	Kubernetes – Docker – NGINX – Portainer
	Référence : TP-CLUSTER-KUBER-4228
	Version : 1.4

	Kubernetes – Docker – NGINX – Portainer

	Création d’un cluster Kubernetes utilisant Docker, déploiement d’un service NGINX et lien avec une instance Portainer

	

	Référence : TP-CLUSTER-KUBER-4228

	Auteurs :
Nicolas BODAINE
	Destinataires :
Formateurs
Apprenants

	
	
	Date de dernière modification : 10/12/23
	Version : 1.4

	

Sommaire	page
1	Introduction	3
1.1	Maitriser les concepts	3
1.1.1	Qu’est-ce-que Kubernetes ?	3
1.1.2	Qu’est-ce qu’un cluster Kubernetes ?	4
1.1.3	Qu'en est-il de Docker ?	5
1.2	Préparation de l’environnement	6
1.2.1	Environnement du lab	6
1.2.2	Installation des machines virtuelles	7
1.2.3	Se connecter en SSH	9
1.2.4	Mettre à jour les serveurs Ubuntu	10
2	Création d’un cluster Kubernetes	10
2.1	Installation des prérequis	11
2.1.1	Installer kubelet, kubeadm et kubectl	11
2.1.2	Désactiver l'espace d'échange (swap)	13
2.1.3	Installer un environnement d'exécution de conteneur	15
2.1.4	Installer une interface d’environnement d’exécution de conteneur	17
2.2	Création du cluster	19
2.2.1	Initialiser le plan de contrôle	20
2.2.2	Installer le plugin réseau Kubernetes	25
2.2.3	Ajouter des nœuds de travail	26
2.3	[Facultatif] Activation de l’auto-completion pour les commandes Kubernetes	29
3	Déploiement d’un service web	29
3.1	Les différentes façons d’exposer les applications	29
3.1.1	ClusterIP	30
3.1.2	NodePort	30
3.1.3	LoadBalancer	30
3.1.4	ExternalName	30
3.2	Déploiement du service web NGINX	31
4	Lien avec une interface graphique de gestion de conteneurs	38
4.1	Création d’un conteneur Portainer	38
4.2	Ajout de l’environnement Kubernetes à Portainer	39

[bookmark: _Toc153128468]Introduction
Au cours de la réalisation de ces travaux pratiques, vous allez créer un cluster Kubernetes composé de trois nœuds qui utilisera l’environnement d’exécution de conteneurs Docker. Vous ferez la liaison entre ce cluster Kubernetes et une interface de gestion graphique qui s’appelle Portainer. Vous hébergerez aussi sur ce cluster Kubernetes un serveur web sous NGINX. Toute l’infrastructure sera virtualisée a l’aide de l’hyperviseur VMware Workstation.
[bookmark: _Toc153128469]Maitriser les concepts
Avant d’aborder la partie pratique il convient d’avoir une connaissance minimale de certaines technologies.
[bookmark: _Toc153128470]Qu’est-ce-que Kubernetes ?
[image:]

Kubernetes (alias K8s) peut être défini comme un système d'orchestration de conteneurs open source qui vous permet d'automatiser le déploiement et la gestion des charges de travail et des services conteneurisés.

Kubernetes est un projet qui a été créé à l'origine par Google mais qui est désormais maintenu par la Cloud Native Computing Foundation.

K8s dépend de la virtualisation des systèmes d'exploitation plutôt que de la virtualisation du matériel.

Kubernetes automatise de nombreuses tâches opérationnelles dans les déploiements de logiciels et permet à l'utilisateur de planifier et d'exécuter des conteneurs sur des clusters de machines physiques ou virtuelles dans des environnements de cloud public, de cloud privé et hybrides.

Kubernetes est un système idéal pour la gestion des conteneurs qui améliore l'utilisation des ressources et réduit les coûts.

Kubernetes est également connu pour optimiser les ressources matérielles, améliorer la productivité DevOps et gérer les modifications apportées aux applications conteneurisées existantes.

Actuellement, c'est le leader du marché de l'orchestration de conteneurs. Kubernetes est une plate-forme idéale pour héberger des applications de microservices qui évoluent de manière dynamique. Lorsque vous travaillez sur un environnement de production, Kubernetes est la plate-forme la plus préférée et la plus sûre pour l'orchestration de conteneurs.
[bookmark: _Toc153128471]Qu’est-ce qu’un cluster Kubernetes ?
Le terme « cluster Kubernetes » désigne un déploiement fonctionnel de Kubernetes. Un cluster Kubernetes comprend deux principaux composants : le plan de contrôle (control plane) et les machines de calcul (workers). On peut aussi parler d’architecture maitre/esclave constituée de nœuds (nodes) : le nœud maitre (master), qui est la machine sur laquelle s'exécutent les composants du plan de contrôle (control plane), et les nœuds de travail (workers).

Il y a quatre composants d'un nœud maître (master) :

· Serveur API Kube
· Contrôleur (controller)
· Ordonnanceur (scheduler)
· etcd

Et le nœud de travail (worker) a trois composants :

· kubelet
· kube-proxy
· Environnement d’execution du conteneur (container runtime)

Voici à quoi ressemble une architecture Kubernetes :

[image:]

Chaque nœud de travail est son propre environnement Linux (machine physique ou virtuelle) et exécute des pods, constitués de conteneurs.

Le plan de contrôle est responsable du maintien du cluster dans un état souhaité, c'est-à-dire qu'il vérifie, par exemple, les applications exécutées et les images de conteneurs utilisées. Ce sont les machines de calcul qui exécutent concrètement les applications et les charges de travail.

Kubernetes fonctionne sur un système d'exploitation et interagit avec les pods des conteneurs qui s'exécutent sur les nœuds.

Le plan de contrôle Kubernetes reçoit les commandes d'un administrateur et transfère ces instructions aux machines de calcul.

Ce transfert fonctionne avec une multitude de services afin de choisir automatiquement le nœud le plus adapté à la tâche. Il alloue ensuite les ressources et attribue le travail demandé aux pods de ce nœud.

L'état souhaité d'un cluster Kubernetes détermine les applications ou autres charges de travail à exécuter, ainsi que les images à utiliser, les ressources qui leur sont allouées et d'autres informations de configuration.

Au niveau de l'infrastructure, la gestion des conteneurs est légèrement différente : le contrôle s'effectue à un niveau supérieur, ce qui renforce votre contrôle sans avoir à gérer individuellement chacun des conteneurs ou nœuds.

Votre travail consiste à configurer Kubernetes, définir des nœuds, des pods et les conteneurs qu'ils contiennent, tandis que Kubernetes gère l'orchestration des conteneurs.

Étant donné que dans un environnement de production, vous ne prévoyez aucun temps d'arrêt, votre cluster doit toujours être opérationnel.

Organiser et gérer plusieurs conteneurs n'est pas une tâche facile. Lorsque vous travaillez sur des applications dynamiques, augmenter ou diminuer le nombre de conteneurs est une chose normale mais faire de telles tâches manuellement peut être complexe et risqué. Par conséquent, un outil d'orchestration de conteneurs est nécessaire, et c'est pourquoi Kubernetes est nécessaire.

Pour mieux comprendre l’architecture de Kubernetes et voir plus en détail les composants du nœud maître et des nœuds de travail lisez ces articles : https://geekflare.com/fr/kubernetes-architecture/ et https://www.redhat.com/fr/topics/containers/what-is-kubernetes

Leur lecture vous permettra aussi de mieux comprendre les différents termes qui seront utilisés tout au long de ce TP.
[bookmark: _Toc153128472]Qu'en est-il de Docker ?
[image:]

Vous pouvez utiliser Docker (mais pas que…) en tant qu'environnement d'exécution (runtime) orchestré par Kubernetes. Lorsque Kubernetes planifie un pod dans un nœud, le kubelet de ce nœud donne l'ordre à Docker de lancer les conteneurs spécifiés.

Le kubelet collecte ensuite en continu le statut de ces conteneurs via Docker et rassemble ces informations dans le plan de contrôle. Docker transfère ces conteneurs dans ce nœud, les démarre et les arrête.

Lorsque vous utilisez Kubernetes avec Docker, la différence est l'origine des ordres : ils proviennent d'un système automatisé et non plus d'un administrateur qui assigne manuellement des tâches à tous les nœuds pour chaque conteneur.
[bookmark: _Toc153128473]Préparation de l’environnement
[bookmark: _Toc153128474]Environnement du lab
Pour la réalisation de ces travaux pratiques j’ai utilisé l’hyperviseur VMware Workstation sous un système Windows 11.

Le réseau[footnoteRef:2] du lab : [2: Si vous êtes un apprenant de l’école INSTA, vous pouvez retrouver cette configuration réseau facilement en vous connectant au réseau de l’école via un câble RJ45.]

· Adresse du réseau et son masque de sous-réseau au format CIDR : 172.16.12.0/24
· Passerelle par défaut : 172.16.12.254

La connectivité réseau entre les machines et pour l’accès internet a été assurée par une mise en réseau en mode « bridged » mais vous pouvez également passer en mode « NAT » si vous le désirez.

Pour pouvoir vous connecter à vos machines virtuelles en SSH depuis votre machine hôte en utilisant le NAT assurez-vous d’avoir coché la case « Connect a host virtual adapter to this network » dans les paramètres du Virtual Network Editor.

