	Kubernetes – Docker – NGINX – Portainer
	Référence : TP-CLUSTER-KUBER-4228
	Version : 1.0

	Kubernetes – Docker – NGINX – Portainer

	Création d’un cluster Kubernetes utilisant Docker, déploiement d’un service NGINX et lien avec une instance Portainer

	

	Référence : TP-CLUSTER-KUBER-4228

	Auteurs :
Nicolas B. - Adrien R.
Adrien M. - Benoit A.

	Destinataires :
Formateurs
Apprenants

	 Date de création : 1/12/22
	
	Date de dernière modification : 29/12/22
	Version : 1.0

	

Sommaire	page
1	Introduction	4
1.1	Maitriser les concepts	4
1.1.1	Qu’est-ce-que Kubernetes ?	4
1.1.2	Qu’est-ce qu’un cluster Kubernetes ?	4
1.1.3	Qu'en est-il de Docker ?	6
1.2	Préparation de l’environnement	6
1.2.1	Environnement du lab	6
1.2.2	Installation des machines virtuelles	8
1.2.3	Se connecter en SSH	10
1.2.4	Mettre à jour les serveurs Ubuntu	10
2	Création d’un cluster Kubernetes	11
2.1	Installation des prérequis	12
2.1.1	Installer kubelet, kubeadm et kubectl	12
2.1.2	Désactiver l'espace d'échange (swap)	13
2.1.3	Installer un environnement d'exécution de conteneur	15
2.1.4	Installer une interface d’environnement d’exécution de conteneur	17
2.2	Création du cluster	19
2.2.1	Initialiser le plan de contrôle	19
2.2.2	Installer le plugin réseau Kubernetes	23
2.2.3	Ajouter des nœuds de travail	25
3	Déploiement d’un service web	26
3.1	Déploiement du service web NGINX	26
4	Lien avec une interface graphique de gestion de conteneurs	32
4.1	Information importante	32
4.2	Installation de Portainer	32
4.3	Liaison du cluster Kubernetes	35
5	Annexes : procédures alternatives	37
5.1	Mode opératoire d’Adrien M.	37
5.1.1	Préparation des VM’s	37
5.1.2	Installation de Docker	38
5.1.3	Création du cluster avec Kubernetes	38
5.1.4	Installation de Portainer	40
5.1.5	Liaison avec Kubernetes	40
5.1.6	Pour en savoir plus sur Portainer	41
5.2	Mode opératoire de Benoit A.	41
5.2.1	Prérequis	41
5.2.2	Docker	42
Installation	42
Vérification du service	42
Commandes utiles	42
5.2.3	Portainer - Docker	43
Installation	43
5.2.4	Kubernetes	46
Installation	46
Liaison Portainer - Kubernetes	47

[bookmark: _Toc121303943]Introduction
Au cours de la réalisation de ces travaux pratiques, vous allez créer un cluster Kubernetes composé de trois nœuds qui utilisera l’environnement d’exécution de conteneurs Docker. Vous ferez la liaison entre ce cluster Kubernetes et une interface de gestion graphique qui s’appelle Portainer. Vous hébergerez aussi sur ce cluster Kubernetes un serveur web sous NGINX. Toute l’infrastructure sera virtualisée a l’aide de l’hyperviseur VMware Workstation.
[bookmark: _Toc121303944]Maitriser les concepts
Avant d’aborder la partie pratique il convient d’avoir une connaissance minimale de certaines technologies.
[bookmark: _Toc121303945]Qu’est-ce-que Kubernetes ?
[image:]

Kubernetes (alias K8s) peut être défini comme un système d'orchestration de conteneurs open source qui vous permet d'automatiser le déploiement et la gestion des charges de travail et des services conteneurisés.

Kubernetes est un projet qui a été créé à l'origine par Google mais qui est désormais maintenu par la Cloud Native Computing Foundation.

K8s dépend de la virtualisation des systèmes d'exploitation plutôt que de la virtualisation du matériel.

Kubernetes automatise de nombreuses tâches opérationnelles dans les déploiements de logiciels et permet à l'utilisateur de planifier et d'exécuter des conteneurs sur des clusters de machines physiques ou virtuelles dans des environnements de cloud public, de cloud privé et hybrides.

Kubernetes est un système idéal pour la gestion des conteneurs qui améliore l'utilisation des ressources et réduit les coûts.

Kubernetes est également connu pour optimiser les ressources matérielles, améliorer la productivité DevOps et gérer les modifications apportées aux applications conteneurisées existantes.

Actuellement, c'est le leader du marché de l'orchestration de conteneurs. Kubernetes est une plate-forme idéale pour héberger des applications de microservices qui évoluent de manière dynamique. Lorsque vous travaillez sur un environnement de production, Kubernetes est la plate-forme la plus préférée et la plus sûre pour l'orchestration de conteneurs.
[bookmark: _Toc121303946]Qu’est-ce qu’un cluster Kubernetes ?
Le terme « cluster Kubernetes » désigne un déploiement fonctionnel de Kubernetes. Un cluster Kubernetes comprend deux principaux composants : le plan de contrôle (control plane) et les machines de calcul (workers). On peut aussi parler d’architecture maitre/esclave constituée de nœuds (nodes) : le nœud maitre (master), qui est la machine sur laquelle s'exécutent les composants du plan de contrôle (control plane), et les nœuds de travail (workers).

Il y a quatre composants d'un nœud maître (master) :

· Serveur API Kube
· Contrôleur (controller)
· Ordonnanceur (scheduler)
· etcd

Et le nœud de travail (worker) a trois composants :

· kubelet
· kube-proxy
· Environnement d’execution du conteneur (container runtime)

Voici à quoi ressemble une architecture Kubernetes :

[image:]

Chaque nœud de travail est son propre environnement Linux (machine physique ou virtuelle) et exécute des pods, constitués de conteneurs.

Le plan de contrôle est responsable du maintien du cluster dans un état souhaité, c'est-à-dire qu'il vérifie, par exemple, les applications exécutées et les images de conteneurs utilisées. Ce sont les machines de calcul qui exécutent concrètement les applications et les charges de travail.

Kubernetes fonctionne sur un système d'exploitation et interagit avec les pods des conteneurs qui s'exécutent sur les nœuds.

Le plan de contrôle Kubernetes reçoit les commandes d'un administrateur et transfère ces instructions aux machines de calcul.

Ce transfert fonctionne avec une multitude de services afin de choisir automatiquement le nœud le plus adapté à la tâche. Il alloue ensuite les ressources et attribue le travail demandé aux pods de ce nœud.

L'état souhaité d'un cluster Kubernetes détermine les applications ou autres charges de travail à exécuter, ainsi que les images à utiliser, les ressources qui leur sont allouées et d'autres informations de configuration.

Au niveau de l'infrastructure, la gestion des conteneurs est légèrement différente : le contrôle s'effectue à un niveau supérieur, ce qui renforce votre contrôle sans avoir à gérer individuellement chacun des conteneurs ou nœuds.

Votre travail consiste à configurer Kubernetes, définir des nœuds, des pods et les conteneurs qu'ils contiennent, tandis que Kubernetes gère l'orchestration des conteneurs.

Étant donné que dans un environnement de production, vous ne prévoyez aucun temps d'arrêt, votre cluster doit toujours être opérationnel.

Organiser et gérer plusieurs conteneurs n'est pas une tâche facile. Lorsque vous travaillez sur des applications dynamiques, augmenter ou diminuer le nombre de conteneurs est une chose normale mais faire de telles tâches manuellement peut être complexe et risqué. Par conséquent, un outil d'orchestration de conteneurs est nécessaire, et c'est pourquoi Kubernetes est nécessaire.

Pour mieux comprendre l’architecture de Kubernetes et voir plus en détail les composants du nœud maître et des nœuds de travail lisez ces articles : https://geekflare.com/fr/kubernetes-architecture/ et https://www.redhat.com/fr/topics/containers/what-is-kubernetes

Leur lecture vous permettra aussi de mieux comprendre les différents termes qui seront utilisés tout au long de ce TP.
[bookmark: _Toc121303947]Qu'en est-il de Docker ?
[image:]

Vous pouvez utiliser Docker (mais pas que…) en tant qu'environnement d'exécution (runtime) orchestré par Kubernetes. Lorsque Kubernetes planifie un pod dans un nœud, le kubelet de ce nœud donne l'ordre à Docker de lancer les conteneurs spécifiés.

Le kubelet collecte ensuite en continu le statut de ces conteneurs via Docker et rassemble ces informations dans le plan de contrôle. Docker transfère ces conteneurs dans ce nœud, les démarre et les arrête.

Lorsque vous utilisez Kubernetes avec Doker, la différence est l'origine des ordres : ils proviennent d'un système automatisé et non plus d'un administrateur qui assigne manuellement des tâches à tous les nœuds pour chaque conteneur.
[bookmark: _Toc121303948]Préparation de l’environnement
[bookmark: _Toc121303949]Environnement du lab
Pour la réalisation de ces travaux pratiques j’ai utilisé l’hyperviseur VMware Workstation sous un système Windows 11.

Le réseau[footnoteRef:1] du lab : [1: Si vous êtes un apprenant de l’école INSTA, vous pouvez retrouver cette configuration réseau facilement en vous connectant au réseau de l’école via un câble RJ45.]

· Adresse du réseau et son masque de sous-réseau au format CIDR : 172.16.12.0/24
· Passerelle par défaut : 172.16.12.254

La connectivité réseau entre les machines et pour l’accès internet a été assurée par une mise en réseau en mode « bridged » mais vous pouvez également passer en mode « NAT » si vous le désirez.

Pour pouvoir vous connecter à vos machines virtuelles en SSH depuis votre machine hôte en utilisant le NAT assurez-vous que ce dernier est bien configuré si vous avez modifié la configuration par défaut. Il faut que l’adresse IP et le masque de sous-réseau de la « Gateway IP » du VMnet8 soient les mêmes que ceux de l’interface réseau virtuelle « VMware Network Adapter VMnet8 » de votre machine hôte.

Vous pouvez vous baser sur les illustrations ci-dessous et adapter selon votre propre configuration :

[image:]

[image:]

[image: Une image contenant texte

Description générée automatiquement]

[image: Une image contenant texte

Description générée automatiquement] [image: Une image contenant texte

Description générée automatiquement]
[bookmark: _Toc121303950]Installation des machines virtuelles
J’ai installé trois serveurs Ubuntu Server 22.04.1 : un nœud principal (master) et deux nœuds de travail (worker) où les charges de travail conteneurisées seront exécutées.

Téléchargez l’ISO d’Ubuntu Server ici : https://releases.ubuntu.com/22.04.1/ubuntu-22.04.1-live-server-amd64.iso

	Rôle de serveur
	Nom d'hôte du serveur
	Spécifications
	Adresse IP

	Nœud maître
	master
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.150

	Nœud de travail
	worker1
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.151

	Nœud de travail
	worker2
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.152

Des nœuds supplémentaires pourront toujours être ajoutés au cluster pour répondre aux exigences de charge d'environnement souhaitées.

