveau projet

Nous allons utiliser les deux méthodes afin de créer notre dépôt local, Nous allons commencer par la première méthode qui consiste a cloner le dépôt depuis le git hub

Cloner un dépôt distant" est une opération fondamentale dans Git qui consiste à rapatrier l'historique d'un dépôt distant sur votre machine locale, cela crée une copie complète du dépôt sur votre machine locale

Pour cloner un dépôt distant, vous utilisez la commande git clone suivie de l'URL du dépôt distant que vous souhaitez cloner.

Git clone « URL DEPOT DISTANT “
[image:]
Si le dépôt distant contient des sous-modules (submodules), c'est-à-dire d'autres dépôts Git imbriqués, vous pouvez cloner récursivement tous les sous-modules en utilisant la commande suivante
Git clone --recurse-submodules <url_du_depot distant>
Avant de pouvoir cloner un dépôt distant, vous devez d'abord le créer en suivante les étapes suivantes :
Connexion à GitHub :
· Ouvrez votre navigateur web et accédez à la page d'accueil de GitHub à l'adresse https://github.com/.
· Connectez-vous à votre compte GitHub en utilisant vos identifiants (nom d'utilisateur et mot de passe).
· Accès à la page "Nouveau dépôt" :

[image:]

Une fois connecté, cliquez sur le signe plus (+) dans le coin supérieur droit de la page, puis sélectionnez "Nouveau dépôt" dans le menu déroulant.
Remplir les détails du dépôt :
Création du dépôt : Une fois que vous avez rempli les détails du dépôt et sélectionné les options appropriées, cliquez sur le bouton "Créer le dépôt" pour créer votre dépôt distant sur GitHub.

[image:]
Accès au dépôt :

Après avoir créé le dépôt, vous serez redirigé vers la page principale de votre nouveau dépôt sur GitHub. Vous y trouverez l'URL du dépôt que vous pouvez utiliser pour cloner le dépôt sur votre machine locale et commencer à travailler sur votre projet.

[image:]

Créer un dépôt local
Accédez au répertoire où vous souhaitez créer votre dépôt local en utilisant la commande cd (change directory) et crée un dossier (github dans notre cas).

mkdir github
touch lab-1.html
touch lab-2.html
Une fois dans le répertoire approprié, initialisez un nouveau dépôt Git en utilisant la commande git init. Cette commande va initialiser notre dépôt en créons un dossier. git

Git init
Lorsque vous modifiez un fichier dans votre "working directory", Git enregistre ces modifications comme des modifications non suivies (untracked) jusqu'à ce que vous les ajoutiez à la zone de préparation (stage) pour un futur commit.
[bookmark: _Toc158363065]Stage (Zone de Préparation ou indexation) :
Cette zone est un intermédiaire entre le working directory et le repository. Elle représente tous les fichiers modifiés que vous souhaitez voir apparaître dans votre prochaine version de code.
Vous pouvez ajouter des modifications spécifiques à la zone de préparation à l'aide de la commande git add.
Git add lab-1.html lab2.html
Cela signifie que vous avez choisi ces modifications pour être incluses dans votre prochain commit.

Suivi des modifications : Une fois que vous avez placé vos fichiers dans le répertoire du dépôt, vous pouvez vérifier l'état de ces fichiers en utilisant la commande git status.
Cette commande affichera les fichiers qui ont été modifiés depuis le dernier commit et ceux qui ne sont pas encore suivis par Git.
Git status

Lorsque vous exécutez la commande git status dans un dépôt Git, les fichiers apparaissent en différentes couleurs pour indiquer leur état par rapport au dépôt :
Rouge indiquent des modifications non suivies ou des fichiers non ajoutés à l'index.
Cela signifie que ces fichiers ont été modifiés depuis le dernier commit, mais ils n'ont pas encore été ajoutés à l'index Git en utilisant la commande git add.
Vert : Les fichiers affichés en vert dans la sortie de git status indiquent des modifications suivies ou des fichiers prêts à être validés par un commit.
Cela signifie que ces fichiers ont été ajoutés à l'index Git en utilisant la commande git add et sont prêts à être inclus dans le prochain commit en utilisant la commande git commit.