Pour reproduire l’environnemnt réseau dans Workstation vous pouvez vous baser sur l’illustration ci-dessous :

[image: Une image contenant texte, capture d’écran, logiciel, nombre

Description générée automatiquement]

[bookmark: _Toc153128475]Installation des machines virtuelles
J’ai installé trois serveurs Ubuntu Server 22.04.1 : un nœud principal (master) et deux nœuds de travail (worker) où les charges de travail conteneurisées seront exécutées.

Téléchargez l’ISO d’Ubuntu Server ici : https://releases.ubuntu.com/22.04.1/ubuntu-22.04.1-live-server-amd64.iso

	Rôle de serveur
	Nom d'hôte du serveur
	Spécifications
	Adresse IP

	Nœud maître
	master
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.150

	Nœud de travail
	worker1
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.151

	Nœud de travail
	worker2
	2 Go de RAM, 2 processeurs virtuels
	172.16.12.152

Des nœuds supplémentaires pourront toujours être ajoutés au cluster pour répondre aux exigences de charge d'environnement souhaitées.

Pour vous assurer de ne pas avoir de problèmes de login/mot de passe par la suite vous pouvez utiliser ceux proposés ci-dessous :

Nom d’utilisateur : user
Mot de passe : popopo

[image: Une image contenant texte

Description générée automatiquement]

Assignez une IP fixe à vos machines directement durant l’installation d’Ubuntu afin de ne pas avoir à le faire après :

[image: Une image contenant texte

Description générée automatiquement]

Si vous deviez le faire post-installation, vous pouvez vous aider de ces liens : https://netplan.io/examples et https://doc.ubuntu-fr.org/netplan pour configurer le fichier .yaml qui se trouve dans /etc/netplan/

Vous pouvez installer OpenSSH directement pendant l’installation d’Ubuntu :

[image: Une image contenant texte

Description générée automatiquement]

Par précaution n’installez pas les autres paquets (au format snap d’Ubuntu) proposés par l’installateur :

[image: Une image contenant texte

Description générée automatiquement]
[bookmark: _Toc153128476]Se connecter en SSH
Une fois vos serveurs prêts, connectez-vous avec un client SSH comme Putty ou MobaXterm pour pouvoir copier-coller les commandes du TP dans le terminal :
ssh [votre_utilisateur]@[votre_IP]

[image: Une image contenant texte

Description générée automatiquement]

Puisque nous sommes dans un contexte de formation nous pouvons nous permettre de passer en root afin d’éviter d’utiliser systématiquement la commande sudo :
sudo su
[bookmark: _Toc153128477]Mettre à jour les serveurs Ubuntu
Mettez à jour la liste des paquets binaires[footnoteRef:3] disponibles : [3: Paquet binaire : En informatique, et en particulier dans le contexte des systèmes UNIX, on appelle paquet (ou parfois paquetage, en anglais package) une archive (fichier compressé) comprenant les fichiers informatiques, les informations et procédures nécessaires à l'installation d'un logiciel sur un système d'exploitation au sein d'un agrégat logiciel, en s'assurant de la cohérence fonctionnelle du système ainsi modifié. Les opérations de gestion des paquets au sein du système (installation, suppression, etc.) sont réalisées par un gestionnaire de paquets. Source : https://fr.wikipedia.org/wiki/Paquet_(logiciel)
]

apt update

Mettez vos serveurs à jour :
apt upgrade

Redémarrez vos serveurs :
reboot
[bookmark: _Toc153128478]Création d’un cluster Kubernetes
[image:]

La partie décrivant la création du cluster Kubernetes est basée sur ce tutoriel :

https://computingforgeeks.com/install-kubernetes-cluster-ubuntu-jammy/

N’hésitez pas à revenir à la source en cas de difficulté ou si vous souhaitez faire autrement ou plus que ce qui est décrit ci-dessous.

Vous avez aussi la documentation officielle de Kubernetes qui peut vous aider en cas de difficulté :

https://kubernetes.io/fr/docs/setup/production-environment/tools/kubeadm/create-cluster-kubeadm/
[bookmark: _Toc153128479]Installation des prérequis
[bookmark: _Toc153128480]Installer kubelet, kubeadm et kubectl
[bookmark: _Hlk120885206]Faites les commandes suivantes sur tous les serveurs.

Tout d’abord, vous allez devoir ajouter le référentiel Kubernetes pour Ubuntu 22.04 à vos serveurs.
Pour cela installez les paquets binaires nécessaires à la récupération de la clé GPG qui servira pour l’utilisation du dépôt de Kubernetes.
apt install curl apt-transport-https -y

Ensuite récupérez la clé GPG :
curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg| gpg --dearmor -o /etc/apt/trusted.gpg.d/k8s.gpg

Puis ajoutez le référentiel à votre liste des référentiels[footnoteRef:4] : [4: Adaptez le codename (xenial, focal, jammy, etc.) à votre distribution Ubuntu et essayez de voir si ça fonctionne bien avec « apt update ». Plus d’infos sur les versions d’Ubuntu ici : https://fr.wikipedia.org/wiki/Liste_des_versions_d%27Ubuntu . Si le dépôt ne fonctionne pas vous pouvez annuler l’effet de la commande avec : « sudo add-apt-repository --remove "deb https://apt.kubernetes.io/ kubernetes-jammy main" »]

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | tee /etc/apt/sources.list.d/kubernetes.list

[bookmark: _Hlk120788200]Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Mettez à jour votre liste de dépôts puisque vous avez ajouté celui de Kubernetes :
apt update

Puis installez les paquets nécessaires pour la gestion du cluster :
apt install wget git kubelet kubeadm kubectl -y

L’outil kubeadm effectue les actions nécessaires pour obtenir un cluster minimum viable opérationnel.

L’outil kubectl sert pour communiquer avec le plan de contrôle d’un cluster Kubernetes, à l'aide de l'API Kubernetes.

L’outil kubelet est un agent qui s'exécute sur chaque nœud du cluster. Il s'assure que les conteneurs fonctionnent dans un pod.

La commande suivante servira à empêcher la modification des paquets kubelet, kubeadm et kubectl en les marquant comme retenus, ce qui empêchera qu'ils soient installés, mis à jour ou supprimés automatiquement :
apt-mark hold kubelet kubeadm kubectl

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez vérifier l’installation de kubectl :
kubectl version --output=yaml

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez vérifier l’installation de kubeadm :
kubeadm version

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc153128481]Désactiver l'espace d'échange (swap)
Vous devez désactiver le swap pour que kubelet fonctionne correctement.[footnoteRef:5] [5: La discussion à ce sujet se trouve ici : https://github.com/kubernetes/kubernetes/issues/53533]

L'espace d'échange, en anglais swap, est une partie de la mémoire de masse d'un ordinateur (= mémoire non volatile ; ex. : disque dur, SSD) utilisée par le système d'exploitation pour stocker des données qui, du point de vue des applications, se trouvent en mémoire vive. L'espace d'échange peut prendre la forme d'une partition dédiée (la partition swap, courante sous les systèmes Unix) ou d'un simple fichier (le fichier d'échange « C:\pagefile.sys » sous Windows par exemple), ou de plusieurs partitions et/ou fichiers. La mémoire vive et l'espace d'échange constituent ensemble la mémoire virtuelle du système.
[bookmark: _Hlk120885613]
Faites les commandes suivantes sur tous les serveurs.

Si vous exécutez des nœuds avec un échange swap vous perdrez une grande partie des propriétés d'isolation qui rendent le partage de machines viable. Vous n'aurez aucune prévisibilité concernant les performances, la latence ou les E/S.

Vous pouvez lancer la commande free pour voir que votre swap est activé :

[image:]

Vous allez le désactiver temporairement avec cette commande :
swapoff -a

Vous pouvez vérifier que le swap a bien été désactivé en exécutant la commande free de nouveau. Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Maintenant, désactivez définitivement l'espace d'échange swap en éditant le fichier /etc/fstab :
nano /etc/fstab

Recherchez la ligne « /swap.img none swap sw 0 0 » et ajoutez le signe « # » devant :

[image: Une image contenant texte, capture d’écran, moniteur

Description générée automatiquement]

Validez la saisie avec « Ctrl+x » puis « y » puis la touche « Entrée ».

Confirmez que le réglage est correct :
mount -a
free -h

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Activez les modules du noyau et configurez sysctl.
Enable kernel modules
modprobe overlay
modprobe br_netfilter

Add some settings to sysctl
tee /etc/sysctl.d/kubernetes.conf<<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF

Reload sysctl
sysctl --system
[bookmark: _Toc153128482]Installer un environnement d'exécution de conteneur
[image: Une image contenant texte, clipart Description générée automatiquement]Pensez à faire un snapshot de vos VM’s
A ce stade il est utile de faire un snapshot.

Faites les commandes suivantes sur tous les serveurs.

Kubernetes ne crée pas lui-même des conteneurs. Cette tâche est déléguée aux container runtimes, les « environnements d'exécution de conteneur ». Pour faire simple disons que celui-ci est responsable de créer et de faire fonctionner les conteneurs. Pour mieux comprendre le mécanisme vous pouvez lire cet article : https://blog.alterway.fr/le-point-sur-les-container-runtimes.html

Suivez les étapes ci-dessous pour configurer l’environnement d'exécution de conteneur Docker.