Pour vous assurer de ne pas avoir de problèmes de login/mot de passe par la suite vous pouvez utiliser ceux proposés ci-dessous :

· Nom d’utilisateur : user
· Mot de passe : popopo

[image: Une image contenant texte

Description générée automatiquement]

Assignez une IP fixe à vos machines directement durant l’installation d’Ubuntu afin de ne pas avoir à le faire après :

[image: Une image contenant texte

Description générée automatiquement]

Si vous deviez le faire post-installation, vous pouvez vous aider de ces liens : https://netplan.io/examples et https://doc.ubuntu-fr.org/netplan pour configurer le fichier .yaml qui se trouve dans /etc/netplan/

Vous pouvez installer OpenSSH directement pendant l’installation d’Ubuntu :

[image: Une image contenant texte

Description générée automatiquement]

Par précaution n’installez pas les autres paquets (au format snap d’Ubuntu) proposés par l’installateur :

[image: Une image contenant texte

Description générée automatiquement]
[bookmark: _Toc121303951]Se connecter en SSH
Une fois vos serveurs prêts, connectez-vous en SSH avec Putty ou MobaXterm pour pouvoir copier-coller les commandes du TP dans le terminal :
ssh [votre_utilisateur]@[votre_IP]

[image: Une image contenant texte

Description générée automatiquement]

Puisque nous sommes dans un contexte de formation nous pouvons nous permettre de passer en root afin d’éviter d’utiliser systématiquement la commande sudo :
sudo su
[bookmark: _Toc121303952]Mettre à jour les serveurs Ubuntu
Mettez à jour la liste des paquets binaires[footnoteRef:2] disponibles : [2: Paquet binaire : En informatique, et en particulier dans le contexte des systèmes UNIX, on appelle paquet (ou parfois paquetage, en anglais package) une archive (fichier compressé) comprenant les fichiers informatiques, les informations et procédures nécessaires à l'installation d'un logiciel sur un système d'exploitation au sein d'un agrégat logiciel, en s'assurant de la cohérence fonctionnelle du système ainsi modifié. Les opérations de gestion des paquets au sein du système (installation, suppression, etc.) sont réalisées par un gestionnaire de paquets. Source : https://fr.wikipedia.org/wiki/Paquet_(logiciel)
]

apt update

Mettez vos serveurs à jour :
apt upgrade

Redémarrez vos serveurs :
reboot
[bookmark: _Toc121303953]Création d’un cluster Kubernetes
[image:]

La partie décrivant la création du cluster Kubernetes est basée sur ce tutoriel :

https://computingforgeeks.com/install-kubernetes-cluster-ubuntu-jammy/

N’hésitez pas à revenir à la source en cas de difficulté ou si vous souhaitez faire autrement ou plus que ce qui est décrit ci-dessous.

Vous avez aussi la documentation officielle de Kubernetes qui peut vous aider en cas de difficulté :

https://kubernetes.io/fr/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
[bookmark: _Toc121303954]Installation des prérequis
[bookmark: _Toc121303955]Installer kubelet, kubeadm et kubectl
[bookmark: _Hlk120885206]Faites les commandes suivantes sur tous les serveurs.

Tout d’abord, vous allez devoir ajouter le référentiel Kubernetes pour Ubuntu 22.04 à vos serveurs.
Pour cela installez les paquets binaires nécessaires à la récupération de la clé GPG qui servira pour l’utilisation du dépôt de Kubernetes.
apt install curl apt-transport-https -y

Ensuite récupérez la clé GPG :
curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg| gpg --dearmor -o /etc/apt/trusted.gpg.d/k8s.gpg

Puis ajoutez le référentiel à votre liste des référentiels :
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee /etc/apt/sources.list.d/kubernetes.list

[bookmark: _Hlk120788200]Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Mettez à jour votre liste de dépôts puisque vous avez ajouté celui de Kubernetes :
apt update

Puis installez les paquets nécessaires pour la gestion du cluster :
apt install wget git kubelet kubeadm kubectl -y

L’outil kubeadm effectue les actions nécessaires pour obtenir un cluster minimum viable opérationnel.

L’outil kubectl sert pour communiquer avec le plan de contrôle d’un cluster Kubernetes, à l'aide de l'API Kubernetes.

L’outil kubelet est un agent qui s'exécute sur chaque nœud du cluster. Il s'assure que les conteneurs fonctionnent dans un pod.

La commande suivante servira à empêcher la modification des paquets kubelet, kubeadm et kubectl en les marquant comme retenus, ce qui empêchera qu'ils soient installés, mis à jour ou supprimés automatiquement :
apt-mark hold kubelet kubeadm kubectl

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez vérifier l’installation de kubectl :
kubectl version --output=yaml

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez vérifier l’installation de kubeadm :
kubeadm version

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc121303956]Désactiver l'espace d'échange (swap)
Vous devez désactiver le swap pour que kubelet fonctionne correctement.[footnoteRef:3] [3: La discussion à ce sujet se trouve ici : https://github.com/kubernetes/kubernetes/issues/53533]

L'espace d'échange, en anglais swap, est une partie de la mémoire de masse d'un ordinateur (= mémoire non volatile ; ex. : disque dur, SSD) utilisée par le système d'exploitation pour stocker des données qui, du point de vue des applications, se trouvent en mémoire vive. L'espace d'échange peut prendre la forme d'une partition dédiée (la partition swap, courante sous les systèmes Unix) ou d'un simple fichier (le fichier d'échange « C:\pagefile.sys » sous Windows par exemple), ou de plusieurs partitions et/ou fichiers. La mémoire vive et l'espace d'échange constituent ensemble la mémoire virtuelle du système.
[bookmark: _Hlk120885613]
Faites les commandes suivantes sur tous les serveurs.

Si vous exécutez des nœuds avec un échange swap vous perdrez une grande partie des propriétés d'isolation qui rendent le partage de machines viable. Vous n'aurez aucune prévisibilité concernant les performances, la latence ou les E/S.

Vous pouvez lancer la commande free pour voir que votre swap est activé :

[image:]

Vous allez le désactiver temporairement avec cette commande :
swapoff -a

Vous pouvez vérifier que le swap a bien été désactivé en exécutant la commande free de nouveau. Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Maintenant, désactivez définitivement l'espace d'échange swap en éditant le fichier /etc/fstab :
nano /etc/fstab

Recherchez la ligne « /swap.img none swap sw 0 0 » et ajoutez le signe « # » devant :

[image: Une image contenant texte, capture d’écran, moniteur

Description générée automatiquement]

Validez la saisie avec « Ctrl+x » puis « y » puis la touche « Entrée ».

Confirmez que le réglage est correct :
mount -a
free -h

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Activez les modules du noyau et configurez sysctl.
Enable kernel modules
modprobe overlay
modprobe br_netfilter

Add some settings to sysctl
tee /etc/sysctl.d/kubernetes.conf<<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF

Reload sysctl
sysctl --system

[bookmark: _Toc121303957]Installer un environnement d'exécution de conteneur
[image: Une image contenant texte, clipart Description générée automatiquement]Pensez à faire un snapshot de vos VM’s
A ce stade il est utile de faire un snapshot.

Faites les commandes suivantes sur tous les serveurs.

Kubernetes ne crée pas lui-même des conteneurs. Cette tâche est déléguée aux container runtimes, les « environnements d'exécution de conteneur ». Pour faire simple disons que celui-ci est responsable de créer et de faire fonctionner les conteneurs. Pour mieux comprendre le mécanisme vous pouvez lire cet article : https://blog.alterway.fr/le-point-sur-les-container-runtimes.html

Suivez les étapes ci-dessous pour configurer l’environnement d'exécution de conteneur Docker.

Installez les paquets nécessaires et ajoutez le dépôt de Docker :
apt install -y gnupg2 software-properties-common ca-certificates
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Mettez à jour la liste des paquets disponibles suite à l’ajout d’un nouveau dépôt :
apt update

Installez les paquets suivants :
apt install -y containerd.io docker-ce docker-ce-cli

Créez le répertoire du service docker :
mkdir -p /etc/systemd/system/docker.service.d

Créez le fichier de configuration JSON du daemon
tee /etc/docker/daemon.json <<EOF
{
 "exec-opts": ["native.cgroupdriver=systemd"],
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "100m"
 },
 "storage-driver": "overlay2"
}
EOF

Rechargez, redémarrez le service Docker et activez son démarrage automatique au démarrage du système :
systemctl daemon-reload
systemctl restart docker
systemctl enable docker

Configurez le chargement persistant des modules :
tee /etc/modules-load.d/k8s.conf <<EOF
overlay
br_netfilter
EOF

Assurez-vous de charger les modules :
modprobe overlay
modprobe br_netfilter

Configurez les paramètres sysctl requis :
tee /etc/sysctl.d/kubernetes.conf<<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF
[bookmark: _Toc121303958]Installer une interface d’environnement d’exécution de conteneur
Kubernetes a créé une interface, Container Runtime Interface (CRI), qui définit la façon dont Kubernetes parle aux container runtimes. Vous avez donc besoin d'une interface de shim pour Docker Engine. Vous allez installer Mirantis cri-dockerd.

[image: kubelet]

Faites les commandes suivantes sur tous les serveurs.

Assurez-vous que le service Docker est en cours d'exécution avant de continuer :
$ systemctl status docker

Obtenez la dernière version de cri-dockerd :
VER=$(curl -s https://api.github.com/repos/Mirantis/cri-dockerd/releases/latest|grep tag_name | cut -d '"' -f 4|sed 's/v//g')
echo $VER

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Téléchargez le fichier d'archive de cri-dockerd à partir de la page des versions de Github cri-dockerd puis extrayez-le.
wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VER}/cri-dockerd-${VER}.amd64.tgz
tar xvf cri-dockerd-${VER}.amd64.tgz

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Déplacez le paquet binaire cri-dockerd vers /usr/local/bin/
mv cri-dockerd/cri-dockerd /usr/local/bin/

Validez l'installation réussie en exécutant les commandes ci-dessous :
cri-dockerd --version

Récupérez le service et le socket pour le placer dans le dossier /etc/systemd/system :
wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.service
wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.socket
mv cri-docker.socket cri-docker.service /etc/systemd/system/
sed -i -e 's,/usr/bin/cri-dockerd,/usr/local/bin/cri-dockerd,' /etc/systemd/system/cri-docker.service

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Rechargez, redémarrez les services et activez le démarrage automatique au démarrage du système :
systemctl daemon-reload
systemctl enable cri-docker.service
systemctl enable --now cri-docker.socket

Vérifiez que le service est en cours d'exécution :
systemctl status cri-docker.socket

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Le chemin du fichier de socket Mirantis cri-dockerd CRI est /run/cri-dockerd.sock. C'est celui-ci qui sera utilisé lors de la configuration du cluster Kubernetes.
[bookmark: _Toc121303959]Création du cluster
[image: control plane]

Un cluster Kubernetes peut se diviser en deux parties :

· Le Control Plane, « plan de contrôle »
· Les nodes, « nœuds » ou workers, « travailleurs »

Le Control Plane est en quelque sorte le cerveau de Kubernetes. Les nodes sont les composants responsables d'exécuter les conteneurs. Chaque node possède un Kubelet, chargé de communiquer avec le Control Plane.