[image:]

[image:]

[bookmark: _Toc158363066]Repository (Dépôt)
Le "repository" est la base de données où Git stocke toutes les versions de votre projet, y compris l'historique complet des commits.
Lorsque vous effectuez un commit, Git enregistre les modifications préparées dans la zone de préparation dans le dépôt. Ces modifications deviennent alors une nouvelle version de votre projet, enregistrée avec un message descriptif.

git commit -m “Ajout des fichiers html et css de base”

Enfin, notre dépôt local est prêt à être envoyé vers notre dépôt distant sur GitHub

[bookmark: _Toc158363067]Envoyez votre commit sur le dépôt distant avec la commande git push
Après avoir créé une version du projet en local, il est temps de transférer votre commit du dépôt local vers le dépôt distant.
Il existe deux protocoles principaux : SSH et HTTPS. Lorsque vous souhaitez transférer du code sur GitHub, vous pouvez utiliser HTTPS, où vous devrez confirmer votre identifiant et votre mot de passe à chaque action sensible. Dans notre cas, nous allons opter pour le protocole SSH, qui utilise un système de clés privées et publiques pour l'authentification
Générer une paire de clés SSH : Avant de pouvoir utiliser le protocole SSH pour vous connecter à GitHub, vous devez générer une paire de clés SSH sur votre machine locale.
Vous pouvez le faire en ouvrant un terminal et en exécutant la commande suivante

ssh-keygen -t rsa -b 4096 -C "votre_email@example.com"
[image:]
Ajouter votre clé publique à votre compte GitHub :
Une fois que la paire de clés SSH est générée, vous pouvez afficher la clé publique en utilisant la commande suivante :

cat~/.ssh/id_rsa.pub

[image:]

Une fois que la clé publique est affichée dans le terminal, copiez-la et suivez les étapes suivantes pour relier le dépôt local au dépôt distant.

· Connectez-vous à votre compte GitHub via un navigateur web.
· Cliquez sur votre photo de profil en haut à droite de la page, puis sélectionnez "Settings" (Paramètres) dans le menu déroulant.
· Dans le menu latéral gauche, sélectionnez "SSH and GPG keys" (Clés SSH et GPG).
· Cliquez sur "New SSH key" (Nouvelle clé SSH).
· Collez votre clé publique dans le champ "Key" (Clé).
· Donnez un titre à votre clé, par exemple "Clé SSH de Mon Ordinateur Personnel".

[image:]

Maintenant, retournez sur Git, vérifiez que vous êtes bien dans votre repository et tapez la commande suivante
git remote set-url origin git@github.com:nom_utilisateur/nom_du_depot.git
Assurez-vous de remplacer nom_utilisateur par votre nom d'utilisateur GitHub et nom_du_depot par le nom de votre dépôt sur GitHub.
[image:]

Vérifier la connexion SSH :
Pour vérifier que la connexion SSH fonctionne correctement, exécutez la commande suivante :
ssh -T git@github.com
Vous devriez voir un message indiquant que vous êtes connecté à GitHub en tant qu'utilisateur, confirmant ainsi que la connexion SSH est établie avec succès.

Cliquez sur "Add SSH key" (Ajouter une clé SSH) pour enregistrer votre clé publique
[image:]

Une fois ces étapes terminées, votre dépôt local Git est connecté à GitHub via le protocole SSH. Vous pouvez maintenant pousser (push) vos modifications vers le dépôt distant sans avoir à saisir votre nom d'utilisateur et votre mot de passe à chaque fois.

git push -u origin main

[image:]

[bookmark: _Toc158363068]Gestion des branches avec Git : Création, Fusion, Rébase
La branche principale dans Git est généralement appelée main, master ou truck. C'est la branche par défaut qui représente la version principale et stable du projet.
Toutes les autres branches sont généralement créées à partir de la branche principale.
Création de branches :
Une branche est une ligne de développement distincte qui permet de travailler sur des fonctionnalités ou des correctifs isolés du reste du code.
Pour créer une nouvelle branche, utilisez la commande git branch suivie du nom de la nouvelle branche.

git branch nouvelle-branche

[image:]

Pour basculer vers la nouvelle branche que vous venez de créer, utilisez la commande suivante :

git checkout nouvelle-branche
Vous pouvez également créer et basculer vers une nouvelle branche en une seule commande en utilisant git checkout -b

git checkout -b nouvelle-branche
Fusion de branches :
Une fois que vous avez terminé de travailler sur une fonctionnalité ou un correctif dans une branche, vous pouvez fusionner cette branche avec une autre branche, généralement la branche principale (par exemple, main ou master).
Pour fusionner une branche dans une autre branche, utilisez la commande git

git checkout branche-destination
git merge branche-source

Git essaiera de fusionner automatiquement les modifications de la branche source dans la branche destination. En cas de conflit, vous devrez résoudre les conflits manuellement avant de finaliser la fusion.
Rébase de branches :
Le rébase est une autre technique de fusion qui permet de reprendre les modifications d'une branche et de les appliquer à une autre branche de manière linéaire.
Pour réorganiser l'historique de la branche en fonction d'une autre branche sur une autre, utilisez la commande git rebase :