Installez les paquets nécessaires et ajoutez le dépôt de Docker :
apt install -y gnupg2 software-properties-common ca-certificates
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

Mettez à jour la liste des paquets disponibles suite à l’ajout d’un nouveau dépôt :
apt update

Installez les paquets suivants :
apt install -y containerd.io docker-ce docker-ce-cli

Créez le répertoire du service docker :
mkdir -p /etc/systemd/system/docker.service.d

Créez le fichier de configuration JSON du daemon
tee /etc/docker/daemon.json <<EOF
{
 "exec-opts": ["native.cgroupdriver=systemd"],
 "log-driver": "json-file",
 "log-opts": {
 "max-size": "100m"
 },
 "storage-driver": "overlay2"
}
EOF

Rechargez, redémarrez le service Docker et activez son démarrage automatique au démarrage du système :
systemctl daemon-reload
systemctl restart docker
systemctl enable docker

Configurez le chargement persistant des modules :
tee /etc/modules-load.d/k8s.conf <<EOF
overlay
br_netfilter
EOF

Assurez-vous de charger les modules :
modprobe overlay
modprobe br_netfilter

Configurez les paramètres sysctl requis :
tee /etc/sysctl.d/kubernetes.conf<<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipv4.ip_forward = 1
EOF
[bookmark: _Toc153128483]Installer une interface d’environnement d’exécution de conteneur
Kubernetes a créé une interface, Container Runtime Interface (CRI), qui définit la façon dont Kubernetes parle aux container runtimes. Vous avez donc besoin d'une interface de shim pour Docker Engine. Vous allez installer Mirantis cri-dockerd.

[image: kubelet]

Faites les commandes suivantes sur tous les serveurs.

Assurez-vous que le service Docker est en cours d'exécution avant de continuer :
$ systemctl status docker

Obtenez la dernière version de cri-dockerd :
VER=$(curl -s https://api.github.com/repos/Mirantis/cri-dockerd/releases/latest|grep tag_name | cut -d '"' -f 4|sed 's/v//g')
echo $VER

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Téléchargez le fichier d'archive de cri-dockerd à partir de la page des versions de Github cri-dockerd puis extrayez-le.
wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VER}/cri-dockerd-${VER}.amd64.tgz
tar xvf cri-dockerd-${VER}.amd64.tgz

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Déplacez le paquet binaire cri-dockerd vers /usr/local/bin/
mv cri-dockerd/cri-dockerd /usr/local/bin/

Validez l'installation réussie en exécutant les commandes ci-dessous :
cri-dockerd --version

Récupérez le service et le socket pour le placer dans le dossier /etc/systemd/system :
wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.service
wget https://raw.githubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.socket
mv cri-docker.socket cri-docker.service /etc/systemd/system/
sed -i -e 's,/usr/bin/cri-dockerd,/usr/local/bin/cri-dockerd,' /etc/systemd/system/cri-docker.service

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Rechargez, redémarrez les services et activez le démarrage automatique au démarrage du système :
systemctl daemon-reload
systemctl enable cri-docker.service
systemctl enable --now cri-docker.socket

Vérifiez que le service est en cours d'exécution :
systemctl status cri-docker.socket

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Le chemin du fichier de socket Mirantis cri-dockerd CRI est /run/cri-dockerd.sock. C'est celui-ci qui sera utilisé lors de la configuration du cluster Kubernetes.
[bookmark: _Toc153128484]Création du cluster
[image: control plane]

Un cluster Kubernetes peut se diviser en deux parties :

· Le Control Plane, « plan de contrôle »
· Les nodes, « nœuds » ou workers, « travailleurs »

Le Control Plane est en quelque sorte le cerveau de Kubernetes. Les nodes sont les composants responsables d'exécuter les conteneurs. Chaque node possède un Kubelet, chargé de communiquer avec le Control Plane.

Pour en savoir plus sur le plan de contrôle et ses différents composants lisez cet article : https://www.padok.fr/blog/control-plane-kubernetes
[bookmark: _Toc153128485]Initialiser le plan de contrôle
[image: etcd - control plane]

[bookmark: _Hlk120885867]Faites les commandes suivantes uniquement sur le serveur maitre.

Assurez-vous que le module br_netfilter est bien chargé :
lsmod | grep br_netfilter

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Activez le service kubelet au démarrage du système :
systemctl enable kubelet

Vous allez initialiser la machine qui exécutera les composants du plan de contrôle, notamment etcd (la base de données qui contient toutes les informations du cluster Kubernetes) et le serveur API.

Récupérez l’image de conteneur en précisant quel runtime vous utilisez avec la commande --cri-socket :
kubeadm config images pull --cri-socket unix:///var/run/cri-dockerd.sock

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte, capture d’écran, Police

Description générée automatiquement]

Voici les options de base de kubeadm init qui peuvent être utilisées pour amorcer le cluster :

--control-plane-endpoint : définit le point de terminaison partagé pour tous les nœuds du plan de contrôle. Cela peut être un nom DNS ou une adresse IP.

--pod-network-cidr : utilisé pour définir un CIDR complémentaire au réseau de pods

--cri-socket : à utiliser s'il y a plus d'un environnement d'exécution de conteneur pour définir le chemin d'accès au socket d'exécution

--apiserver-advertise-address : définissez l'adresse d'annonce pour le serveur API de ce nœud de plan de contrôle particulier

--authorization-mode=RBAC : pour activer RBAC lors de la création du cluster afin de renforcer la sécurité de votre cluster Kubernetes en définissant des rôles et des autorisations pour les utilisateurs et les composants du système.

[image: Une image contenant texte, clipart Description générée automatiquement]Pensez à faire un snapshot de votre VM
A ce stade il est utile de faire un snapshot.

Pour amorcer le cluster, vous pouvez exécuter[footnoteRef:6] : [6: Si vous souhaitez plutôt une autre configuration du réseau interne du cluster vous pouvez changer le réseau « 10.244.0.0/16 » par celui qui vous convient.]

kubeadm init --cri-socket unix:///run/cri-dockerd.sock --pod-network-cidr=10.244.0.0/16

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]

Notez bien votre token (encadré en rouge ci-dessus) car vous en aurez besoin pour ajouter les workers par la suite.

[image: Une image contenant texte, clipart Description générée automatiquement] Commande plus avancée

Vous auriez pu aussi lancer la commande suivante pour avoir la possibilité d’ajouter d’autres control plane au cluster (ce que nous ne ferons pas dans ce TP) :
kubeadm init --pod-network-cidr=10.244.0.0/16 --cri-socket unix:///run/cri-dockerd.sock --upload-certs --control-plane-endpoint=172.16.12.150

Cela vous génèrerait une sortie similaire à celle-ci :

[image: Une image contenant texte, capture d’écran, logiciel, Police Description générée automatiquement]

Dans le premier cadre rouge vous voyez le token et certificate-key qui donne la possibilité d’ajouter d’autres control plane au cluster.

Si vous n’êtes pas en root lancez la commande suivante qui va configurer kubectl en créant un dossier .kube dans votre dossier utilisateur et en copiant le fichier de configuration admin.conf qui sera utilisé durant les appels API de la commande kubctl :
mkdir -p $HOME/.kube
cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
chown $(id -u):$(id -g) $HOME/.kube/config

Si vous utilisez le compte root lancez cette commande :
export KUBECONFIG=/etc/kubernetes/admin.conf

Vérifiez l'état du cluster :
kubectl cluster-info

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc153128486]Installer le plugin réseau Kubernetes
Faites les commandes suivantes uniquement sur le serveur maitre.

Dans ce TP, nous utiliserons le plugin réseau Flannel. Vous pouvez choisir n'importe quel autre plugin réseau pris en charge. Flannel est un moyen simple et facile de configurer une structure réseau de couche 3 conçue pour Kubernetes.

Téléchargez le manifeste d'installation.
wget https://raw.githubusercontent.com/flannel-io/flannel/master/Documentation/kube-flannel.yml

[bookmark: _Hlk121222710]Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

[image: Une image contenant texte, clipart Description générée automatiquement] Si vous avez choisi un autre réseau…

Si votre installation de Kubernetes utilise un podCIDR autre que 10.244.0.0/16 vous devez modifier le réseau pour qu'il corresponde à celui du manifeste téléchargé.
nano kube-flannel.yml
Faites la modification à cet endroit :

[image: Une image contenant texte Description générée automatiquement]

Installez ensuite Flannel en créant les ressources nécessaires.
kubectl apply -f kube-flannel.yml

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

Assurez-vous que tous les pods sont en cours d'exécution (cela peut prendre quelques secondes à quelques minutes avant qu'ils ne soient prêts) :
kubectl get pods -n kube-flannel

Quand ils seront prêts vous obtiendrez une sortie similaire à celle-ci :

[image:]

Vérifiez que le nœud maître est prêt :
kubectl get nodes -o wide

Vous obtiendrez une sortie similaire à celle-ci :

[image:]
[bookmark: _Toc153128487]Ajouter des nœuds de travail
Faites les commandes suivantes uniquement sur les workers

Lorsque le plan de contrôle (control-plane) est prêt, vous pouvez ajouter des nœuds de travail (workers) au cluster pour exécuter des charges de travail planifiées.