Pour en savoir plus sur le plan de contrôle et ses différents composants lisez cet article : https://www.padok.fr/blog/control-plane-kubernetes
[bookmark: _Toc121303960]Initialiser le plan de contrôle
[image: etcd - control plane]

[bookmark: _Hlk120885867]Faites les commandes suivantes uniquement sur le serveur maitre.

Assurez-vous que le module br_netfilter est bien chargé :
lsmod | grep br_netfilter

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Activez le service kubelet au démarrage du système :
systemctl enable kubelet

Vous allez initialiser la machine qui exécutera les composants du plan de contrôle, notamment etcd (la base de données qui contient toutes les informations du cluster Kubernetes) et le serveur API.

Récupérez l’image de conteneur en précisant quel runtime vous utilisez avec la commande --cri-socket :
kubeadm config images pull --cri-socket /run/cri-dockerd.sock

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Voici les options de base de kubeadm init qui peuvent être utilisées pour amorcer le cluster :

--control-plane-endpoint : définit le point de terminaison partagé pour tous les nœuds du plan de contrôle. Cela peut être un nom DNS ou une adresse IP.

--pod-network-cidr : utilisé pour définir un CIDR complémentaire au réseau de pods

--cri-socket : à utiliser s'il y a plus d'un environnement d'exécution de conteneur pour définir le chemin d'accès au socket d'exécution

--apiserver-advertise-address : Définissez l'adresse d'annonce pour le serveur API de ce nœud de plan de contrôle particulier

[image: Une image contenant texte, clipart Description générée automatiquement]Pensez à faire un snapshot de votre VM
A ce stade il est utile de faire un snapshot.

Pour amorcer le cluster sans utiliser de point de terminaison DNS, vous pouvez exécuter :
kubeadm init --cri-socket /run/cri-dockerd.sock --pod-network-cidr=10.244.0.0/16

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]

Notez bien votre token (encadré en rouge ci-dessus) car vous en aurez besoin pour ajouter les workers par la suite.

[image: Une image contenant texte, clipart Description générée automatiquement]FACULTATIF : Pour aller plus loin…
Si vous souhaitez plutôt initialiser le cluster avec par exemple une configuration du réseau interne du cluster en 172.20.0.0/16, en générant un certificate-key qui donne la possibilité d’ajouter d’autres control plane au cluster (ce que nous ne ferons pas dans ce TP) et en mettant une résolution DNS sur un control plane qui s’appellerait « kubcontrol » (pour rappel : celui du TP s’appelle « master ») vous pouvez lancer une commande de ce genre :
kubeadm init --pod-network-cidr=172.20.0.0/16 --cri-socket /run/cri-dockerd.sock --upload-certs --control-plane-endpoint=kubcontrol

Cela vous génèrerait une sortie similaire à celle-ci :

[image: Text Description automatically generated]

Dans le premier cadre bleu vous voyez le token et certificate-key qui donne la possibilité d’ajouter d’autres control plane au cluster.

Configurez kubectl en créant un dossier .kube dans votre dossier utilisateur et en copiant le fichier de configuration admin.conf qui sera utilisé durant les appels API de la commande kubctl :
mkdir -p $HOME/.kube
cp -f /etc/kubernetes/admin.conf $HOME/.kube/config
chown $(id -u):$(id -g) $HOME/.kube/config

Vérifiez l'état du cluster :
kubectl cluster-info

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc121303961]Installer le plugin réseau Kubernetes
Faites les commandes suivantes uniquement sur le serveur maitre.

Dans ce TP, nous utiliserons le plugin réseau Flannel. Vous pouvez choisir n'importe quel autre plugin réseau pris en charge. Flannel est un moyen simple et facile de configurer une structure réseau de couche 3 conçue pour Kubernetes.

Téléchargez le manifeste d'installation.
wget https://raw.githubusercontent.com/flannel-io/flannel/master/Documentation/kube-flannel.yml

[bookmark: _Hlk121222710]Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

[image: Une image contenant texte, clipart Description générée automatiquement] Si vous avez choisi un autre réseau…

Si votre installation de Kubernetes utilise un podCIDR autre que 10.244.0.0/16 vous devez modifier le réseau pour qu'il corresponde à celui du manifeste téléchargé.
nano kube-flannel.yml
Faites la modification à cet endroit :

[image: Une image contenant texte Description générée automatiquement]

Installez ensuite Flannel en créant les ressources nécessaires.
kubectl apply -f kube-flannel.yml

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Assurez-vous que tous les pods sont en cours d'exécution (cela peut prendre quelques secondes à quelques minutes avant qu'ils ne soient prêt) :
kubectl get pods -n kube-flannel

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Vérifiez que le nœud maître est prêt :
kubectl get nodes -o wide

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc121303962]Ajouter des nœuds de travail
Faites les commandes suivantes uniquement sur les workers

Lorsque le plan de contrôle (control-plane) est prêt, vous pouvez ajouter des nœuds de travail (workers) au cluster pour exécuter des charges de travail planifiées.

Sur les workers à ajouter, exécutez la commande comprenant le token mise de côté précédemment (en ajoutant le sudo si vous n’utilisez pas le compte root) et en choisissant le container runtime à utiliser (Docker) via l’option « --cri-socket /run/cri-dockerd.sock ».
sudo kubeadm join 172.16.12.150:6443 --token qvhsq6.9sl5fwpgu5nz0xw5 --discovery-token-ca-cert-hash sha256:a4bb1632717f557a647476198597d504dd99ded2fa53031d9cd6849ac91a9bba --cri-socket /run/cri-dockerd.sock

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

N’oubliez pas de faire cela sur l’autre nœud de travail :

[image:]

Exécutez la commande ci-dessous sur le plan de contrôle pour vérifier si les nœuds ont bien rejoint le cluster :
kubectl get nodes

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Si dans la sortie vous voyez vos trois nœuds en « Ready » avec le master en « control-plane », alors votre cluster est prêt pour utilisation.
[bookmark: _Toc120872857][bookmark: _Toc121303963]Déploiement d’un service web
[image: nginx]

Vous allez maintenant déployer le service NGINX depuis votre cluster Kubernetes.

NGINX est un logiciel (libre et open source) de serveur Web (ou HTTP) qui peut également être utilisé comme proxy inverse, équilibreur de charge, proxy de messagerie et cache HTTP. C'est le serveur web le plus utilisé au monde ou le deuxième selon les sources.
[bookmark: _Toc121303964]Déploiement du service web NGINX
Faites les commandes suivantes uniquement sur le serveur maitre.

Créez un dossier nommé « nginx » dans votre dossier utilisateur et placez-vous dedans :
mkdir -p nginx/
cd nginx/

Créez et éditez un fichier de configuration qui sera le manifeste de déploiement.
nano nginx-deployment.yaml

Copiez la configuration suivante :
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx:1.14.0
 ports:
 - containerPort: 80

Cest un fichier manifeste qui décrit un déploiement Kubernetes comportant trois répliques d'une image de conteneur nginx .

[image: Une image contenant texte

Description générée automatiquement]

Sauvegardez le fichier et quittez l’éditeur puis créez le déploiement de la ressource à partir du fichier que vous venez de créer (l’option -f pour filename sert à indiquer le nom du fichier à utiliser pour créer la ressource) :
kubectl create -f nginx-deployment.yaml

La sortie devrait être similaire à celle-ci :

[image:]

Vérifiez le déploiement avec :
kubectl get deployments

La sortie devrait être similaire à celle-ci :

[image:]

Vous pouvez avoir une description plus détaillée avec :
kubectl describe deployment nginx-deployment

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez également vérifier les pods créés :
kubectl get pods

[image:]

Vous pouvez également avoir une description détaillée d’un pod avec :
kubectl describe pods nginx-deployment-979fbbc48-7prn8

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]

Maintenant vous pouvez déployer le service nginx, pour cela créez et éditez un autre fichier de configuration
nano nginx-service.yaml

Copiez la configuration suivante :
apiVersion: v1
kind: Service
metadata:
 name: nginx-service
 labels:
 run: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 selector:
 app: nginx

[image: Une image contenant texte

Description générée automatiquement]

Sauvegardez, quittez et créez le service :
kubectl create -f nginx-service.yaml

La sortie devrait être similaire à celle-ci :

[image:]

Vous pouvez voir la liste des services avec :
kubectl get service

La sortie devrait être similaire à celle-ci :

[image:]

Et vous pouvez avoir une description du service avec :
kubectl describe service nginx-service

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez voir que le service est en « NodePort » sur le port 30206, donc vous pouvez accéder au service via les adresses IP de vos trois serveurs sur le port « 30206 » avec votre navigateur internet :

Vous constatez que le service NGINX est actif sur le nœud de travail « worker1 » :

[image: Une image contenant texte

Description générée automatiquement]

Ainsi que sur le nœud de travail « worker2 » :

[image: Une image contenant texte

Description générée automatiquement]

Ainsi que sur le nœud maitre « master » :

[image: Une image contenant texte

Description générée automatiquement]

Notre service NGINX est bien déployé sur tous les nœuds du cluster.
[bookmark: _Toc120872858][bookmark: _Toc121303965]Lien avec une interface graphique de gestion de conteneurs
[image: Les couches logicielles utilisées [LinuQ: Logiciels libres à Québec]]

Portainer est une interface web qui permet de gérer les opérations courantes sur ses conteneurs de manière graphique. Portainer s’installe comme un conteneur docker pour simplifier son déploiement. Portainer permet de gérer une bonne partie des éléments de docker : conteneurs, images, volumes, réseaux, utilisateurs, etc. Il peut aussi contrôler un autre serveur Docker à distance grâce à un agent et permet de déployer des applications dans des conteneurs en quelques clics.
[bookmark: _Toc121303966][bookmark: _Toc120872859]Information importante
Les captures d’écran de cette partie du document ont été réalisées par un autre auteur (Adrien R.) qui a travaillé sur un réseau NAT (VMnet8) en 192.168.100.0/24 avec une résolution DNS et des noms de machine différents (voir la capture d’écran ci-dessous pour le détail des noms).
Veuillez donc garder cela en tête en regardant les sorties des commandes dans les screenshots et adapter votre configuration en conséquence !
Si vous voulez mettre en place une résolution DNS sur votre machine hôte sans avoir de serveur DNS, retrouvez le fichier hosts de votre machine Windows à l’emplacement suivant :
C:\Windows\ System32\drivers\etc\hosts
Et ajoutez-y vos machines en prenant exemple sur la configuration suivante (= mettez vos IP et vos noms de machine à vous) :
[image: Text

Description automatically generated]

[bookmark: _Toc121303967]Installation de Portainer

Dans cette partie vous allez installer Portainer sur une 4e machine virtuelle sous Ubuntu Server dont l’adresse IP est configurée en fixe avec une résolution DNS et Docker d’installé (veuillez voir plus haut dans le document pour retrouver la procédure à suivre).