git checkout ma-branche
git rebase branche-cible
[bookmark: _Toc158363069]Collaborer avec Git : Fork, Pull Requests
Fork : Le fork est un processus permettant de créer une copie indépendante d'un dépôt distant sur votre propre compte GitHub.
Vous pouvez forker un dépôt en utilisant le bouton "Fork" sur la page du dépôt distant sur GitHub.
Le fork est souvent utilisé lorsque vous souhaitez contribuer à un projet open-source, mais que vous n'avez pas les autorisations pour y pousser directement vos modifications.
Pull Requests : Une fois que vous avez forké un dépôt et apporté des modifications dans votre propre fork, vous pouvez soumettre une pull request (demande de tirage) pour proposer vos modifications à l'auteur original du dépôt.
Une pull request est une demande formelle adressée à l'auteur original du dépôt pour qu'il intègre vos modifications dans le dépôt principal.
L'auteur original du dépôt peut alors examiner vos modifications, les commenter et les fusionner avec le dépôt principal s'il les juge appropriées.

Gestion de conflits dans git
Cause de conflits
Les conflits surviennent lorsque Git ne peut pas fusionner automatiquement les modifications de deux branches, ce qui nécessite une intervention manuelle pour résoudre les différences. Autrement dit, un conflit se produit lorsque deux branches ont modifié la même partie d'un fichier, ou lorsque Git ne peut pas déterminer automatiquement comment fusionner les modifications en raison de divergences.
Résoudre les conflits
Pour résoudre un conflit, il faut éditer manuellement les fichiers en conflit pour choisir quelles modifications doivent être conservées. Les fichiers en conflit contiendront des marqueurs spéciaux pour aider à identifier les sections en conflit. Il faut supprimer ces marqueurs et choisir les modifications à conserver.
Marquer les conflits comme résolus
Une fois que vous avez résolu manuellement les conflits dans un fichier, vous devez marquer les conflits comme résolus en utilisant la commande git add <fichier> pour les fichiers résolus.
Finaliser la fusion
Après avoir marqué tous les conflits comme résolus en les ajoutant à l'index, vous pouvez finaliser la fusion en utilisant git merge --continue ou git rebase --continue, selon le type d'opération que vous effectuez.
Vérifier les conflits résolus :
Avant de finaliser la fusion, il est important de vérifier que tous les conflits ont été résolus correctement. Vous pouvez utiliser des outils de visualisation comme git status et git diff pour vous assurer que tout est en ordre.

Commiter les changements
Une fois que tous les conflits ont été résolus et que vous avez vérifié que tout est correct, vous pouvez commettre les modifications en utilisant git commit. Assurez-vous d'inclure un message de commit approprié décrivant les modifications effectuées pour résoudre les conflits.

Les commandes utilisées dans la résolution de conflits
· git status : Utilisez git status pour voir quels fichiers ont des conflits non résolus. Les fichiers en conflit seront répertoriés sous la section "Unmerged paths".
· git diff : La commande git diff peut être utilisée pour visualiser les modifications en conflit dans les fichiers. Cela vous permet de voir les différences entre les branches et d'identifier les sections conflictuelles.
· git mergetool : Vous pouvez utiliser un outil de fusion (mergetool) pour résoudre les conflits de manière plus conviviale. Configurez d'abord votre outil de fusion préféré avec git config --global merge.tool <outil> (par exemple, git config --global merge.tool vimdiff). Ensuite, lancez l'outil de fusion avec git mergetool. Cela ouvrira chaque fichier en conflit dans l'outil de fusion configuré.
· Éditer les fichiers en conflit manuellement : Vous pouvez également résoudre les conflits manuellement en éditant les fichiers en conflit à l'aide d'un éditeur de texte. Ouvrez les fichiers en conflit dans votre éditeur et recherchez les marqueurs Git spéciaux (comme <<<<<<<, =======, >>>>>>>) qui indiquent les sections en conflit. Modifiez le contenu pour résoudre les différences et supprimez les marqueurs conflictuels.
· git add <fichier> : Après avoir résolu manuellement les conflits dans un fichier, utilisez git add <fichier> pour marquer le fichier comme résolu. Cela ajoute le fichier résolu à la zone de staging en préparation pour le prochain commit.
· git commit : Une fois que vous avez marqué tous les fichiers en conflit comme résolus, utilisez git commit pour créer un commit qui inclut les modifications résolues. Assurez-vous d'inclure un message de commit descriptif.