Sur les workers à ajouter, exécutez la commande comprenant le token mise de côté précédemment (en ajoutant le sudo si vous n’utilisez pas le compte root) et en choisissant le container runtime à utiliser (Docker) via l’option « --cri-socket unix:///run/cri-dockerd.sock ».
kubeadm join 172.16.12.150:6443 --token xxxxxx.xxxxxxxxxxxxxxxx \
 --discovery-token-ca-cert-hash sha256:xxx \
 --cri-socket unix:///run/cri-dockerd.sock

Vous obtiendrez une sortie similaire à celle-ci :

[image:]

N’oubliez pas de faire cela sur l’autre nœud de travail :

[image: Une image contenant capture d’écran, texte

Description générée automatiquement]

Exécutez la commande ci-dessous sur le plan de contrôle pour vérifier si les nœuds ont bien rejoint le cluster :
kubectl get nodes

Vous obtiendrez une sortie similaire à celle-ci :

[image: Une image contenant texte, Police, capture d’écran

Description générée automatiquement]

Si dans la sortie vous voyez vos trois nœuds en « Ready » avec le master en « control-plane », alors votre cluster est prêt pour utilisation.

Pour afficher les informations détaillées d'un nœud particulier utilisez cette commande :
kubectl describe node worker1

Vous obtiendrez une sortie de ce genre :

[image: Une image contenant capture d’écran, texte

Description générée automatiquement]
[image:]
[bookmark: _Toc120872857]
Si après un certain temps vous rencontrez cette erreur :

[image:]

Cela se produit lorsque la commande Kubectl ne trouve pas le fichier de configuration dans le dossier de l'utilisateur .kube. Pour copier le fichier de conf dans le dossier utilisateur faites ceci :
mkdir -p $HOME/.kube
sudo cp -i /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Ou si vous êtes l'utilisateur root :
export KUBECONFIG=/etc/kubernetes/admin.conf

Vous obtiendrez cette sortie :

[image:]
[bookmark: _Toc153128488][Facultatif] Activation de l’auto-completion pour les commandes Kubernetes
Vous pouvez activer l’autocomplétion pour les commandes Kubernetes (à adapter si votre utilisateur ne s’appelle pas « user ») :
echo "source <(kubectl completion bash)" >> /home/user/.bashrc
source /home/user/.bashrc

Maintenant écrivez « kubectl get » et appuyez sur la touche « Tab ». Vous obtiendrez des propositions de complétion de commande comme illustré ci-dessous :

[image:]
[bookmark: _Toc153128489]Déploiement d’un service web
[image: nginx]

Vous allez maintenant déployer le service NGINX depuis votre cluster Kubernetes.

NGINX est un logiciel (libre et open source) de serveur Web (ou HTTP) qui peut également être utilisé comme proxy inverse, équilibreur de charge, proxy de messagerie et cache HTTP. C'est le serveur web le plus utilisé au monde ou le deuxième selon les sources.
[bookmark: _Toc153128490]Les différentes façons d’exposer les applications
Les services dans Kubernetes peuvent être de différents types, chacun répondant à des besoins spécifiques en matière d'exposition d'applications. Voici une explication des principaux types de services :

[bookmark: _Toc153128491]ClusterIP
Ce type de service expose votre service sur une adresse IP interne au sein du cluster Kubernetes. Il permet aux autres services du même cluster d'accéder à votre service en utilisant cette adresse IP interne. C'est le type par défaut si aucun type n'est spécifié.

Exemple :
type: ClusterIP
[bookmark: _Toc153128492]NodePort
Ce type de service expose votre service sur un port fixe sur chaque nœud du cluster Kubernetes. Il permet d'accéder au service depuis l'extérieur du cluster en utilisant l'adresse IP du nœud et le port spécifié. Utile lors du développement et du test, mais généralement déconseillé en production pour des raisons de sécurité.

Exemple :
type: NodePort
[bookmark: _Toc153128493]LoadBalancer
Ce type de service expose votre service via un équilibreur de charge externe.
Les fournisseurs de cloud (comme AWS, GCP, Azure) provisionnent automatiquement un équilibreur de charge et redirigent le trafic vers le service.
Il permet d'exposer des services à l'extérieur du cluster tout en bénéficiant des avantages de l'équilibrage de charge.

Exemple :
type: LoadBalancer
[bookmark: _Toc153128494]ExternalName
Ce type de service permet de rediriger les requêtes vers un nom de service externe au cluster.
Il est utilisé pour accéder à des services externes sans avoir à modifier les applications internes au cluster.
Exemple :
type: ExternalName

Chaque type de service offre des avantages spécifiques en fonction des besoins de votre application et de l'infrastructure sous-jacente. Le choix du type de service dépend généralement de la manière dont vous souhaitez exposer votre application et de la plateforme sur laquelle vous exécutez votre cluster Kubernetes.

[bookmark: _Toc153128495]Déploiement du service web NGINX
Faites les commandes suivantes uniquement sur le serveur maitre.

Créez un dossier nommé « nginx » dans votre dossier utilisateur et placez-vous dedans :
mkdir -p nginx/
cd nginx/

Créez et éditez un fichier de configuration qui sera le manifeste de déploiement.
nano nginx-deployment.yaml

Copiez la configuration suivante :
apiVersion: apps/v1
kind: Deployment
metadata:
 name: nginx-deployment
 labels:
 app: nginx
spec:
 replicas: 3
 selector:
 matchLabels:
 app: nginx
 template:
 metadata:
 labels:
 app: nginx
 spec:
 containers:
 - name: nginx
 image: nginx
 ports:
 - containerPort: 80

Ce fichier de configuration décrit un déploiement Kubernetes qui crée trois répliques d'une application nginx, chacune fonctionnant sur le port 80. Les répliques sont sélectionnées en fonction du libellé "app: nginx".

apiVersion : Cela indique la version de l'API Kubernetes utilisée. Ici, nous utilisons la version apps/v1.

kind : Il spécifie le type de ressource que nous créons, dans ce cas, un "Deployment". Un déploiement gère le déploiement d'applications dans Kubernetes.

metadata : Il contient des métadonnées pour le déploiement, comme le nom et les libellés.
· name : Le nom du déploiement, ici "nginx-deployment".
· labels : Des libellés (tags) pour identifier et organiser le déploiement, ici "app: nginx".

spec : C'est la section principale qui décrit les détails du déploiement.
· replicas : Le nombre de répliques (instances) de l'application que nous voulons. Dans ce cas, nous voulons 3 répliques de l'application nginx.
· selector : Spécifie comment les répliques sont sélectionnées. Dans ce cas, les répliques sont sélectionnées en fonction des libellés, et elles doivent avoir le libellé "app: nginx".
· template : C'est le modèle utilisé pour créer de nouvelles répliques.
· metadata : Les métadonnées pour les répliques créées à partir de ce modèle, avec le libellé "app: nginx".
· spec : Les spécifications pour les conteneurs à déployer dans les répliques.
· containers : La liste des conteneurs à déployer.
· name : Le nom du conteneur, ici "nginx".
· image : Indique à Kubernetes d'utiliser la dernière version disponible de l'image Nginx lors du déploiement. Lorsque vous ne spécifiez pas de version, Kubernetes récupère automatiquement la dernière version disponible du registre des images Docker que vous utilisez, pour spécifier une version spécifique vous pouvez le faire de cette manière : "nginx:1.14.0".
· ports : Les ports à exposer sur le conteneur, ici "80".

[image:]

Sauvegardez le fichier et quittez l’éditeur puis créez le déploiement de la ressource à partir du fichier que vous venez de créer (l’option -f pour filename sert à indiquer le nom du fichier à utiliser pour créer la ressource) :
kubectl create -f nginx-deployment.yaml

La sortie devrait être similaire à celle-ci :

[image:]

Vérifiez le déploiement avec :
kubectl get deployments

Après quelques secondes, le temps que le déploiement se fasse, la sortie devrait être similaire à celle-ci :

[image:]

Vous pouvez avoir une description plus détaillée avec :
kubectl describe deployment nginx-deployment

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez également vérifier les pods créés :
kubectl get pods

[image:]

Vous pouvez également avoir une description détaillée d’un pod avec :
kubectl describe pods nginx-deployment-979fbbc48-7prn8

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]
[image: Une image contenant texte

Description générée automatiquement]

Maintenant vous pouvez déployer le service nginx, pour cela créez et éditez un autre fichier de configuration
nano nginx-service.yaml

Copiez la configuration suivante :
apiVersion: v1
kind: Service
metadata:
 name: nginx-service
 labels:
 run: nginx-service
spec:
 type: NodePort
 ports:
 - port: 80
 protocol: TCP
 selector:
 app: nginx

Ce fichier de configuration crée un service appelé "nginx-service" qui expose le port 80 en tant que NodePort, redirigeant le trafic vers les pods du déploiement qui ont le libellé "app: nginx". Ce service permet ainsi d'accéder à l'application Nginx déployée sur ces pods depuis l'extérieur du cluster Kubernetes.

apiVersion : Il indique la version de l'API Kubernetes utilisée, dans ce cas, v1 pour la version 1 de l'API.

kind : Il spécifie le type de ressource que nous créons, ici un "Service". Un service dans Kubernetes permet de rendre une application accessible à d'autres applications, que ce soit à l'intérieur ou à l'extérieur du cluster.

metadata : Cette section contient des métadonnées pour le service, comme le nom et les libellés.
· name : Le nom du service, ici "nginx-service".
· labels : Des libellés (tags) associés au service, ici "run: nginx-service".

spec : C'est la section principale qui décrit les spécifications du service.
· type : Cela spécifie le type de service. Ici, il est défini sur "NodePort". Cela signifie que le service sera accessible via un port ouvert sur chaque nœud du cluster Kubernetes.
· ports : Les ports que le service expose.
· port : Le port sur lequel le service sera accessible, ici "80".
· protocol : Le protocole utilisé, ici "TCP".
· selector : C'est la façon dont le service trouve les pods auxquels il doit rediriger le trafic.
· app: nginx : Cela signifie que le service redirigera le trafic vers tous les pods qui ont le libellé "app: nginx".