	Rôle de serveur
	Nom d'hôte du serveur
	Spécifications
	Adresse IP

	Portainer
	portainer
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.160

Installez un volume qui sera dédié à Portainer
sudo docker volume create portainer_data

[bookmark: _Hlk121237099]La sortie devrait être similaire à celle-ci :

[image: Text

Description automatically generated]

Installez Portainer en associant les ports 8000 et 9443 du serveur aux ports 8000 et 9443 du conteneur :
sudo docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

La sortie devrait être similaire à celle-ci :

[image: Text

Description automatically generated]

Vérifiez l’installation avec cette commande :
sudo docker ps

La sortie devrait être similaire à celle-ci :
[image:]

Connectez-vous avec un navigateur sur « http:// 172.16.12.160:9443 »
Lors de la première connexion, vous êtes invités à créer un utilisateur administrateur, entrez votre mot de passe et cliquez sur le bouton « Create user »

[image: A screenshot of a computer

Description automatically generated]

Vous êtes maintenant connectés à Portainer :

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[bookmark: _Toc120872860][bookmark: _Toc121303968]Liaison du cluster Kubernetes
Cliquez maintenant sur « Add Environments »

[image: Graphical user interface, application

Description automatically generated]

Cliquez sur les boutons « Kubernetes » et « Start Wizard » en bas à gauche :

[image: Graphical user interface, application

Description automatically generated]

Restez sur « Agent », choisissez « Kubernetes via node port » et copiez la commande :
[image: Graphical user interface, application

Description automatically generated]

Retournez sur le nœud master et exécutez la commande copiée précédemment. La sortie devrait être similaire à celle-ci :

[image: Text

Description automatically generated]

Exécutez la commande suivante pour vérifier l’installation de l’agent et pour savoir sur quel nœud de travail il a été déployé :

kubectl get pods --namespace=portainer -o wide

La sortie devrait être similaire à celle-ci :

[image:]

Ici vous voyez qu’il est déployé sur « kubnodeworker2 ».

Retournez sur l’interface de Portainer, entrez un nom pour votre cluster et mettez l’adresse IP du worker sur lequel l’agent est déployé sur le port 30778 car vous avez choisi un déploiement via NodePort. Puis cliquez sur le bouton « Connect ».

[image: Graphical user interface

Description automatically generated]

Le message ci-dessous devrait apparaitre en haut à droite de votre écran :

[image: Graphical user interface, text, application

Description automatically generated]

Quand vous retournerez dans Home vous verrez que le cluster Kubernetes a été ajouté à la liste des environnements.
[bookmark: _Toc121303969]Annexes : procédures alternatives
Vous trouverez ci-dessous des procédures alternatives de création de cluster Kubernetes un peu moins détaillées (mais fonctionnelles d’après leurs auteur) effectuées par des apprenants en décembre 2022.
[bookmark: _Toc121303970]Mode opératoire d’Adrien M.
Adrien M. s’est basé sur le document « Administration de Docker » écrit par Alex FALZON (104 p.) et datant de 2018. Il a suivi la procédure quelque peu obsolète qui y est décrite en s’efforçant de trouver une solution pour chaque problème rencontré (du fait de l’ancienneté de la procédure).
[bookmark: _Toc121303971]Préparation des VM’s
A faire sur le master et les workers.

On change le /etc/hostname
nano /etc/hostname
On change le fichier /etc/hosts
nano /etc/hosts
On change le netplan
nano /etc/netplan/*yaml

network:
 ethernets:
 ens33:
 addresses: [192.168.8.100/24]
 gateway4: 192.168.8.254
 nameservers:
 addresses: [192.168.8.254, 8.8.8.8, 8.8.4.4]
 dhcp4: false
 dhcp6: false
 version: 2

On applique la conf netplan
netplan apply

On redémarre le service réseau
systemctl restart systemd-networkd

On met à jour
apt update
apt upgrade

Prendre un snapshot de la VM
shutdown -- 0
[bookmark: _Toc121303972]Installation de Docker
A faire sur le master et les workers.

On installe les dépendances pour docker
apt install apt-transport-https ca-certificates curl software-properties-common

On ajoute la clé GPG du référentiel officiel de Docker
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

On rajoute le repo de docker
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu bionic stable"

On met à jour la base locale des repos
apt update

On installe Docker Community Edition
apt install docker-ce

On active docker
systemctl enable docker

On vérifie que docker tourne bien
systemctl status docker

Prendre un snapshot de la VM
shutdown -- 0
[bookmark: _Toc121303973]Création du cluster avec Kubernetes
On ajoute la clé GPG du référentiel officiel de Kubernetes
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add

On rajoute le repo de Kubernetes
apt-add-repository "deb https://apt.kubernetes.io/ kubernetes-xenial main"

On met à jour la base locale des repos
apt update

On installe les tools de Kubernetes
apt install kubeadm kubelet kubectl

On verrouille les package en hold pour empêcher leur suppression
apt-mark hold kubelet kubeadm kubectl

On désactive le swap sur la machine
swapon -s
swapoff -a

On peut désactiver aussi de manière manuelle le swap en commentent la line swap de /etc/fstab
nano /etc/fstab

On reboot
reboot

A NE FAIRE QUE SUR LE MASTER

On initialise le cluster Kubernetes (apiserver-advertise-address correspond ici à l'ip du master)
systemctl restart containerd
kubeadm init --pod-network-cidr=10.244.0.0/16 --apiserver-advertise-address=192.168.8.100

ATTENTION le résultat de la commande au-dessus ne peut pas être récupéré ultérieurement il faut bien copier la commande avec le token

En exemple :
kubeadm join 192.168.8.100:6443 --token 97jj3f.x4izzepxdaq1woqp \
 --discovery-token-ca-cert-hash sha256:81d074e044730d9c5cafdc92378f2ed9855e7275eb0b789ed48e0748ece9b14f

On initialise le fichier de conf avec le <user> et le root (sudo su) et (sudo su <user>)
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config
export KUBECONFIG=/etc/kubernetes/admin.conf

On ajoute le module flannel pour le réseau
kubectl apply -f https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml

On attend 1 minutes le temps que le service réseau se lance
echo WAITING 1 minutes && sleep 1m && echo DONE

On peut voir l'état de tous les nœuds du cluster avec kubectl get nodes
kubectl get nodes

On peut voir l'état de tous les pods du cluster avec kubectl get pods --all-namespaces
kubectl get pods --all-namespaces

A NE FAIRE QUE SUR LES WORKERS

On joint le cluster avec la commande que nous avons gardé de côté juste au-dessus :
systemctl restart containerd
mv /etc/containerd/config.toml /etc/containerd/config.bak
containerd config default | sudo tee /etc/containerd/config.toml
systemctl restart containerd

kubeadm join 192.168.8.100:6443 --token 97jj3f.x4izzepxdaq1woqp \
 --discovery-token-ca-cert-hash sha256:81d074e044730d9c5cafdc92378f2ed9855e7275eb0b789ed48e0748ece9b14f

On vérifie sur le master que tous les nodes sont reconnus
kubectl get nodes

Prendre un snapshot de la VM
shutdown -- 0

[bookmark: _Toc121303974]Installation de Portainer
On donne le rôle worker sur les nœuds worker01 et worker02
kubectl label node ubuntu-20-srv-worker01 node-role.kubernetes.io/worker=worker
kubectl label node ubuntu-20-srv-worker02 node-role.kubernetes.io/worker=worker

A NE FAIRE QUE SUR LE MASTER

On installe Portainer dans docker sur le MASTER
docker run -d -p 9000:9000 --name portainer \
 --restart=always \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v portainer_data:/data \
 portainer/portainer-ce:latest

On installe l'agent sur le MASTER
kubectl apply -f https://downloads.portainer.io/ce2-16/portainer-agent-k8s-nodeport.yaml
[bookmark: _Toc121303975]Liaison avec Kubernetes
On se rend sur la page web : http://192.168.8.100:9000/

On ajoute le cluster Kubernetes
Name : cluster-kubernetes-01
Environment address : 192.168.8.100:30778

Prendre un snapshot de la VM
shutdown -- 0
[bookmark: _Toc121303976]Pour en savoir plus sur Portainer
Pour comprendre comment fonction Portainer avec l'agent : https://docs.portainer.io/start/install/agent/kubernetes/baremetal

Pour comprendre les différentes façons de diffuser ton service avec Portainer : https://medium.com/google-cloud/kubernetes-nodeport-vs-loadbalancer-vs-ingress-when-should-i-use-what-922f010849e0

La doc officielle de Portainer : https://docs.portainer.io/user/home

Ajouter une application (ex: nginx / nextcloud / ect...) dans Kubernetes avec Portainer : https://docs.portainer.io/user/kubernetes/applications/add

[bookmark: _Toc121303977]Mode opératoire de Benoit A.
[bookmark: _Toc120869362][bookmark: _Toc121303978]Prérequis
Prérequis Docker sur un hôte linux :

· Processeur 64-bit et le support de la virtualisation.
· 4 GB de RAM.

Prérequis Kubernetes :

Master node :	
· 2 GB de RAM
· 1.5 Coeur

Worker node :

· 700 mB	de RAM
· 0.5 Coeur

[bookmark: _Toc120869363][bookmark: _Toc121303979]Docker
[bookmark: _Toc120869364][bookmark: _Toc121303980]Installation
	sudo apt update
sudo apt install apt-transport-https ca-certificates curl software-properties-common
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add –
sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu focal stable"
sudo apt install docker-ce

[bookmark: _Toc121303981]Vérification du service
	sudo systemctl status docker
docker.service - Docker Application Container Engine
 Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
 Active: active (running) since Fri 2022-12-02 08:32:45 UTC; 9min ago
TriggeredBy: ● docker.socket
 Docs: https://docs.docker.com
 Main PID: 1257 (dockerd)
 Tasks: 132
 Memory: 119.6M

[bookmark: _Toc120869365][bookmark: _Toc121303982]Commandes utiles
Listing des conteneurs :

	docker ps

Ajout d’un conteneur depuis docker Hub ou depuis la base locale (exemple avec mariaDB) :

	sudo docker run --detach --name mariadb --env MARIADB_USER=mariadb-user --env MARIADB_PASSWORD=motdepassecomplique --env MARIADB_ROOT_PASSWORD=motdepassetrescomplique mariadb:latest

La partie surlignée en gris concerne la commande de base.
Le reste (en vert) est tiré de la documentation officielle de docker Hub. Vous pouvez retrouver les prérequis nécessaires à un conteneur le plus souvent sur sa page de présentation.