TP simulation et résolution d’un conflit
Simulation d’un conflit
Créer un fichier « fichier1.txt » et le commiter

sudo su
cd my_project/
touch fichier1.txt
echo "Contenu du fichier 1" > fichier1.txt
git add fichier1.txt
git commit -m "Ajout de fichier1.txt"

[image:]

Créer une nouvelle branche à partir de la branche principale « main »

git branch fany-souad

Se rassurer qu’on ne soit bien sur la branche principale et modifiez le contenu de fichier1.txt.
La commande git branche affichera toutes les branches de votre dépôt local, avec un astérisque (*) devant la branche actuelle. L'astérisque indique la branche dans laquelle vous vous trouvez actuellement
git branche
echo "Modification sur la branche fany-souad09/02" >> fichier1.txt
git add fichier1.txt
git commit -m "Modification sur la branche fany-souad"

[image:]

Aller dans notre branche « fany-souad » et modifier le fichier fichier1.txt

git checkout fany-souad
echo "Modification sur la branche fany-souad" >> fichier1.txt
git add fichier1.txt
git commit -m "Modification sur la branche fany-souad"
[image:]

Fusionner les modifications de la branche « fany-souad » dans la branche principale « main ».

git merge main
[image:]

Git détecte un conflit car les deux branches ont modifié le même fichier. Il indique les parties conflictuelles dans le fichier à voir ci-après :
Résolution du conflit
Pour résoudre ce conflit, il faut le faire manuellement en éditant le fichier « fichier1.txt » et en supprimant les marqueurs de conflit.

nano fichier1.txt

Fichier avant résolution du conflit
[image:]

Dans notre cas, pour la modification du fichier, nous allons considérer que les deux modifications sont importantes. Nous allons résoudre le conflit en modifiant le fichier de la façon ci-dessous.

Fichier après modification
[image:]

git add fichier1.txt
git commit -m "Résolution du conflit"

[image:]

Pour vérifier que le conflit a bien été résolu et que la fusion a été finalisée, il faut utiliser la commande git status. Cette commande montre l'état actuel de votre dépôt Git, y compris les fichiers qui ont été modifiés, ajoutés, ou supprimés, ainsi que les fichiers qui sont en attente de validation.

git status

[image:]

NB : La résolution du conflit consiste à examiner les modifications apportées par chaque branche, à décider quelles modifications doivent être conservées et à les fusionner correctement.

[bookmark: _Toc158363070]Utilisation avancée de GitHub
L'interface graphique de GitHub offre une expérience utilisateur conviviale et intuitive pour interagir avec les dépôts, les projets et les communautés sur la plateforme. Voici une présentation des principales composantes de l'interface graphique de GitHub :

Tableau de bord : l'ouverture, vous êtes accueilli par votre tableau de bord, qui affiche un aperçu personnalisé de l'activité récente sur vos dépôts, les notifications, les projets en cours, etc.
Navigation : La barre de navigation supérieure vous permet d'accéder rapidement aux différentes sections de GitHub, telles que les dépôts, les pulls requests, les problèmes, les actions, les projets, etc.
Recherche : Un champ de recherche vous permet de trouver rapidement des utilisateurs, des organisations, des dépôts ou même des lignes de code spécifiques à travers GitHub.
Profil : En cliquant sur votre avatar en haut à droite, vous pouvez accéder à votre profil, où vous pouvez voir vos dépôts, vos contributions, vos abonnements, etc.
Dépôts : La page des dépôts affiche une liste de vos dépôts personnels et ceux auxquels vous contribuez. Vous pouvez naviguer à travers les dépôts, consulter les activités récentes, les pulls requests, les problèmes, etc.
Pull Requests et Problèmes : Ces sections vous permettent de voir les pulls requests et les problèmes ouverts sur vos dépôts ou ceux auxquels vous contribuez. Vous pouvez les trier, les filtrer et y participer directement depuis l'interface.
Actions : Cette section vous permet de gérer les workflows d'automatisation pour vos dépôts, tels que les builds, les tests, le déploiement, etc. Vous pouvez consulter l'état des workflows en cours et historiques, ainsi que les logs détaillés.
Wiki et Projets : GitHub offre également des fonctionnalités pour la gestion de projets et la documentation sous forme de wikis. Vous pouvez créer et collaborer sur des projets, ainsi que documenter vos dépôts avec des wikis intégrés.
Commits et Contributions : Sur la page de chaque dépôt, vous pouvez voir les commits récents, les contributions de chaque collaborateur, ainsi que l'activité de la communauté autour du dépôt.
Fonctionnalités sociales : GitHub est également une plateforme sociale, où vous pouvez suivre d'autres utilisateurs, étoiler des dépôts, participer à des discussions, etc. Vous pouvez interagir avec la communauté et découvrir de nouveaux projets.