[image: Une image contenant texte

Description générée automatiquement]

Sauvegardez, quittez et créez le service :
kubectl create -f nginx-service.yaml

La sortie devrait être similaire à celle-ci :

[image:]

Vous pouvez voir la liste des services avec :
kubectl get service

La sortie devrait être similaire à celle-ci :

[image:]

Et vous pouvez avoir une description du service avec :
kubectl describe service nginx-service

La sortie devrait être similaire à celle-ci :

[image: Une image contenant texte

Description générée automatiquement]

Vous pouvez voir que le service est en « NodePort » sur le port 30206, donc vous pouvez accéder au service via les adresses IP de vos trois serveurs sur le port « 30206 » avec votre navigateur internet :

Vous constatez que le service NGINX est actif sur le nœud de travail « worker1 » :

[image: Une image contenant texte

Description générée automatiquement]

Ainsi que sur le nœud de travail « worker2 » :

[image: Une image contenant texte

Description générée automatiquement]

Ainsi que sur le nœud maitre « master » :

[image: Une image contenant texte

Description générée automatiquement]

Notre service NGINX est bien déployé sur tous les nœuds du cluster.
[bookmark: _Toc120872858][bookmark: _Toc153128496]Lien avec une interface graphique de gestion de conteneurs
[image: Les couches logicielles utilisées [LinuQ: Logiciels libres à Québec]]

Portainer est une interface web qui permet de gérer les opérations courantes sur ses conteneurs de manière graphique. Portainer s’installe comme un conteneur docker pour simplifier son déploiement. Portainer permet de gérer une bonne partie des éléments de docker : conteneurs, images, volumes, réseaux, utilisateurs, etc. Il peut aussi contrôler un autre serveur Docker à distance grâce à un agent et permet de déployer des applications dans des conteneurs en quelques clics.

Dans le cadre de la rédaction de ce TP, nous n’avons pas réussi à déployer Portainer via le cluster Kubernetes en utilisant la commande « kubectl » malgré avoir rempli les prérequis[footnoteRef:7] et suivi la documentation officielle[footnoteRef:8]. [7: Si vous voulez essayer voici des liens utiles : Storage Class : https://kubernetes.io/docs/concepts/storage/storage-classes/#local ; kube-state-metrics : https://github.com/kubernetes/kube-state-metrics/releases] [8: Voir : https://docs.portainer.io/start/install-ce/server/kubernetes/baremetal]

Nous avons donc créé un conteneur Docker pour Portainer directement sur le master en utilisant la commande « docker run » et non pas « kubectl apply » :
[bookmark: _Toc153128497]Création d’un conteneur Portainer
Créez un conteneur Docker sur le nœud master pour Portainer ainsi que son volume persistant en associant les ports 8000 et 9443 du serveur aux ports 8000 et 9443 du conteneur:
docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

Vous obtiendrez cette sortie :

[image: Une image contenant texte, capture d’écran, logiciel, Logiciel multimédia

Description générée automatiquement]

Vérifiez l’installation avec cette commande :
docker ps

La sortie devrait être similaire à celle-ci :

[image:]

Vous pouvez ensuite vous connecter sur l’interface web de Portainer via :

https://172.16.12.150:9443

Lors de la première connexion, vous êtes invités à créer un utilisateur administrateur, entrez votre mot de passe (par exemple « user » et son mot de passe « popopopopopo ») et cliquez sur le bouton « Create user ».
[bookmark: _Toc153128498]Ajout de l’environnement Kubernetes à Portainer
Dans le menu « Settings » cliquez sur « Environments » puis sur le bouton « Add environment » :
[image: Une image contenant texte, Police, logo, Bleu électrique

Description générée automatiquement]

Cliquez sur les boutons « Kubernetes » et « Start Wizard » en bas à gauche :

[image: Une image contenant texte, logiciel, Police, Icône d’ordinateur

Description générée automatiquement]

Restez sur « Agent », choisissez « Kubernetes via node port » et copiez la commande :

[image: Une image contenant texte, capture d’écran, logiciel, Page web

Description générée automatiquement]

Retournez sur le nœud master et exécutez la commande copiée précédemment. La sortie devrait être similaire à celle-ci :

[image: Text

Description automatically generated]

Exécutez la commande suivante pour vérifier l’installation de l’agent et pour savoir sur quel nœud de travail il a été déployé :

kubectl get pods --namespace=portainer -o wide

La sortie devrait être similaire à celle-ci :

[image:]
[image:]

Ici vous voyez qu’il est déployé sur « worker2 ».

Retournez sur l’interface de Portainer, entrez un nom pour votre cluster et mettez l’adresse IP du « worker2 » sur lequel l’agent a été déployé ainsi que le port 30778 car vous avez choisi un déploiement via NodePort. Puis cliquez sur le bouton « Connect » :

[image:]

Les informations ci-dessous devraient apparaitre en haut à droite de votre écran :

[image: Une image contenant texte, capture d’écran, Police, logo

Description générée automatiquement] [image: Une image contenant texte, capture d’écran, Police

Description générée automatiquement]

Quand vous retournerez dans Home vous verrez que le cluster Kubernetes a été ajouté à la liste des environnements :

[image: Une image contenant texte, capture d’écran, logiciel, Icône d’ordinateur

Description générée automatiquement]

La vue de la page « Home » :

[image: Une image contenant texte, logiciel, Icône d’ordinateur, Page web

Description générée automatiquement]
	

	Création d’un cluster Kubernetes utilisant Docker, déploiement d’un service NGINX et lien avec une instance Portainer
	Page 4 sur 4

	
	© EASYFORMER 2022 - Tous droits réservés
	Date : 10/12/23

image2.png
kubernetes

image3.png
Kubernetes Master

Worker 1

Pod 1

b

Kubectl / APIs / Dashboard
—_— etcd pag

-

Kube
Api-server

Scheduler

Pod 2

image4.png
%\fdocker

image5.png
Name Type External Connection Host Connection DHCP Subnet Address A NAT Settings
VMnet0 Custom - - - 192.168.193.0
VMnet1 Host-only - Connected Enabled 10.10.10.0 Network: vmnet8
- Connected Enabled 192.168.2.0 SubnetIP: 172.16.12.0
- Connected - 192.168.75.0
VMnets _ NAT NAT Connected Enabled 172.16.12.0 Elopsticsti2oo2o0255)
HA_BACK... Custom - - Enabled 192.168.13.0 Gateway IP: | 172 . 16 . 12 254 I
HA_MAL.. Custom - - Enabled 192.168.14.0 Port Forwardim
DMZ_PU... Host-only - Connected Enabled 192.168.15.0 9
DMZ_PRI... Host-only - Connected Enabled 172.16.0.0 Host Port Type Virtual Machine IP Address Description
WIFI_17 Host-only - Connected Enabled 172.17.0.0 ©
Add Network... Remove Network Rename Network...
VMnet Information
Bridged (connect VMs directly to the external network) Add... Remove Properties
Aut tic Settings...
utomatic Settings. Advanced
NAT (shared host's IP address with VMs) NAT Settings... Allow active FTP
Host-only (connect VMs internally in a private network) Sl ey @ iEarEL) Ul i iz
UDP timeout (in seconds): | 30 =
Connect a host virtual adapter to this network
Host virtual adapter name: VMware Network Adapter VMnet8 Config port: 0 -
Use local DHCP service to distribute IP address to VMs DHCP Settings... Enable IPv6
IPV6 prefix: ‘ fd15:4ba5:5a2b:1008::/64
SubnetIP: | 172 . 16 . 12 . Subnet mask: | 255 . 255 .255 . 0
DNS Settings... NetBIOS Settings...
/\ Administrator privileges are required to modify the network configuration. Q}Change Settings
Restore Defaults Import... Export... OK Cancel Apply Help OK Help

image6.png
New Virtual Machine Wizard

Ready to Create Virtual Machine
Click Finish to create the virtual machine and start installing Ubuntu 64-bit.

The virtual machine will be created with the following settings:

Name: ubuntu-kubernetes-master
Location: D:\VM\VMware\ubuntu-kubernetes-master
Version: Workstation 16.2.x

Operating System: Ubuntu 64-bit

Hard Disk: 20 GB, Split

Memory: 2048 MB

Network Adapter: Bridged (Automatic)

Other Devices: 2 CPU cores, CD/DVD, USB Controller, Printer, Sound Card

Customize Hardware...