Arrêter un conteneur :

	docker stop mariaDB :lastest

Démarrer un conteneur :

	docker start MariaDB :lastest

Afficher les logs du conteneur :

	docker logs « id du conteneur »

[bookmark: _Toc120869366][bookmark: _Toc121303983]Portainer - Docker
Portainer est utilisé comme interface d’administration. Il peut fonctionner avec un conteneur « agent » pour manager les conteneurs. Dans notre cas d’utilisation avec Docker, nous pouvons l’utiliser sans agent en intégrant le conteneur Portainer d’administration directement dans le docker.
[bookmark: _Toc121303984]Installation
Création d’un volume de stockage pour stocker toutes les données de Portainer :

	sudo docker volume create portainer_data

Installation du conteneur Portainer :

	docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

L’interface devrait maintenant être accessible sur l’adresse IP de votre Docker standalone avec un accès à vos conteneurs via le mode socket :

[image:]

Si vous ne les avez pas, ajoutez un environnement manuellement :
[image: Une image contenant texte, téléphone, téléphone mobile, moniteur

Description générée automatiquement]

[image: Une image contenant texte

Description générée automatiquement]

Sélectionnez le mode agent et copiez-collez la commande donnée sur votre VM Docker :

[image: Une image contenant texte, capture d’écran, moniteur, noir

Description générée automatiquement]

Et cliquez sur « Connect » Votre Docker est maintenant administrable depuis Portainer.

[image: Une image contenant texte, moniteur, capture d’écran, intérieur

Description générée automatiquement]
[bookmark: _Toc121303985]
Kubernetes
Kubernetes : plate-forme permettant d'automatiser le déploiement, la montée en charge et la mise en œuvre de conteneurs d'application sur des clusters de serveurs

[bookmark: _Toc121303986]Installation
A faire sur tous les nœuds et master :

	curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add
sudo apt-get install curl
sudo apt-add-repository "deb http://apt.kubernetes.io/ kubernetes-xenial main"

sudo apt-get install kubeadm kubelet kubectl
kubeadm version

Désactivation de la swap :

	sudo swapoff -a

Modification du FSTAB : commenter la ligne concernant la swap.

Ajout du repo de Google pour Kubernetes :

	sudo apt install -y apt-transport-https
curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add –
echo deb http://apt.kubernetes.io/ kubernetes-xenial main > /etc/apt/sources.list.d/kubernetes.list

Installation des paquets Kubernetes :

	sudo apt update
sudo apt install -y kubeadm kubelet kubectl

Initialisation du cluster Kubernetes

/!\ Pensez à garder le token qui est généré à la fin, cela permettra de lien les nœuds supplémentaires/!\ :

	sudo kubeadm init --pod-network-cidr=10.244.0.0/16 --apiserver-advertise-address=172.16.12.14 --kubernetes-version "1.25.4"

Pour vérifier le bon montage :

	kubectl get nodes
kubectl get pods --all-namespaces

Maintenant pour lier les nœuds, il suffit de copier/coller la commande générée précédemment dans les VM’s préparée avec Docker et Kubernetes.

Attendez quelques minutes et vérifiez que tous les nodes sont présents :
[image: Une image contenant texte

Description générée automatiquement]

[bookmark: _Toc121303987]Liaison Portainer - Kubernetes
Afin d’initialiser Portainer avec Kubernetes, nous avons deux options :

· Edge Agent : c’est un agent qui passe par leur plateforme cloud. Cela permet de connecter des plateformes distantes en passant par les serveurs de Portainer… Cela est moins sécurisé mais plus simple à configurer.

· Agent : C’est un agent géré localement qui permets de gérer le Kubernetes local ou distant (via VPN intersites). La communication se fait directement entre l’agent et le serveur Portainer.

[image: Une image contenant texte, téléphone, téléphone mobile, moniteur

Description générée automatiquement]

[image: Une image contenant texte

Description générée automatiquement]

[image:]

Récupérez cette commande et exécutez-la sur un de vos nœuds ou sur votre master :
kubectl apply -f https://downloads.portainer.io/ce2-16/portainer-agent-k8s-nodeport.yaml

[image: Une image contenant texte, capture d’écran, moniteur, noir

Description générée automatiquement]

Pour le nom, choisissez un nom familier et pour l’IP, choisissez l’hôte sur lequel vous avez initié le cluster. Le port est statique, il s’agit du numéro 30778 (voir documentation : https://docs.portainer.io/start/install/agent/kubernetes/baremetal)

[image: Une image contenant texte, capture d’écran, moniteur, noir

Description générée automatiquement]

	

	Création d’un cluster Kubernetes utilisant Docker, déploiement d’un service NGINX et lien avec une instance Portainer
	Page 4 sur 4

	
	© EASYFORMER 2022 - Tous droits réservés
	Date : 29/12/22

image2.png
kubernetes

image76.png
O & o hitps//172.16.12.114:9443/#//auth

%;porfciner.io

Log in to your account

Welcome back! Please enter your details

image77.png
ﬂ’ portainerio «

@ Home
Environment: © None selected

Settings

2, Users v
Groups.
Tags
Registries
Authentication logs v

Notifications

b ® T

@

Settings v

image78.png
Q fearch.. © penore EI

image79.png
¢ Environment Wizard

Docker Standalone

Connect to your Docker Standalone environment

-AP'

Linux & Windows WS Windows WCS

docker run -d \
-p 9661:9601 \
name portainer_agent \
restart=aluays \
-V /var/run/docker.sock: /var/run/docker.sock \
-V /var/1ib/docker/volumes: /var/1ib/docker/volumes \
portainer/agent:2.16.2

docker!

Environment o 172:1612:114:9001

Edge Agent

image80.png
ﬂ’ portainer.io

® Home

dockert

¢

Dashboard

App Templates

© R

Stacks
Containers

@

Images
Networks
Volumes
Events

Host

@ 0 O &

Settings

2 Users
& Environments
Registries

Authentication logs

b ® T

Notifications

«

Environment summary

Dashboard

© Environment info

Environment

URL 1721612.114:9001

GPU none

Tags -
0 12
Stacks Containers
10 ©2768 16
Images Volumes

e ¢

Networks GPUs

© 9 running

© 0 healthy

admin v

* 0'stopped
* 0 unhealthy

image81.png
insta@dockerl:~§
insta@docker1:~$ kubectl get nodes
NAVE STATUS ROLES
docker1 Ready control-plane
dockerslavel Ready <none>
dockerslave2 Ready <nones
insta@docker1:~$ |

AGE
2d22h
2d21h
2dah

VERSION
v1.25.4
v1.25.4
v1.25.4

image82.png
You can onboard different types of environments, select allthat apply.

"
Docker
Standalone
‘Connect to Docker

Standalone via URL/IP,
API or Socket

KaaS

Provision a Kubernetes
eenvironment with a
cloud provider

4

Docker
Swarm
‘Connect to Docker

‘Swarm via URL/IP, AP
or Socket

image83.png
Connect to your Kubernetes environment

Edge Agent

Information

Ensure that you have deployed the Portainer agent in your cluster frst. Refer to the platform related command below to deploy it

Kubernetes via load balancer | Kubemnetes via node port

kubectl apply -f https://downloads.portainer.io/ce2-16/portainer-agent-k8s-nodeport.ya

Name docker2

Environment

® 1721612.114:30778
address

> More settings

image3.png
Kubernetes Master

Worker 1

Pod 1

b

Kubectl / APIs / Dashboard
—_— etcd pag

-

Kube
Api-server

Scheduler

Pod 2

image84.png
Connect to your Kubernetes environment

Edge Agent

Information

Ensure that you have deployed the Portainer agent in your cluster frst. Refer to the platform related command below to deploy it

Kubernetes via load balancer | Kubemnetes via node port

kubectl apply -f https://downloads.portainer.io/ce2-16/portainer-agent-k8s-nodeport.ya

docker2

1721612.114:30778

> More settings

image4.png
%\fdocker

image5.png
@

Name Type External Connection Host Connection DHCP Subnet Address
VMnet0 Bridged Intel(R) Ethernet Connection (... - - -
VMnetl Host-only - Connected - 10.11.12.0
VMnet2 Host-only - Connected - 10.10.10.0
VMnet8 NAT NAT Connected Enabled 192.168.8.0 |
VMnetl9 Host-only - Connected Enabled 172.16.0.0
Add Network... Remove Network Rename Network...

VMnet Information

(O Bridged (connect VMs directly to the external network)
Bridged to: Intel(R) Ethernet Connection (4) 1219-LM
© NAT (shared host's IP address with VMs)

O Host-only (connect VMs internally in a private network)

Connect a host virtual adapter to this network
Host virtual adapter name: VMware Network Adapter VMnet8

Use local DHCP service to distribute IP address to VMs

SubnetIP: | 192 .168. 8 . 0 |

Subnet mask: | 255 . 255 .255 . 0

Restore Defaults Import... Export... OK Cancel

Automatic Settings...

NAT Settings...

DHCP Settings...

Apply Help

Network: vmnet8

Subnet IP: 192.168.8.0

Subnet mask: 255.255.255.0
Gateway IP: | 192 .168 . 8 .254

Port Forwarding

Host Port Type Virtual Machine IP Address Description
2222 TCP 192.168.8.1:22
Add... Remove Properties
Advanced
Allow active FTP
Allow any Organizationally Unique Identifier
UDP timeout (in seconds): 30
Config port: 0 =
(C) Enable IPv6
IPv6 prefix: fd15:4ba5:5a2b:1008::/64
DNS Settings... NetBIOS Settings...
OK Cancel Help

image6.png
2

O ncpacpl

Tout Applications Documents Parameétres Plus v

C:\WINDOWS\system32\ncpa.cpl

3
| n ncpa.cpl
Elément dkPanneau de configuration

ncpa.cpl

Elément du Panneau de configuration

Emplacement C:\WINDOWS\system32

image7.png
&z

VMware Network Adapter VMnet8 | =™ e

Réseau non identifié $
VMware Virtual Ethernet Adapter ...

Désactiver
Statut {

Diagnostiquer
Connexions de pont

Créer un raccourci

Supprimer

Renommer

image8.png
@ Propriétés de VMware Network Adapter VMnet8
Gestion de réseau Partage
Connexion en utilisant :

I VMware Virtual Ethemet Adapter for VMnet8

Cette connexion utilise les éléments suivants :

3 Npcap Packet Driver (NPCAF)

3 Npcap Packet Driver (NFCAP) (Wi-Fi)
[¥ s Protocole Intemet version 4(11:?;1&4?

O . Protocole de multiplexage de carte réseau Microsoft
. Filote de protocole LLDP Microsoft
. Protocole Intemet version & (TCP/IPvE)
4. Répondeur de découverte de la topologie de la couche de liaison
7
Installer.. Désinstaller m
Desciinti

Protocole TCP/IP (Transmission Control Protocol /intemet Protocol). Protocole

de réseau étendu par défaut permettant la communication entre différents
réseaLx interconnectés.

oK Annuler

image9.png
Propriétés de : Protocole Internet version 4 (TCP/IPv4)
Général
Les paramétres IP peuvent étre déterminés automatiqguement si votre

réseau le permet. Sinon, vous devez demander les paramétres IP
appropriés & votre administrateur réseau.