[image:]
 interface graphique GitHub /Tableau de bord

[bookmark: _Toc158363071]Sécurité et bonnes pratiques avec Git et GitHub
· Gestion des identifiants : Ne jamais inclure d'identifiants sensibles tels que des mots de passe, des clés d'API ou des informations d'identification dans vos fichiers de code.
Pour cela il est recommandé d’utiliser des variables d'environnement ou des mécanismes de gestion des secrets pour stocker et gérer ces informations sensibles. Comme. gitigniore
. gitignore est un fichier spécial utilisé par Git pour dire quels fichiers et répertoires il ne doit pas suivre ni inclure dans vos commits. Utilisation de HTTPS vs SSH :

· HTTPS et SSH sont deux protocoles principaux utilisés pour se connecter aux dépôts distants sur GitHub.
HTTPS nécessite une authentification à chaque interaction, tandis que SSH utilise une paire de clés publique-privée pour l'authentification.
Utiliser SSH est généralement considéré comme plus sécurisé, car il n'expose pas vos informations d'identification à chaque action effectuée sur le dépôt.
· Gestion des clés SSH : Assurez-vous de protéger votre clé privée SSH et de ne pas la partager publiquement.
· Utilisez des phrases de passe robustes pour protéger vos clés privées et configurez votre système pour qu'il les stocke de manière sécurisée.
· Permissions d'accès aux dépôts : Sur GitHub, vous pouvez contrôler les permissions d'accès à vos dépôts en ajoutant des collaborateurs avec différents niveaux d'accès (lecture seule, écriture, administrateur).
· Assurez-vous de limiter l'accès à vos dépôts uniquement aux personnes autorisées, en particulier pour les dépôts contenant des informations sensibles.
· Vérification des commits : Avant de fusionner des pull requests ou de pousser des commits sur le dépôt principal, assurez-vous de vérifier attentivement le code pour détecter d'éventuelles vulnérabilités ou erreurs.
· Encouragez les revues de code par les pairs pour garantir que le code est examiné par plusieurs personnes avant d'être fusionné dans le dépôt principal.
 Utilisation de l'authentification à deux facteurs (2FA) :
· Activez l'authentification à deux facteurs sur votre compte GitHub pour renforcer la sécurité de votre compte.
· L'authentification à deux facteurs nécessite une seconde forme de vérification (généralement un code temporaire envoyé à votre téléphone) en plus de votre mot de passe habituel pour vous connecter à votre compte GitHub.

Conclusion

Git et GitHub sont des outils puissants qui révolutionnent la manière dont les équipes de développement collaborent et gèrent leurs projets logiciels. Grâce à Git, les développeurs peuvent facilement suivre les modifications apportées au code source, créer des branches pour travailler sur des fonctionnalités isolées, fusionner leurs modifications en toute sécurité et revenir en arrière en cas de besoin. GitHub, quant à lui, offre une plateforme de collaboration centralisée où les développeurs peuvent héberger leurs dépôts Git, suivre les problèmes, soumettre des pull requests, et interagir avec d'autres développeurs du monde entier.
Dans cette documentation, nous avons exploré les bases de Git, y compris la configuration initiale, la création de dépôts locaux et distants, la gestion des commits, des branches et des fusions. Nous avons également abordé des sujets plus avancés tels que la collaboration avec Git en utilisant des fonctionnalités telles que le clonage, le fork et les pull requests. Enfin, nous avons examiné les bonnes pratiques de sécurité, telles que l'utilisation de fichiers .gitignore, l'authentification à deux facteurs et la protection des clés SSH, pour garantir la sécurité et l'intégrité de vos dépôts Git et GitHub.

	

	Git et ses fonctionnalités
	Page 4 sur 4

	
	© EASYFORMER 2023 - Tous droits réservés
	Date : 09/02/24

image3.png
Développement

Mise en production

Y version

Développeur

Sauvegarde sur serveur

ELX-X=

Développeur

B

- Suivi de votre projet
- Historique complet des modifications
- Possibilité de revenir sur une version antérieure

-

Récupére la derniére version sauvegardée

—_—

Envoie les derniéres modifications pour sauvegarde

image4.png

image5.png
root@souad-virtual-nachine:~/GitHUB# git config --list --global
user .name=Souad Fany

user .email=souadtouat4s@gmail.con
root@souad-virtual-nachine:~/GLtHUB#

image6.png
Local

image7.png
root@souad-virtual-machin
et-gItHub.git

Cloning into 'Projet-gItHub'
Enumerating objects: 3, done.

Counting objects: 100% (3/3), done.

Total 3 (delta 0), reused 0 (delta @), pack-reused o I

/GitHUB# git clone

/github.con/SOUAD95-4/Proj

Receiving objects: 100% (3/3), done.
root@souad-virtual-machine:~/GitHus# |

image8.png
O SOUADS5-4 Q +-0/[nlle @

00 Overview B Projects @ Packages ¥ Stars 3

Find a repository... New
Public
v sar -

Updated on Dec 20, 2021

\ &

Config files for my GitHub profile.

v sar -
SOUAD95-4 config github-config
Edit profile Updated on Dec 20, 2021
L Public
v sar -

Updated on Jun 26, 2021

image9.png
O New repository Q +- O

Create a new repository
A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Required fields are marked with an asterisk (*).