Power on this virtual machine after creation

< Back Finish Cancel

image7.png
Edit ens33 IPv4 configuration

IPv4 Method: [Manuel vl

Mastue de sous-réseau:

Adresse

Passerelle :

Serveurs DNS

fdresses IP, spanées par des virgules

Domaines de recherche :
Noms de domaines, séparés par des virgules

[Sauvegarder
[Annuler 1

image8.png
You can choose to install the OpenSSH server package to enable secure remote access to your server.
[Installer le serveur OpensSH
Inporter une identité SSH: [Non vl
Vous pouvez importer vos clés SSH depuis GitHub ou Launchpad.

Importer le nom d'utilisateur :

[¥] Autoriser 1'authentification par mot de passe via SSH

image9.png
These are popular snaps in server environments. Select or deselect with SPACE, press ENTER to see more details of the package
publisher and versions available.

[1 microkes canonical Kubernetes for workstations and appliances 3
[1 nextcloud nextcloud Nextcloud Server - A safe home for all your data 3
[1 uekan xet? The open-source kanban 3
[] kata-containers katacontainers Build lightueight WMs that seamlessly plug into the containers ecosystem 3
[] docker canonical Docker container runtime 3
[] canonical-livepatch canonical Canonical Livepatch Client 3
[1 rocketchat-server rocketchat Rocket.Chat server 3
[] mosquitto mosguitto Eclipse Mosquitto MQTT broker I3
[] etcd canonical Resilient key-value store by CoredS 3
[1 pouershell microsoft-powershells Pouershell for every system! 3
[] stress-ng cking-kernel-tools tool to load and stress a computer 3
[] sabnzbd saf ihre SABnzbd 3
[1 wormhole snapcrafters get things from one computer to another, safely I3
[] aus-cli aus. Universal Command Line Interface for Amazon Heb Services 3
[] google-cloud-sok google-cloud-sdk Google Cloud SDK 3
[1/slcli softlayer Python based SoftLayer AP Tool. 3
[1/doctl digitalocean The official Digitalocean command line interface 3
[1 conjure-up canonical Package runtime for conjure-up spells 3
[] posteresqlio cmd Fostgresol is a powerful, open source ohject-relational database sustem. 3
[1 heraku heroku CLI client for Heroku 3
[] keepalived keepalived-project/ High availability VRRP/BFD and load-balancing for Linux 3
[1 prometheus canonical The Prometheus monitoring system and time series database 3
[juju canonical Juju - a model-driven operator lifecycle manager for K8s and machines 3

image10.png
5 01/12/2022 @ 11:47.15 (= /home/mobaxterm ssh user@172.16.12.150
Warning: Permanently added '172.16.12.150"' (ECDSA) to the list of known hosts.
user@172.16.12.150's password:

Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 5.15.0-56-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

System information as of jeu. 01 déc. 2022 10:47:39 UTC

System load: 1.115234375 Processes: 243
Usage of /: 46.1% of 9.75GB Users logged 1in: [¢]
Memory usage: 17% IPv4 address for ens33: 172.16.12.150

Swap usage: 0%
0 updates can be applied immediately.

Last login: Thu Dec 1 10:23:21 2022
/usr/bin/xauth: file /home/user/.Xauthority does not exist
user@master:~$ fi

image11.png
Kubernetes Master

Controller Manager
Scheduler

&

Developer
/ Operator

AP Server

Kube-Proxy

Kubernetes Node Kubernetes Node

image12.png
user@master:~$ sudo apt install curl apt-transport-https -y

curl -fsSL https://packages.cloud.google.com/apt/doc/apt-key.gpg|sudo gpg --dearmor -o /etc/apt/trusted.gpg.d/k8s.gpg

curl -s https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -
echo "deb https://apt.kubernetes.io/ kubernetes-xenial main" | sudo tee /etc/apt/sources.list.d/kubernetes.list

[sudo] password for user:

Lecture des listes de paquets... Fatit
Construction de 1'arbre des dépendances... Fait
Lecture des informations d'état... Fait

curl est déja la version la plus récente (7.81.0-lubuntul.6).

curl passé en « installé manuellement ».

Les paquets suivants ont été installés automatiquement et ne sont plus nécessaires :
libflashroml libftdil-2

Veuillez utiliser « sudo apt autoremove » pour les supprimer.

Les NOUVEAUX paquets suivants seront installés :
apt-transport-https

0 mis a jour, 1 nouvellement installés, 0 a enlever et 3 non mis a jour.

Il est nécessaire de prendre 1 506 o dans les archives.

Aprés cette opération, 169 ko d'espace disque supplémentaires seront utilisés.

Réception de :1 http://fr.archive.ubuntu.com/ubuntu jammy-updates/universe amd64 apt-transport-https all 2.4.8 [1 506 B]

1 506 o réceptionnés en 5s (296 o/s)

Sélection du paquet apt-transport-https précédemment désélectionné.

(Lecture de la base de données... 73756 fichiers et répertoires déja installés.)

Préparation du dépaquetage de .../apt-transport-https_2.4.8 all.deb ...

Dépaquetage de apt-transport-https (2.4.8) ...

Paramétrage de apt-transport-https (2.4.8) ...

Scanning processes...

Scanning linux 1images...

Running kernel seems to be up-to-date.
No services need to be restarted.
No containers need to be restarted.

No user sessions are running outdated binaries.

image13.png
user@master:~$ sudo apt update
sudo apt install wget curl vim git kubelet kubeadm kubectl -y
sudo apt-mark hold kubelet kubeadm kubectl

Atteint :1 http://fr.archive.ubuntu.com/ubuntu jammy InRelease

Atteint :2 http://fr.archive.ubuntu.com/ubuntu jammy-updates InRelease

Atteint :3 http://fr.archive.ubuntu.com/ubuntu jammy-backports InRelease

Atteint :4 http://fr.archive.ubuntu.com/ubuntu jammy-security InRelease

Réception de :5 https://packages.cloud.google.com/apt kubernetes-xenial InRelease [9 383 B]

Réception de :6 https://packages.cloud.google.com/apt kubernetes-xenial/main amd64 Packages [61,4 kB]
70,8 ko réceptionnés en 1s (64,1 ko/s)

Lecture des listes de paquets... Fatit

Construction de 1'arbre des dépendances... Fait

Lecture des informations d'état... Fait

3 paquets peuvent étre mis a jour. Exécutez « apt list --upgradable » pour les voir.
Lecture des listes de paquets... Fatit

Construction de 1'arbre des dépendances... Fait

Lecture des informations d'état... Fait

wget est déja la version la plus récente (1.21.2-2ubuntul).
wget passé en « installé manuellement ».
curl est déja la version la plus récente (7.81.0-lubuntul.6).
git est déja la version la plus récente (1:2.34.1-1ubuntul.5).
git passé en « installé manuellement ».
vim est déja la version la plus récente (2:8.2.3995-1ubuntu2.1).
vim passé en « installé manuellement ».
Les paquets suivants ont été installés automatiquement et ne sont plus nécessaires :
libflashroml libftdil-2
Veuillez utiliser « sudo apt autoremove » pour les supprimer.
Les paquets supplémentaires suivants seront installés :
conntrack cri-tools ebtables kubernetes-cni socat
Les NOUVEAUX paquets suivants seront installés :
conntrack cri-tools ebtables kubeadm kubectl kubelet kubernetes-cni socat
0 mis a jour, 8 nouvellement installés, 0 a enlever et 3 non mis a jour.
Il est nécessaire de prendre 81,6 Mo dans les archives.
Aprés cette opération, 327 Mo d'espace disque supplémentaires seront utilisés.
Réception de :1 http://fr.archive.ubuntu.com/ubuntu jammy/main amd64 conntrack amd64 1:1.4.6-2build2 [33,5 kB]

image14.png
root@master:~# kubectl version --output=yaml
clientVersion:
buildDate: "2022-11-09T13:36:36Z"
compiler: gc
gitCommit: 872a965c6c6526caa949f0c6ac028ef7aff3fb78
gitTreeState: clean
gitVersion: v1.25.4
goVersion: gol.19.3
major: "1"
minor: "25"
platform: linux/amd64
kustomizeVersion: v4.5.7

image15.png
root@master:~# kubeadm version
kubeadm version: &version.Info{Major:"1", Minor:"25", GitVersion:"v1.25.4", GitCommit:"872a965c6c6526caa949f0cbac028ef7aff3fb78",
GitTreeState:"clean", Buil(_iDate:"2022—11—09T13:35:062", GoVersion:"gol.19.3", Compiler:"gc", Platform:"linux/amd64"}

image16.png
root@worker2:/home/user# free -h

total used free shared buff/cache available
Mem: 1,9G1 304M1 773M1 1,0M1 863M1 1,4G1
Swap: 1,861 0B 1,8G1

image17.png
root@master:~# free -h
total used free shared buff/cache available
Mem: 1,9G1 316M1 1,1G1 1,0M1 467M1 1,4G1

Swa 0B 0B 0B

image18.png
GNU nano 6.2 /etc/fstab *
@ /etc/fstab: static file system information.

Use 'blkid' to print the universally unique identifier for a
device; this may be used with UUID= as a more robust way to name devices
that works even if disks are added and removed. See fstab(5).