(O) Obtenir une adresse IP automatiquement
© Utiliser I'adresse IP suivante :

pr—
-
e

Obtenir les adresses des serveurs DNS automatiquement

© Utiliser I'adresse de serveur DNS suivante :
T
T R

() valider les paramétres en quittant -

O] e

image10.png
New Virtual Machine Wizard

Ready to Create Virtual Machine
Click Finish to create the virtual machine and start installing Ubuntu 64-bit.

The virtual machine will be created with the following settings:

Name: ubuntu-kubernetes-master
Location: D:\VM\VMware\ubuntu-kubernetes-master
Version: Workstation 16.2.x

Operating System: Ubuntu 64-bit

Hard Disk: 20 GB, Split

Memory: 2048 MB

Network Adapter: Bridged (Automatic)

Other Devices: 2 CPU cores, CD/DVD, USB Controller, Printer, Sound Card

Customize Hardware...

Power on this virtual machine after creation

< Back Finish Cancel

image11.png
Edit ens33 IPv4 configuration

IPv4 Method: [Manuel vl

Mastue de sous-réseau:

Adresse

Passerelle :

Serveurs DNS

fdresses IP, spanées par des virgules

Domaines de recherche :
Noms de domaines, séparés par des virgules

[Sauvegarder
[Annuler 1

image12.png
You can choose to install the OpenSSH server package to enable secure remote access to your server.
[Installer le serveur OpensSH
Inporter une identité SSH: [Non vl
Vous pouvez importer vos clés SSH depuis GitHub ou Launchpad.

Importer le nom d'utilisateur :

[¥] Autoriser 1'authentification par mot de passe via SSH

image13.png
These are popular snaps in server environments. Select or deselect with SPACE, press ENTER to see more details of the package
publisher and versions available.

[1 microkes canonical Kubernetes for workstations and appliances 3
[1 nextcloud nextcloud Nextcloud Server - A safe home for all your data 3
[1 uekan xet? The open-source kanban 3
[] kata-containers katacontainers Build lightueight WMs that seamlessly plug into the containers ecosystem 3
[] docker canonical Docker container runtime 3
[] canonical-livepatch canonical Canonical Livepatch Client 3
[1 rocketchat-server rocketchat Rocket.Chat server 3
[] mosquitto mosguitto Eclipse Mosquitto MQTT broker I3
[] etcd canonical Resilient key-value store by CoredS 3
[1 pouershell microsoft-powershells Pouershell for every system! 3
[] stress-ng cking-kernel-tools tool to load and stress a computer 3
[] sabnzbd saf ihre SABnzbd 3
[1 wormhole snapcrafters get things from one computer to another, safely I3
[] aus-cli aus. Universal Command Line Interface for Amazon Heb Services 3
[] google-cloud-sok google-cloud-sdk Google Cloud SDK 3
[1/slcli softlayer Python based SoftLayer AP Tool. 3
[1/doctl digitalocean The official Digitalocean command line interface 3
[1 conjure-up canonical Package runtime for conjure-up spells 3
[] posteresqlio cmd Fostgresol is a powerful, open source ohject-relational database sustem. 3
[1 heraku heroku CLI client for Heroku 3
[] keepalived keepalived-project/ High availability VRRP/BFD and load-balancing for Linux 3
[1 prometheus canonical The Prometheus monitoring system and time series database 3
[juju canonical Juju - a model-driven operator lifecycle manager for K8s and machines 3

image14.png
5 01/12/2022 @ 11:47.15 (= /home/mobaxterm ssh user@172.16.12.150
Warning: Permanently added '172.16.12.150"' (ECDSA) to the list of known hosts.
user@172.16.12.150's password:

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-56-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of jeu. 01 déc. 2022 10:47:39 UTC

System load: 1.115234375 Processes: 243
Usage of /: 46.1% of 9.75GB Users logged 1in: [¢]
Memory usage: 17% IPv4 address for ens33: 172.16.12.150

Swap usage: 0%
0 updates can be applied immediately.

Last login: Thu Dec 1 10:23:21 2022
/usr/bin/xauth: file /home/user/.Xauthority does not exist
user@master:~$ fi

image15.png
Kubernetes Master

Controller Manager
Scheduler

&

Developer
/ Operator

AP Server

Kube-Proxy

Kubernetes Node Kubernetes Node

image16.png
user@master:~$ sudo apt install curl apt-transport-https -y

curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg|sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/k8s.gpg

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/apt/sources.list.d/kubernetes.list

[sudo] password for user:

Lecture des listes de paquets... Fatit
Construction de 1'arbre des dépendances... Fait
Lecture des informations d'état... Fait

curl est déja la version la plus récente (7.81.0-lubuntul.6).

curl passé en « installé manuellement ».

Les paquets suivants ont été installés automatiquement et ne sont plus nécessaires :
libflashroml libftdil-2

Veuillez utiliser « sudo apt autoremove » pour les supprimer.

Les NOUVEAUX paquets suivants seront installés :
apt-transport-https

0 mis a jour, 1 nouvellement installés, 0 a enlever et 3 non mis a jour.

Il est nécessaire de prendre 1 506 o dans les archives.

Aprés cette opération, 169 ko d'espace disque supplémentaires seront utilisés.

Réception de :1 http://fr.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 apt-transport-https all 2.4.8 [1 506 B]

1 506 o réceptionnés en 5s (296 o/s)

Sélection du paquet apt-transport-https précédemment désélectionné.

(Lecture de la base de données... 73756 fichiers et répertoires déja installés.)

Préparation du dépaquetage de .../apt-transport-https_2.4.8 all.deb ...

Dépaquetage de apt-transport-https (2.4.8) ...

Paramétrage de apt-transport-https (2.4.8) ...

Scanning processes...

Scanning linux 1images...

Running kernel seems to be up-to-date.
No services need to be restarted.
No containers need to be restarted.

No user sessions are running outdated binaries.

image17.png
user@master:~$ sudo apt update
sudo apt install wget curl vim git kubelet kubeadm kubectl -y
sudo apt-mark hold kubelet kubeadm kubectl

Atteint :1 http://fr.archive.ubuntu.com/ubuntu jammy InRelease

Atteint :2 http://fr.archive.ubuntu.com/ubuntu jammy-updates InRelease

Atteint :3 http://fr.archive.ubuntu.com/ubuntu jammy-backports InRelease

Atteint :4 http://fr.archive.ubuntu.com/ubuntu jammy-security InRelease

Réception de :5 https://packages.cloud.google.com/apt kubernetes-xenial InRelease [9 383 B]

Réception de :6 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 Packages [61,4 kB]
70,8 ko réceptionnés en 1s (64,1 ko/s)

Lecture des listes de paquets... Fatit

Construction de 1'arbre des dépendances... Fait

Lecture des informations d'état... Fait

3 paquets peuvent étre mis a jour. Exécutez « apt list --upgradable » pour les voir.
Lecture des listes de paquets... Fatit

Construction de 1'arbre des dépendances... Fait

Lecture des informations d'état... Fait

wget est déja la version la plus récente (1.21.2-2ubuntul).
wget passé en « installé manuellement ».
curl est déja la version la plus récente (7.81.0-lubuntul.6).
git est déja la version la plus récente (1:2.34.1-1ubuntul.5).
git passé en « installé manuellement ».
vim est déja la version la plus récente (2:8.2.3995-1ubuntu2.1).
vim passé en « installé manuellement ».
Les paquets suivants ont été installés automatiquement et ne sont plus nécessaires :
libflashroml libftdil-2
Veuillez utiliser « sudo apt autoremove » pour les supprimer.
Les paquets supplémentaires suivants seront installés :
conntrack cri-tools ebtables kubernetes-cni socat
Les NOUVEAUX paquets suivants seront installés :
conntrack cri-tools ebtables kubeadm kubectl kubelet kubernetes-cni socat
0 mis a jour, 8 nouvellement installés, 0 a enlever et 3 non mis a jour.
Il est nécessaire de prendre 81,6 Mo dans les archives.
Aprés cette opération, 327 Mo d'espace disque supplémentaires seront utilisés.
Réception de :1 http://fr.archive.ubuntu.com/ubuntu jammy/main amd64 conntrack amd64 1:1.4.6-2build2 [33,5 kB]

image18.png
root@master:~# kubectl version --output=yaml
clientVersion:
buildDate: "2022-11-09T13:36:36Z"
compiler: gc
gitCommit: 872a965c6c6526caa949f0c6ac028ef7aff3fb78
gitTreeState: clean
gitVersion: v1.25.4
goVersion: gol.19.3
major: "1"
minor: "25"
platform: linux/amd64
kustomizeVersion: v4.5.7

image19.png
root@master:~# kubeadm version
kubeadm version: &version.Info{Major:"1", Minor:"25", GitVersion:"v1.25.4", GitCommit:"872a965c6c6526caa949f0cbac028ef7aff3fb78",
GitTreeState:"clean", Buil(_iDate:"2022—11—09T13:35:062", GoVersion:"gol.19.3", Compiler:"gc", Platform:"linux/amd64"}

image20.png
root@worker2:/home/user# free -h

total used free shared buff/cache available
Mem: 1,9G1 304M1 773M1 1,0M1 863M1 1,4G1
Swap: 1,861 0B 1,8G1

image21.png
root@master:~# free -h
total used free shared buff/cache available
Mem: 1,9G1 316M1 1,1G1 1,0M1 467M1 1,4G1

Swa 0B 0B 0B

image22.png
GNU nano 6.2 /etc/fstab *
@ /etc/fstab: static file system information.

Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).

<file system> <mount point> <type> <options> <dump> <pass>

/ was on /dev/ubuntu-vg/ubuntu-1lv during curtin installation
/dev/disk/by-1d/dm-uuid-LVM-8VhbRgetyuDtEeMgpGzmShZcLMhQKnPpYr8dS6S8mDcce068f9Xt4MRuXjQCkVx4 / ext4 defaults 0 1
/boot was on /dev/sda2 during curtin installation

/dev/disk/by-uuid/fae6d1fc-6659-49d6-9090-177e9300bc8d /boot ext4 defaults 0 1

/swap.img none swap sw [¢] 0]

HHIFEHHHR

image23.png
root@master:~# mount -a

free -h
total used free shared buff/cache available

Mem: 1,961 309M1 1,161 1,0M1 469M1 1,4G1
Swap: 0B 0B 0B

image24.png

image25.png

image26.png
root@worker2:/home/user# VER=$(curl -s https://apil.gtithub.com/repos/Mirantis/cri-dockerd/releases/latest|grep tag_name | cut -

d'"" -f 4|sed 's/v//g")
echo $VER
0.2.6 D

image27.png
root@master:/home/user# wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VER}/cri-dockerd-${VER}.amd64.tgz
tar xvf cri-dockerd-${VER}.amd64. tgz

--2022-12-02 08:41:52-- https: hub. Mirantis/cri-dockerd/releases/download/v0.2.6/cri-dockerd-0.2.6.amd64.tgz
Resolving github.com (github.com)... 140.82.121.3

Connecting to github.com (github. com)|140 82.121.3|:443... connected.