Repository template
No template ~

Start your repository with a template repository's contents.

Owner * Repository name *
SOUADS5-4 ~ [Projet-gltHub
© Projet-gltHub s available.

Great repository names are short and memorable. Need inspiration? How about shiny-guide ?

Description (optional)

Public
Anyone on the internet can see this repository. You choose who can commit.

o &

o Private
You choose who can see and commit to this repository.

image10.png
= O SOUAD95-4 / Projet-gltHub, Q Tapez

<> Code (Problemes [} Demandesdetirage (O Actions [Projets [0 Wiki @ Sécurité |~ Connaissances 8 Paramétres

. Projet-gltHub pubique 2 foingle || © Neplusregarder 1~ | % fouchewe 0 | v || ¥¥ Etole 0
¥ principal ~ P Tsuccursale © 0 balises Q_ Aller au dossier t | Ajouter le fichier ~ A propos
Locale Espaces de codes Aucune description, site Web ou suj
¥ SOUADY95-4 Engagement initial fourni.
Cloner ®
O usEzMOLmd Engagement initial 00 Lisez-moi

HTTPS SSH CLIGitHub Activité

[0 usezvol 0 ctolles

Rttps: //github. con/SOUADSS-4/Projet-glthub.git | ()

A
44
@ 1jeregarde
Clonez Iside de I'URL Web. o

0 fourchettes

Projet-gltHub

3 Ouvrir avec GitHub Desktop

[} Telécharger le fichier ZIP 2“5“"‘ version P‘I‘“’"E‘

image11.png
root@souad-virtual-machine:~/github# git status
on branch master

No commits yet

Untracked files:

(use "git add <file>.
lab-1.html
lab-2.html

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

image12.png
root@souad-virtual-machine:~/github# git status
on branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>.
new fil lab-1.html
new file: lab-2.html

to unstage)

root@souad-virtual-machine:~/github#

image13.png
root@souad-virtual-machine - $ ssh-keygen -t rsa -b 40696 -C "souadtouat45@gmail.com
Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa

Your public key has been saved in /root/.ssh/id_rsa.pub

The key fingerprint is:
SHA256: LPKKSYWE+ZZ6L1DNCO+0XgsphU7GGEA+yVHNDX+4eTH souadtouatasggnail.com
The key's randomart image is:

+---[RSA 4896]----+

lo. o.
lo

l+=.0...%
| .o+0*.0.E

| .o0+.. 0

| ..o0
+----[SHA256]-
root@souad-virtual-nachine - § ssh-add ~/.ssh/id_rsa
Identity added: /root/.ssh/id_rsa (souadtouat45@gmail.com)
root@souad-virtual-nachine - § cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCt+X/FIfkz7JEasQqQIKKSMSNRTYeRaCFHusdjaPQT8MVKBHBNINa6AHV/gyap zGg/qKx+9sPFkKaMvit/web/t1/ctsc
KuG15n8j+eNtFqUO4RLg37X7qER7 t2V2B 1 5PabMqX j 1xn0OwspU26IB1L/2RCNBUEPFRKCYXVTv+IBLEPIAEZdYAZ2nGkK5H3P 1G1Dq60npFO72nn7+4CH+BSMBgy0OKVgSMm
©0bGAS5hj 1MEXRpVd4VeBU43VXCarCi0CS/1KVVg4c7 JQHASFIILGEI6 tzApre@RBgiHqMce STAgDywy jL9CKrRNRpIMOVX70MMqT 1002015/ YThfsnjmHF11YFGP /yILN3wyF
W8rACnIkT/DOVr fcOXNBXVOF2FsaPOqueqofsP386/ fSRCowhAaz85wk7zA9aKMMZ891s1L50q+dYGgKniDAOXOUZIgD1xdGk510m/BzS7GOh3DATL 1w6hVxhr11YoQHY3C6
tZhe6ciueS6wl7tWAGFSE7mBy1igSFF2w0zvwy2A70/FS0YeSFNL/9aHOR0jpFmVNIPC/cm/RL1NOVE1LnZMNYaXRVUNFXPDBY7YRHMOHPI63bpBBq9qakDKKyShNB /ZVYT7
EJgVtkLyndkUkzbSM3mCLNYLMCFCOSQIY+1z1WOPUOr62GiusyaKpowsK+eLpQ== souadtouata5@gmail.com

root@souad-virtual-machine - §

image14.png
root@souad-virtual-machine - $ cat ~/.ssh/id_rsa.pub

ssh-rsa AAAAB3NZaC1yc2EAAAADAQABAAACAQCt+X/FIfkz7JEasQqQIKKSMSNRIYeRaCFWusdjaPQTBMVKBWBNINa6AHY/gyapjzGg/qkx+9sPFkKaMVt/web/t1/ctsc
kuG15n8j+eNtFqUO4RLG37X7qERT t2V2B]5PabMqX jixnOwspU26IB1L / 2RCNBUEPFKCYXVTV+IBUEP JAEZdYAZ2nGkk SH3P JG1Dq6@NpTO72MM7+4CH+BSMBgy0BKvg5M
©0bGAS5hj1MtXRpVd4veBU43VXCarCjOcs/1KVVgac7 jQHSFIILGtI6tzApre@R8giNgMce5TdgDywy j 19CKrRNRpIMOVX70MMqI10020IS/YIhfsnjmWf11YFGP/yILN3wyF
WBrAcnIkT/DOVr fcoxNBXVOF2FsaPoqueqofsP386/ fSRCowhAaz8swk7zA9aKHMz89151Ls0q+dYGgKmiDAOX0uZIgD1xdGk5iom/B2S7GON3DAIL 1wGhVxhr 11Y0QHY3C6
tZhe6ciueS6wl7tWA6FSE7mBy11gSff2w0zvwy2A70/fS@YeSFNL/9aHORojpFmvNIPC/cm/RL1n0VE11nZmNvaxRVUnFxPD8Y7YRHMOHPI63bpBBq9qaDKKyShNB/ZVYT7
EJgYtkLynakUkzbSM3mCLNYLMCFCOSQLY+1z1HOPUOr62Giusy4Kpowsk+eLpQ== souadtouat4s@gmail.con

root@souad-virtual-machine -~ $ I

image15.png
Ajouter une nouvelle clé SSH
Titre
github-ssh-1

Type de clé

Clé d'authentification &

cie

T <
sshersa

AAAAB3NZAC Tyc2EAAAADAQABAAACAQCt X /FifkeT JEasQaQIKKSMSNRIYeRaCFWusdjaPQTEMyKBWEN na6AHV/ gyapjzGa/aKx+9sPTkKaMVjt/
W6b/t1/ctsckuG15n8j+eNtFqUOARLG37XTQERTH2V2B]5PabMaXjinOwspU26J81L/2RCNSUEPFmKCYXV Ty + BIEPJAEZAYAZ2NGKSH3PIG 1Dg60n
PfO72mm?7+4CM+BSMBgyoOKvg5mobGASh)1MEXRpVA4vOBUA3VXCarCj0cs/ 1KVVg4cT)QHASFIILGH6tzApre0RBGIWGMceSTdgDywyjISCKRNR
PIMOVx70MMalio0zolS/IhfsnjmWF11YFGP/yJLN3wyFWSrACnIKT/DOVrfcOxNEXVOF 2FsaP0queqOfsP386/fSRCowhAZ85wk72zA92KMMzZ89 15iLsO
q+dYGgKmiDOXOuZIgDIxdGkSiom/BzS7GO3DAILTWEhVxhr11YoQHY3CEtZhebciueS6wITHWAGFSETmByiigSfrawOzviy2ATo/fS0YeSFNL/92HO
RojpFmvnlPc/cm/RL1noV8 1inZmNvaxRVUnFxPDY7YRHmOHPI63bpBBa9aaWDKKyShNB/2VY T7E gYtklyndkUkzbSM3mCLNYLmCFCOSQIY+ 121
WOPUOr6ZGiuSy4KpowSK +eLpQ== souadtouatd5@gmail.com

\jouter une clé SSH

image16.png
P vELEsid m VLT Lid L rat i L is
root@souad-virtual-nachine
5-4/Projet-gItHub.git
root@souad-virtual-nachine:~/github# git branch -M main
root@souad-virtual-nachine:~/github# git push -u origin main

The authenticity of host 'github.com (140.82.121.4)' can't be established.
ED25519 key fingerprint is SHA256:+Di1V3wvvV6TuJIhbpZisF/zLDAGZPMSVHAKr4UVCOQU.
This key is not known by any other names

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added 'github.com' (ED25519) to the list of known hosts.
git@github.com: Permission denied (publickey).

fatal: Could not read from remote repository.

/3L LALE AL LLE TUUL.pLD
/github# git remote add origin git@github.com:SOUADS

image17.png
Your ldentification has been saved in /root/.ssh/id_ed25519

Your public key has been saved in /root/.ssh/id_ed25519.pub

The key fingerprint is:

5HA256: 1qds j1g2PaubQjsAW4ZMasrm3nAHOCNBTENMZLPKXSH souadtouatds@gmail.con

ssh-keygen -t ed25519 -C souadtouat45@gmail.con
The key's randomart image is:
[+--[ED25519 256]--+

I 00.E o
| . ***o

|
|
|
|
s
|
|
|
|

[SHA256]-----+
root@souad-virtual-machine:

image18.png
root@souad-virtual-machine:~/GitHUB/Projet-gItHub# git push -u origin main
Username for 'https://github.com': SOUAD95-4

Password for 'https://SOUAD95-4@github.com’:

branch 'main’ set up to track 'origin/main’.