HTTP request sent, awaltlng response... 302 Found

Location: H bj .

r_i 0_
me%3Dcri-dockerd- 0 2.6.amd64. tgz&response content type—appllcatlon%ZFoctet stream
Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.1160.133,

Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.109.133|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 23034469 (22M) [application/octet-stream]

Saving to: ‘cri-dockerd-0.2.6.amd64.tgz’

cri-dockerd-0.2.6.amd64.tgz 100%[>] 21,97M 81,9MB/s in 0,3s

2022-12-02 08:41:53 (81,9 MB/s) - ‘cri-dockerd-0.2.6.amd64.tgz’ saved [23034469/23034469]

cri-dockerd/
cri-dockerd/cri-dockerd

image28.png
mv cri- docker socket cri-docker.service /etc/systemd/system/

sed -1 -e 's,/usr/bin/cri-dockerd,/usr/local/bin/cri-dockerd," /etc/systemd/system/cri-docker.service

--2022-12-02 08:51:06-- https: M1

Resolving raw.githubusercontent.com (raw glthubusercontent com)... 185.199.109.133, 185.199.168.133, 185.199.111. 133
Connecting to raw.githubusercontent.com (raw.githubusercontent. com)|185.199.109.133|:443... connected.

HTTP request sent, awaiting response... 200 0K

Length: 1319 (1,3K) [text/plain]

Saving to: ‘cri-docker.service’

cri-docker.service 100%[| 1,29K --.-KB/s in 0s

2022-12-02 08:51:06 (52,4 MB/s) - ‘cri-docker.service’ saved [1319/1319]

--2022-12-02 08:51:06-- https: i1thubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.socket
Resolving raw.githubusercontent.com (raw githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.111.133,
Connecting to raw.githubusercontent.com (raw.githubusercontent. com)|185 199.108. 133| 443. .. connected

HTTP request sent, awaiting response... 200 0K

Length: 204 [text/plain]

Saving to: ‘cri-docker.socket’

cri-docker.socket 100%[| 204 --.-KB/s in 0s

2022-12-02 08:51:07 (6,44 MB/s) - ‘cri-docker.socket’ saved [204/204]

image29.png
root@master:~# systemctl status cri-docker.socket
e cri-docker.socket - CRI Docker Socket for the API

Loaded: loaded (/etc/systemd/system/cri-docker.socket; enabled; vendor preset: enabled)

Active: active (listening) since Fri 2022-12-02 08:53:02 UTC; 46s ago

Triggers: @ cri-docker.service

Listen: /run/cri-dockerd.sock (Stream)

Tasks: 0 (limit: 2196)

Memory: OB

CPU: 1ms
CGroup: /system.slice/cri-docker.socket

déc. 02 08:53:02 master systemd[1]: Starting CRI Docker Socket for the API...
déc. 02 08:53:02 master systemd[1]: Listening on CRI Docker Socket for the API.

image30.png
Control Plane

image31.png
Control Plane

€ rtroller

€ lowd
Controll er
Mw\oﬂer

image32.png
root@master:~# lsmod | grép br_ﬁeifilter
br_netfilter 32768 0
bridge B 307200 1 br netfilter

image33.png
root@master:~# sudo kubeadm config images pull --cri-socket /run/cri-dockerd.sock

W1202 09:05:32.067406 3663 initconfiguration.go:119] Usage of CRI endpoints without URL scheme 1is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "unix" to the "criSocket" with value "/run/cri-dockerd.sock". Pl
ease update your configuration!

[config/images] Pulled registry.k8s.1o/kube-apiserver:v1.25.4

[config/images] Pulled registry.k8s.1o/kube-controller-manager:v1.25.4

[config/images] Pulled registry.k8s.1o/kube-scheduler:v1.25.4

[config/images] Pulled registry.k8s.io/kube-proxy:v1.25.4

[config/images] Pulled registry.k8s.1o0/pause:3.8

[config/images] Pulled registry.k8s.1o/etcd:3.5.5-0

[config/images] Pulled registry.k8s.1o/coredns/coredns:v1.9.3

image34.png
EYXICEReY: : ~# kubeadm init --cri-socket /run/cri-dockerd.sock --pod-network-cidr=10.244.0.0/16
W1202 09:21:13.792729 4436 1initconfiguration.go:119] Usage of CRI endpoints without URL scheme 1is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "unix" to the "criSocket" with value "/run/cri-dockerd.sock". Pl
ease update your configuration!
[init] Using Kubernetes version: v1.25.4
[preflight] Running pre-flight checks
[WARNING SystemVerification]: missing optional cgroups: blkio
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [kubernetes kubernetes.default kubernetes.default.svc kubernetes.defaul
t.svc.cluster.local master] and IPs [10.96.0.1 172.16.12.150]
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/server" certificate and key
[certs] etcd/server serving cert is signed for DNS names [localhost master] and IPs [172.16.12.150 127.0.0.1 ::1]
[certs] Generating "etcd/peer" certificate and key
[certs] etcd/peer serving cert is signed for DNS names [localhost master] and IPs [172.16.12.150 127.0.0.1 ::1]
[certs] Generating "etcd/healthcheck-client" certificate and key
[certs] Generating "apiserver-etcd-client" certificate and key
[certs] Generating "sa" key and public key
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
[kubeconfig] Writing "kubelet.conf" kubeconfig file
[kubeconfig] Writing "controller-manager.conf" kubeconfig file
[kubeconfig] Writing "scheduler.conf" kubeconfig file
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Starting the kubelet
[control-plane] Using manifest folder "/etc/kubernetes/manifests"

image35.png
[control-plane] Creating static Pod manifest for "kube-apiserver"

[control-plane] Creating static Pod manifest for "kube-controller-manager"

[control-plane] Creating static Pod manifest for "kube-scheduler"

[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"

[wailt-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manif
ests". This can take up to 4mOs

[apiclient] All control plane components are healthy after 13.011486 seconds

[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace

[kubelet] Creating a ConfigMap "kubelet-config" in namespace kube-system with the configuration for the kubelets in the cluste
B

[upload-certs] Skipping phase. Please see --upload-certs

[mark-control-plane] Marking the node master as control-plane by adding the labels: [node-role.kubernetes.io/control-plane nod
e.kubernetes. i0/exclude-from-external-load-balancers]

[mark-control-plane] Marking the node master as control-plane by adding the taints [node-role.kubernetes.io/control-plane:NoSc
hedule]

[bootstrap-token] Using token: qvhsg6.9s15fwpgu5Snz0xw5

[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles

[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to get nodes

[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certif
icate credentials

[bootstrap-token] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap T
oken

[bootstrap-token] Configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace

[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key

[addons] Applied essential addon: CoreDNS

[addons] Applied essential addon: kube-proxy

Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube

sudo cp -1 /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

image36.png
Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes. io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 172.16.12.150:6443 --token qvhsg6.9s15fwpgu5nzOxw5 \
--discovery-token-ca-cert-hash sha256:a4bb16327171557a647476198597d504dd99ded2fa53031d9cd6849ac91a9bba

image37.png
Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run

export KUBECONFIG:

etc/kubernetes/admin. conf

You should now deploy a pod network to the cluster.

Run "kubectl apply —f [podnetwork].yaml" with one of the options listed at:
https://kubernetes.io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the following command on each as root:

kubeadm join kubcontrol:6uu3 --token c8zw8n.skytwnomnc3sdeem \
discovery-token-ca-cert-hash sha256:cfef65d102f961ct1b14a2u711£26606181bbb37378e90e6ca5699F226Fd697d
control-plane --certificate-key ee73@ebc7cuas6dblf6al7de3fc5dbfae2u3235fu61c6831eb6c22c50bce9291

Please note that the certificate-key gives access to cluster sensitive data, keep it secret!
As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use
"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.

Then you can join any number of worker nodes by running the following on each as root:

ubeadm join kubcontrol:6uu3 --token c8zwsn.skytwnomnc3sdeem \
--discovery-token-ca-cert-hash sha256:cfef65d102f961cu1b14a24711£26606181bbb37378e90e6ca5699F226fd697d

image38.png
root@master§~# kubectl cluster-1info
Kubernetes control plane is running at https://172.16.12.150:6443
CoreDNS 1is running at https://172.16.12.150:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

image39.png
root@master:~# wget h
-2022-12-02 10:15:29--

ith nne nn e n K nne
Resolving raw. glthubusercontent con'(faw.githubusercontent. con)... 185.100.111.133, 185.199.116.133, 185.190.109133,
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133] :443.

. connected
HTTP request sent, awaiting response... 200 OK
Length: 4591 (4,5K) [text/plain]
Saving to: ‘kube-flannel.yml’
kube-flannel.yml 100%[>] 4,48 --.-KB/S 1in Os

2022-12-02 10:15:29 (22,2 MB/s) - ‘kube-flannel.yml’ saved [4591/4591]

image40.png
net-conf.json: |

"Network": "10.244.0.0/16",
"Backend": {
"Type": "vxlan"

image41.png
root@master:~# kubectl apply -f kube-flannel.yml
namespace/kube-flannel created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created

configmap/kube-flannel-cfg created
daemonset.apps/kube-flannel-ds created

image42.png
root@master:~# kubectl get pods -n kube-flannel
NAME READY STATUS RESTARTS AGE
kube-flannel-ds-cccns 1/1 Running 0 3m21s

image43.png
KERNEL -VERSION CONTA

root@master:~# kubectl get nodes -o GE
INTERNAL-IP EXTERNAL-IP 0S-IMAGE

NAME STATUS ROLES AGE VERSION
INER-RUNTIME
master Ready control-plane 70m v1.25.4 172.16.12.150 <none> Ubuntu 22.04.1 LTS 5.15.0-56-generic docke

r://20.10.21

image44.png
user@workerl:~$ sudo kubeadm join 172.16.12.150:6443 --token qvhsq6.9s15fwpgu5SnzOxw5 --discovery-token-ca-cert-hash sha256:a4b
b16327171557a647476198597d504dd99ded2fa53031d9cd6849ac91a9bba --cri-socket /run/cri-dockerd.sock
[sudo] password for user:
W1202 10:52:28.424876 7623 initconfiguration.go:119] Usage of CRI endpoints without URL scheme 1is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "unix" to the "criSocket" with value "/run/cri-dockerd.sock". Pl
ease update your configuration!
[preflight] Running pre-flight checks
[WARNING SystemVerification]: missing optional cgroups: blkio
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet
[kubelet-start] Watiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

image45.png
user@worker2:~$ sudo kubeadm join 172.16.12.150:6443 --token qvhsg6.9s15fwpgu5nz0xw5 --discovery-token-ca-cert-hash sha256:a4b
b16327171557a647476198597d504dd99ded2fa53031d9cd6849ac91a9bba --cri-socket /run/cri-dockerd.sock
[sudo] password for user:
W1202 10:54:45.682132 9082 1initconfiguration.go:119] Usage of CRI endpoints without URL scheme 1is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "unix" to the "criSocket" with value "/run/cri-dockerd.sock". Pl
ease update your configuration!
[preflight] Running pre-flight checks
[WARNING SystemVerification]: missing optional cgroups: blkio
[preflight] Reading configuration from the cluster...
[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet
[kubelet-start] Watiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:
* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

image46.png
root@master:~# kubectl get nodes

NAME
master
workerl
worker2

STATUS
Ready
Ready
Ready

ROLES
control-plane
<none>
<none>

AGE
96m
5mi16s
2m59s

VERSION
v1.25.4
v1.25.4
v1.25.4

image47.png

image48.png
apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchLabels:
app: nginx
template:
metadata:
labels:

app: nginx

spec:
contatiners:

- name: nginx
image: nginx:1.14.0
ports:

- contatinerPort: 80

image49.png
root@master:~/nginx# kubectl create -f nginx-deployment.yaml
deployment.apps/nginx-deployment created

image50.png
root@master:~/nginx# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 3 95s

image51.png
root@master:~/nginx# kubectl describe deployment nginx-deployment

Name:

Namespace:
CreationTimestamp:
Labels:
Annotations:
Selector:
Replicas:
StrategyType:
MinReadySeconds:
RollingUpdateStrategy:
Pod Template:

nginx-deployment

default

Fri, 02 Dec 2022 14:32:56 +0000
app=nginx
deployment.kubernetes.io/revision: 1
app=nginx

3 desired | 3 updated | 3 total | 3 available | 0 unavailable
RollingUpdate
0

25% max unavailable, 25% max surge

Labels: app=nginx
Contatners:
nginx:
Image: nginx:1.14.0
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
Avatilable True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-979fbbc48 (3/3 replicas created)
Events:
Type REEE)] Age From Message

Normal ScalingReplicaSet 2m31s
root@master:~/nginx# [l

deployment-controller

Scaled up replica set nginx-deployment-979fbbc48 to 3

image52.png
root@master:~/nginx# kubectl get pods

NAME

nginx-deployment-979fbbc48-bfmkc
nginx-deployment-979fbbc48-k7k61
nginx-deployment-979fbbc48-tw4s2

READY
1/1
1/1
1/1

STATUS

Running
Running
Running

RESTARTS
[¢]
[¢]
0

AGE

3m26s
3m26s
3m26s

image53.png
root@master:~/nginx# kubectl describe pods nginx-deployment-979fbbc48-bfmkc

\ENH nginx-deployment-979fbbc48-bfmkc
Namespace: default
Priority: [¢]
Service Account: default
Node: worker2/172.16.12.152
Start Time: Fri, 02 Dec 2022 14:32:56 +0000
Labels: app=nginx
pod-template-hash=979fbbc48
Annotations: <none>
Status: Running
IP: 10.244.2.2
IPs:
IP: 10.244.2.2
Controlled By: ReplicaSet/nginx-deployment-979fbbc48
Contatiners:
nginx:
Contatiner ID: docker://3d726ee33ea9b4514ad499c58febbbbed1c03802351aae5a611546303596Fe22
Image: nginx:1.14.0
Image ID: docker-pullable://nginx@sha256:8b600a4d029481cc5b459f1380b30ff6cb98e27544fc02370de836e397e34030
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Fri, 02 Dec 2022 14:33:23 +0000
Ready: True
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from kube-api-access-mppmf (ro)
Conditions:
Type Status
Intitialized True
Ready True

ContailnersReady True
PodScheduled True

image54.png
Volumes:
kube-api-access-mppmf:

Type:
TokenExpirationSeconds:

ConfigMapName:
ConfigMapOptional:
DownwardAPI:

QoS Class:

Node-Selectors:
Tolerations:

Events:
Type
Normal
Normal
Normal
Normal

Normal

Scheduled
Pulling
Pulled
Created
Started

Age

4m49s
4m48s
4m36s
4m22s

imZZs

Projected (a volume that contains injected data from multiple sources)

3607
kube-root-ca.crt
<nil>

true

BestEffort
<none>

node.kubernetes. io/not-ready:NoExecute op=Exists for 300s
node.kubernetes. io/unreachable:NoExecute op=Exists for 300s

From
default-scheduler
kubelet

kubelet

kubelet

kubelet

Message

Successfully assigned default/nginx-deployment-979fbbc48-bfmkc to worker2
Pulling image "nginx:1.14.0"

Successfully pulled image "nginx:1.14.0" in 11.792101983s

Created container nginx

Started container nginx

image55.png
apiVersion: vi1
kind: Service
metadata:
name: nginx-service
labels:
run: nginx-service
spec:
type: NodePort
ports:
- port: 80
protocol: TCP
selector:
app: nginx

image56.png
root@master:~/nginx# kubectl create -f nginx-service.yaml
service/nginx-service created

image57.png
root@master:~/nginx# kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5h21m
nginx-service NodePort 10.105.151.57 <none> 80:30206/TCP 38s

image58.png
root@master:~/nginx# kubectl describe service nginx-service

Session Affinity:
External Traffic Policy:

Events:

10.244.1.2:80,10.244.1.3:80,10.244.2.2:80

\ENH nginx-service
Namespace: default

Labels: run=nginx-service
Annotations: <none>

Selector: app=nginx

Type: NodePort |

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.105.151.57
IPs: 10.105.151.57
Port: <unset> 80/TCP
TargetPort: 80/TCP

|NodePort: <unset> 30206/TCP|
Endpoints:

None
Cluster
<none>

image59.png
Bienvenue a Nginx!

Si vous voyez cette page, le serveur Web nginx est installé avec succés et
travail. Une configuration supplémentaire est requise.

Pour la documentation et I'assistance en ligne, veuillez consulter nginx.org_.
Le support commercial est disponible sur nginx.com .

Merci d'utiliser nginx.

image1.png

image60.png
O A& 1721612152

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

image61.png
O A& 172.16.12.150

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

image62.png
..Hh ortainer.io
‘IO

image63.png
192.168.100.150 kubcontrol
192.168.100.151 kubnodeworker1
192.168.160.152 kubnodeuworker2

image64.png
athor@portainer:~$ sudo docker volume create portainer_data
portainer_data

image65.png
athor@portainer:~$ sudo docker run -d -p 8000:8000 -p 9u4U43:9443 —-name porta
iner --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portai
ner_data:/data portainer/portainer-ce:latest

Unable to find image 'portainer/portainer-ce:latest' locally

latest: Pulling from portainer/portainer-ce

772227786281: Pull complete

96fd13befc87: Pull complete

Obad1d247b5b: Pull complete

b5d1b01b1d39: Pull complete

Digest: sha256:f7607310051ee21f5899d7b7+7878a6a49du850422d88a31f8c61c2U8bbc
3al

Status: Downloaded newer image for portainer/portainer-ce:latest
29d1a368b51c6f2Uddcal9192688d32U28a273ae255dddc0161ccOb951c8b928

image66.png
athor@portainer:~$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
29d1a368b51c portainer/portainer-ce:latest "/portainer" 25 seconds ago Up 23 seconds 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp, 0.0.0.0:9443->9443
/tcp, :::9443->9443/tcp, 9000/tcp portainer
soFy s N

image67.png
~ New Portainer installation

Please create the initial administrator user.

Username admin
Password LYTTTTETY
Confirm password

A The password must be at least 12 characters long. v

@ Allow collection of anonymous statistics. You can find more information about this in our privacy policy.

image68.png
[| B install Portainer with Dockeron | X & Portainer x + = u] X

3
& > C A Notsecure | hitps//portainer9443/#! fwizard A Y5 g & | = Ei .
1] Microsoft Office Ac.. i Gmail (P OVHcloud " ESXlitalhallatech GE MicrosoftDocs Am Dashboard [ESR () MTProTV @ Pluralsight Global NetAcad a
. . Environment Wizard
ﬁ- portainerio « +
COMMUNITY EDITION Quick Setu 5 Tl v
[-]
@ Home a
¢ Environment Wizard
Environment: © None selected
Welcome to Portainer 4
. We have connected your local environment of Docker to Portainer.
Settings
Get started below with your local portainer or connect more container environments.
2 Users v
& Environments v ' .
@ Registries
B Authentication logs v

O Notifications

© EHiligs i Get Started _Add
Environments
Proceed using the local
environment which Connect to other
Portainer is running in environments

ﬁ portainer.io Community Edition 2162 Upgrade

{3
AAMEYOLEIOTAINENCS H-aQ nee®TEn w Quw [0

image69.png
Aner o cohnect more container environments.

v

Add
Environments

Connect to other
environments

image70.png
Docker
Standalone
Connect to Docker

Standalone via URL/IP,
API or Socket

KaaS

Provision a Kubernetes
environment with a
cloud provider

4

Docker
Swarm ACI
Connect to Docker Connect to ACI
Swarm via URL/IP, API environment via API
or Socket

Nomad

Connect to HashiCorp
Nomad environment
via APl

image71.png
Connect to your Kubernetes environment

Information

Ensure that you have deployed the Portainer agent in your cluster first. Refer to the platform related command below to
deploy it.

Kubernetes via load balancer Kubernetes via node port

kubectl apply f https://downloads.portainer.io/ce2-16/portainer-agent-k8s-nodeport..yanl

image72.png
athor@kubcontrol:~$ kubectl apply —-f https://downloads.portainer.io/ce2-16/portainer-agent—k8s-nodeport.yaml
namespace/portainer created

serviceaccount/portainer-sa-clusteradmin created
clusterrolebinding.rbac.authorization.k8s.io/portainer-crb-clusteradmin created

service/portainer-agent created

service/portainer-agent-headless created

deployment.apps/portainer-agent created

image73.png
athor@kubcontrol:~$ kubectl get pods --namespace=portainer -o wide
NAME READY STATUS RESTARTS AGE P NODE NOMINATED NODE READINESS GATES
portainer-agent-8bdcf56duU-buz97 1/1 Running] 83s 172.20.2.3 kubnodeworker2 <none> <none>

image74.png
Name Kubernetes-cluster

Envionment ‘ 192168100152:30778|
address

> More settings

image75.png
Environment created

Kubernetes-cluster

image85.png