Everything up-to-date

root@souad-virtual-machine:~/GitHUB/Projet-gItHub#

image19.png
root@souad-virtual-machine -/github (main) $ git branch github
root@souad-virtual-machine ~/github (main) $ git branch
github
* main
projet-1
root@souad-virtual-machine ~/github (main) $ I

image20.png
root@insta:/home/insta# cd my project/
root@insta:/home/insta/my_project# git add fichierl.txt
root@insta:/home/insta/my_project# git commit -m "Ajout de fichierl.txt"
[main 562bb2b] Ajout de fichierl.txt

1 file changed, 1 insertion(+)

create mode 100644 fichierl.txt

root@insta:/home/insta/my_project# []

image21.png
root@insta:/home/insta/my project# echo "Modification sur la branche fany-souad09/02" >> fich
ierl.txt

root@insta:/home/insta/my_project# git add fichierl.txt

root@insta:/home/insta/my_project# git commit -m "Modification sur la branche fany-souad"
[main bécc714] Modification sur la branche fany-souad

image22.png
root@insta:/home/insta/my project# git add fichierl.txt
root@insta:/home/insta/my_project# git commit -m "Modification sur la branche fany-souad"
[fany-souad 522a26c] Modification sur la branche fany-souad

1 file changed, 1 insertion(+)

image23.png
root@insta:/home/insta/my_project# git merge main
Auto-merging fichierl.txt

CONFLICT (content): Merge conflict in fichierl.txt

Automatic merge failed; fix conflicts and then commit the result.

image24.png
Contenu du fichier 1|

<<<<<<< HEAD

Modification sur la branche principale
Modification sur la branche fany-souad09/02
>>>>>>> main

image25.png
Contenu du fichier 1
Modification sur la branche principale
Modification sur la branche fany-souad09/02[]

image26.png
root@insta:/home/insta/my project# git add fichierl.txt
root@insta:/home/insta/my_project# git commit -m "Résolution du conflit"
[fany-souad e32ed18] Résolution du conflit
root@insta:/home/insta/my_project# []

image27.png
root@insta:/home/insta/my_project# git status
on branch fany-souad

nothing to commit, working tree clean
root@insta:/home/insta/my_project# git checkout main
switched to branch 'main'
root@insta:/home/insta/my_project# git status

on branch main

nothing to commit, working tree clean
root@insta:/home/insta/my_project# []

image28.png
= O Tableau de bord Q Tapez (7Jpour rechercher PR +-] 0O N & 3-:
. = 8
Maison Envoyer des commentaires Filtre Derniers changements
Top Repositories T
. . . Ily a 13 heures.
Mises a jour du flux de votre page d'accueil X L'analyse secréte ajoute des contrdles de

Find a repository...
validité pour Stripe, Telegram, SendGrid, etc.
Nous avons combiné la puissance du flux Follow avec le flux For you afin de créer un seul endroit pour découvrir du P pe. Teleg

. SOUAD95-4/javascript contenu sur GitHub. Il existe un filtrage amélioré afin que vous puissiez personnaliser votre flux exactement comme Ily a2 jours
#* SOUAD95-4/SOUAD95-4 vous I'aimez, ainsi qu'un nouveau design visuel brillant. 4 L'analyse de code peut désormais étre activée
Py i sur les référentiels avant qu'ils ne contiennent.
¥ SOUADY5-4/Carte-visite ‘Apprendre encoee i
@ rRM /simplon-devcloud- Iy a2jours
clane/simplon-deveoud-memes Priorité des tickets de support pour GitHub
SOUAD95-4/M-me_racMorSou Enterprise
lo2 Référentiels tendances - Voir plus
® Jordandiazfr/azure-monitoring-full-stack- La semaine derniére
app - peut-étre-financer/peut-étre W Etolle ~ Les workflows Gradle Starter soumettent
+ SOUAD5-4/azure-monitoring-full-stack- L'OS pour vos finances personnelles désormais automatiquement les dépendance...
"7 app @Rubis Y 19,1k Afficher le journal des modifications —
Show more

‘

€ FujiwaraChoki/MoneyPrinter 77 Etoile
Explorer les référentiels

Activité récente Automatisez la création de courts métrages YouTube & I'aide de MoviepPy.

@python YY 187 © rédisson / rédisson S

Lorsque vous effectuez des actions sur GitHub,
nous fournissons ici des liens vers cette activité. Redisson - Client Java Redis facile avec des fonctionnalités

image1.png

image2.png
)Z-W

image29.png