<file system> <mount point> <type> <options> <dump> <pass>

/ was on /dev/ubuntu-vg/ubuntu-1lv during curtin installation
/dev/disk/by-1d/dm-uuid-LVM-8VhbRgetyuDtEeMgpGzmShZcLMhQKnPpYr8dS6S8mDcce068f9Xt4MRuXjQCkVx4 / ext4 defaults 0 1
/boot was on /dev/sda2 during curtin installation

/dev/disk/by-uuid/fae6d1fc-6659-49d6-9090-177e9300bc8d /boot ext4 defaults 0 1

/swap.img none swap sw [¢] 0]

HHIFEHHHR

image19.png
root@master:~# mount -a

free -h
total used free shared buff/cache available

Mem: 1,961 309M1 1,161 1,0M1 469M1 1,4G1
Swap: 0B 0B 0B

image20.png

image21.png

image22.png
root@worker2:/home/user# VER=$(curl -s https://apil.gtithub.com/repos/Mirantis/cri-dockerd/releases/latest|grep tag_name | cut -

d'"" -f 4|sed 's/v//g")
echo $VER
0.2.6 D

image23.png
root@master:/home/user# wget https://github.com/Mirantis/cri-dockerd/releases/download/v${VER}/cri-dockerd-${VER}.amd64.tgz
tar xvf cri-dockerd-${VER}.amd64. tgz

--2022-12-02 08:41:52-- https: hub. Mirantis/cri-dockerd/releases/download/v0.2.6/cri-dockerd-0.2.6.amd64.tgz
Resolving github.com (github.com)... 140.82.121.3

Connecting to github.com (github. com)|140 82.121.3|:443... connected.

HTTP request sent, awaltlng response... 302 Found

Location: H bj .

r_i 0_
me%3Dcri-dockerd- 0 2.6.amd64. tgz&response content type—appllcatlon%ZFoctet stream
Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.109.133, 185.199.111.133, 185.199.1160.133,

Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.109.133|:443... connected.
HTTP request sent, awaiting response... 200 0K

Length: 23034469 (22M) [application/octet-stream]

Saving to: ‘cri-dockerd-0.2.6.amd64.tgz’

cri-dockerd-0.2.6.amd64.tgz 100%[>] 21,97M 81,9MB/s in 0,3s

2022-12-02 08:41:53 (81,9 MB/s) - ‘cri-dockerd-0.2.6.amd64.tgz’ saved [23034469/23034469]

cri-dockerd/
cri-dockerd/cri-dockerd

image24.png
mv cri- docker socket cri-docker.service /etc/systemd/system/

sed -1 -e 's,/usr/bin/cri-dockerd,/usr/local/bin/cri-dockerd," /etc/systemd/system/cri-docker.service

--2022-12-02 08:51:06-- https: M1

Resolving raw.githubusercontent.com (raw glthubusercontent com)... 185.199.109.133, 185.199.168.133, 185.199.111. 133
Connecting to raw.githubusercontent.com (raw.githubusercontent. com)|185.199.109.133|:443... connected.

HTTP request sent, awaiting response... 200 0K

Length: 1319 (1,3K) [text/plain]

Saving to: ‘cri-docker.service’

cri-docker.service 100%[| 1,29K --.-KB/s in 0s

2022-12-02 08:51:06 (52,4 MB/s) - ‘cri-docker.service’ saved [1319/1319]

--2022-12-02 08:51:06-- https: i1thubusercontent.com/Mirantis/cri-dockerd/master/packaging/systemd/cri-docker.socket
Resolving raw.githubusercontent.com (raw githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.111.133,
Connecting to raw.githubusercontent.com (raw.githubusercontent. com)|185 199.108. 133| 443. .. connected

HTTP request sent, awaiting response... 200 0K

Length: 204 [text/plain]

Saving to: ‘cri-docker.socket’

cri-docker.socket 100%[| 204 --.-KB/s in 0s

2022-12-02 08:51:07 (6,44 MB/s) - ‘cri-docker.socket’ saved [204/204]

image25.png
root@master:~# systemctl status cri-docker.socket
e cri-docker.socket - CRI Docker Socket for the API

Loaded: loaded (/etc/systemd/system/cri-docker.socket; enabled; vendor preset: enabled)

Active: active (listening) since Fri 2022-12-02 08:53:02 UTC; 46s ago

Triggers: @ cri-docker.service

Listen: /run/cri-dockerd.sock (Stream)

Tasks: 0 (limit: 2196)

Memory: OB

CPU: 1ms
CGroup: /system.slice/cri-docker.socket

déc. 02 08:53:02 master systemd[1]: Starting CRI Docker Socket for the API...
déc. 02 08:53:02 master systemd[1]: Listening on CRI Docker Socket for the API.

image26.png
Control Plane

image27.png
Control Plane

€ rtroller

€ lowd
Controll er
Mw\oﬂer

image28.png
root@master:~# lsmod | grép br_ﬁeifilter
br_netfilter 32768 0
bridge B 307200 1 br netfilter

image29.png
root@master:/home/user# kubeadm config images pull --cri-socket unix:///var/run/c
ri-dockerd.sock

[config/images] Pulled registry.k8s.1io/kube-apiserver:v1.28.4

[config/images] Pulled registry.k8s.io/kube-controller-manager:v1.28.4
[config/images] Pulled registry.k8s.1io/kube-scheduler:v1.28.4

[config/images] Pulled registry.k8s.io/kube-proxy:v1.28.4

[config/images] Pulled registry.k8s.1io/pause:3.9

[config/images] Pulled registry.k8s.1io/etcd:3.5.9-0

[config/images] Pulled registry.k8s.1io/coredns/coredns:v1.10.1
root@master:/home/user# I

image30.png
EYXICEReY: : ~# kubeadm init --cri-socket /run/cri-dockerd.sock --pod-network-cidr=10.244.0.0/16
W1202 09:21:13.792729 4436 1initconfiguration.go:119] Usage of CRI endpoints without URL scheme 1is deprecated and can cause
kubelet errors in the future. Automatically prepending scheme "unix" to the "criSocket" with value "/run/cri-dockerd.sock". Pl
ease update your configuration!
[init] Using Kubernetes version: v1.25.4
[preflight] Running pre-flight checks
[WARNING SystemVerification]: missing optional cgroups: blkio
[preflight] Pulling images required for setting up a Kubernetes cluster
[preflight] This might take a minute or two, depending on the speed of your internet connection
[preflight] You can also perform this action in beforehand using 'kubeadm config images pull'
[certs] Using certificateDir folder "/etc/kubernetes/pki"
[certs] Generating "ca" certificate and key
[certs] Generating "apiserver" certificate and key
[certs] apiserver serving cert is signed for DNS names [kubernetes kubernetes.default kubernetes.default.svc kubernetes.defaul
t.svc.cluster.local master] and IPs [10.96.0.1 172.16.12.150]
[certs] Generating "apiserver-kubelet-client" certificate and key
[certs] Generating "front-proxy-ca" certificate and key
[certs] Generating "front-proxy-client" certificate and key
[certs] Generating "etcd/ca" certificate and key
[certs] Generating "etcd/server" certificate and key
[certs] etcd/server serving cert is signed for DNS names [localhost master] and IPs [172.16.12.150 127.0.0.1 ::1]
[certs] Generating "etcd/peer" certificate and key
[certs] etcd/peer serving cert is signed for DNS names [localhost master] and IPs [172.16.12.150 127.0.0.1 ::1]
[certs] Generating "etcd/healthcheck-client" certificate and key
[certs] Generating "apiserver-etcd-client" certificate and key
[certs] Generating "sa" key and public key
[kubeconfig] Using kubeconfig folder "/etc/kubernetes"
[kubeconfig] Writing "admin.conf" kubeconfig file
[kubeconfig] Writing "kubelet.conf" kubeconfig file
[kubeconfig] Writing "controller-manager.conf" kubeconfig file
[kubeconfig] Writing "scheduler.conf" kubeconfig file
[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"
[kubelet-start] Starting the kubelet
[control-plane] Using manifest folder "/etc/kubernetes/manifests"

image31.png
[control-plane] Creating static Pod manifest for "kube-apiserver"

[control-plane] Creating static Pod manifest for "kube-controller-manager"

[control-plane] Creating static Pod manifest for "kube-scheduler"

[etcd] Creating static Pod manifest for local etcd in "/etc/kubernetes/manifests"

[wailt-control-plane] Waiting for the kubelet to boot up the control plane as static Pods from directory "/etc/kubernetes/manif
ests". This can take up to 4mOs

[apiclient] All control plane components are healthy after 13.011486 seconds

[upload-config] Storing the configuration used in ConfigMap "kubeadm-config" in the "kube-system" Namespace

[kubelet] Creating a ConfigMap "kubelet-config" in namespace kube-system with the configuration for the kubelets in the cluste
B

[upload-certs] Skipping phase. Please see --upload-certs

[mark-control-plane] Marking the node master as control-plane by adding the labels: [node-role.kubernetes.io/control-plane nod
e.kubernetes. i0/exclude-from-external-load-balancers]

[mark-control-plane] Marking the node master as control-plane by adding the taints [node-role.kubernetes.io/control-plane:NoSc
hedule]

[bootstrap-token] Using token: qvhsg6.9s15fwpgu5Snz0xw5

[bootstrap-token] Configuring bootstrap tokens, cluster-info ConfigMap, RBAC Roles

[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to get nodes

[bootstrap-token] Configured RBAC rules to allow Node Bootstrap tokens to post CSRs in order for nodes to get long term certif
icate credentials

[bootstrap-token] Configured RBAC rules to allow the csrapprover controller automatically approve CSRs from a Node Bootstrap T
oken

[bootstrap-token] Configured RBAC rules to allow certificate rotation for all node client certificates in the cluster
[bootstrap-token] Creating the "cluster-info" ConfigMap in the "kube-public" namespace

[kubelet-finalize] Updating "/etc/kubernetes/kubelet.conf" to point to a rotatable kubelet client certificate and key

[addons] Applied essential addon: CoreDNS

[addons] Applied essential addon: kube-proxy

Your Kubernetes control-plane has initialized successfully!
To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube

sudo cp -1 /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

image32.png
Alternatively, if you are the root user, you can run:
export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.

Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes. io/docs/concepts/cluster-administration/addons/

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 172.16.12.150:6443 --token qvhsg6.9s15fwpgu5nzOxw5 \
--discovery-token-ca-cert-hash sha256:a4bb16327171557a647476198597d504dd99ded2fa53031d9cd6849ac91a9bba

image33.png
Your Kubernetes control-plane has initialized successfully!

To start using your cluster, you need to run the following as a regular user:
mkdir -p $HOME/.kube
sudo cp -1 /etc/kubernetes/admin.conf $HOME/.kube/config
sudo chown $(id -u):$(id -g) $HOME/.kube/config

Alternatively, if you are the root user, you can run:

export KUBECONFIG=/etc/kubernetes/admin.conf

You should now deploy a pod network to the cluster.
Run "kubectl apply -f [podnetwork].yaml" with one of the options listed at:
https://kubernetes. io/docs/concepts/cluster-administration/addons/

You can now join any number of the control-plane node running the following command on each as root:

kubeadm join 172.16.12.150:6443 --token lwpn81.hgci32s2vfkq7eqc \
--discovery-token-ca-cert-hash sha256:e5c717155be7fbc924368a7b942fde0e86433964da0726c83ed4efcc94d3089f3 \
--control-plane --certificate-key 4381b6bb4feaal399a4d64fe0c157ff2a91c9205d6016841fefedcf24eb646d5

Please note that the certificate-key gives access to cluster sensitive data, keep it secret!
As a safeguard, uploaded-certs will be deleted in two hours; If necessary, you can use
"kubeadm init phase upload-certs --upload-certs" to reload certs afterward.

Then you can join any number of worker nodes by running the following on each as root:

kubeadm join 172.16.12.150:6443 --token lwpn81.hgci132s2vfkq7eqc \

--discovery-token-ca-cert-hash sha256:e5c717155be7fbc924368a7b942fde0e86433964da0726c83edefcc94d3089f3
root@master:/home/user# |

image34.png
root@master§~# kubectl cluster-1info
Kubernetes control plane is running at https://172.16.12.150:6443
CoreDNS 1is running at https://172.16.12.150:6443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

image35.png
root@master:~# wget h
-2022-12-02 10:15:29--

ith nne nn e n K nne
Resolving raw. glthubusercontent con'(faw.githubusercontent. con)... 185.100.111.133, 185.199.116.133, 185.190.109133,
Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.111.133] :443.

. connected
HTTP request sent, awaiting response... 200 OK
Length: 4591 (4,5K) [text/plain]
Saving to: ‘kube-flannel.yml’
kube-flannel.yml 100%[>] 4,48 --.-KB/S 1in Os

2022-12-02 10:15:29 (22,2 MB/s) - ‘kube-flannel.yml’ saved [4591/4591]

image36.png
net-conf.json: |

"Network": "10.244.0.0/16",
"Backend": {
"Type": "vxlan"

image37.png
root@master:~# kubectl apply -f kube-flannel.yml
namespace/kube-flannel created
clusterrole.rbac.authorization.k8s.io/flannel created
clusterrolebinding.rbac.authorization.k8s.io/flannel created
serviceaccount/flannel created

configmap/kube-flannel-cfg created
daemonset.apps/kube-flannel-ds created

image38.png
root@master:~# kubectl get pods -n kube-flannel
NAME READY STATUS RESTARTS AGE
kube-flannel-ds-cccns 1/1 Running 0 3m21s

image39.png
root@master:/home/user# kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP 0S-IMAGE KERNEL -VERSION CONTAINER-RUNTIME
172.16.12.150 <none> Ubuntu 22.04.3 LTS 5.15.0-56-generic docker://24.0.7

master Ready control-plane 5m3s v1.28.2
root@master:/home/user# I

image40.png
root@workerl:/home/user# kubeadm join 172.16.12.150:6443 --token vrqujb.lrywjofxs2ah0irt --discovery-token-ca-cert-hash sha256:c79abf36554d83181f576e06205a56349a8d3628422ae826e

6d33322a970d97e --cri-socket unix:///run/cri-dockerd.sock

[preflight] Running pre-flight checks

[preflight] Reading configuration from the cluster...

[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"

[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet

[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:

* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

root@workerl:/home/user# [l

image41.png
root@worker2:/home/user# kubeadm join 172.16.12.150:6443 --token vrqujb.lrywjofxs2ahOirt --discovery-token-ca-cert-hash sha256:c79abf36554d83181f576e06205a56349a8d3628422ae826e

6d33322a970d97e --cri-socket unix:///run/cri-dockerd.sock

[preflight] Running pre-flight checks

[preflight] Reading configuration from the cluster...

[preflight] FYI: You can look at this config file with 'kubectl -n kube-system get cm kubeadm-config -o yaml'
[kubelet-start] Writing kubelet configuration to file "/var/lib/kubelet/config.yaml"

[kubelet-start] Writing kubelet environment file with flags to file "/var/lib/kubelet/kubeadm-flags.env"
[kubelet-start] Starting the kubelet

[kubelet-start] Waiting for the kubelet to perform the TLS Bootstrap...

This node has joined the cluster:

* Certificate signing request was sent to apiserver and a response was received.
* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join the cluster.

root@worker2:/home/user# [l

image42.png
root@master:/home/user# kubectl get nodes

STATUS
Ready
Ready
NotReady

ROLES
control-plane
<none>

<none>

AGE
106m
2m40s
44s

VERSION
v1.28.2
v1.28.2
v1.28.2

image43.png
root@master:/home/user# kubectl describe node workeril

Name : worker1l
Roles: <none>
Labels: beta.kubernetes. io/arch=amd64

beta.kubernetes. i0/0s=11nux
kubernetes. io/arch=amd64
kubernetes. io/hostname=worker1
kubernetes. io/0s=11nux
Annotations: flannel.alpha.coreos.com/backend-data: {"VNI":1,"VtepMAC":"02:28:22:82:84:6f"}
flannel.alpha.coreos.com/backend-type: vxlan
flannel.alpha.coreos.com/kube-subnet-manager: true
flannel.alpha.coreos.com/public-ip: 172.16.12.151
kubeadm.alpha.kubernetes.io/cri-socket: unix:///run/cri-dockerd.sock
node.alpha.kubernetes. io/ttl: 0
volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Mon, 04 Dec 2023 22:52:51 +0000

Taints: <none>
Unschedulable: false
Lease:
HolderIdentity: workerl
AcquireTime: <unset>
RenewTime: Mon, 04 Dec 2023 22:58:48 +0000
Conditions:
Type Status LastHeartbeatTime LastTransitionTime Reason Message
NetworkUnavailable False Mon, 04 Dec 2023 22:54:07 +0000 Mon, 04 Dec 2023 22:54:07 +0000 FlannelIsUp Flannel is running on this node
MemoryPressure False Mon, 04 Dec 2023 22:54:23 +0000 Mon, 04 Dec 2023 22:52:51 +0000 KubeletHasSufficientMemory kubelet has sufficient memory available
DiskPressure False Mon, 04 Dec 2023 22:54:23 +0000 Mon, 04 Dec 2023 22:52:51 +0000 KubeletHasNoDiskPressure kubelet has no disk pressure
PIDPressure False Mon, 04 Dec 2023 22:54:23 +0000 Mon, 04 Dec 2023 22:52:51 +0000 KubeletHasSufficientPID kubelet has sufficient PID available
Ready True Mon, 04 Dec 2023 22:54:23 +0000 Mon, 04 Dec 2023 22:54:07 +0000 KubeletReady kubelet is posting ready status. AppArmor enable
d
Addresses:
InternalIP: 172.16.12.151
Hostname: worker1l
Capacity:
cpu: 2

ephemeral-storage: 10218772K1i

hugepages-1Gi: [¢]

hugepages-2Mi: [¢]

memory: 1988244K1

pods: 110
Allocatable:

cpu: 2

ephemeral-storage: 9417620260

image44.png
hugepages-1Gi: [¢]

hugepages-2Mi: [¢]
memory: 1885844K1
pods: 110
System Info:
Machine ID: 1cd98a99c00c4924b30bff81ee395740
System UUID: 0cle4d56-2194-9722-4e55-90efa9449fbb
Boot ID: 391a5043-0dbc-4059-aaea-e18c4cbf6b06
Kernel Version: 5.15.0-56-generic
0S Image: Ubuntu 22.04.3 LTS
Operating System: 1inux
Architecture: amd64
Container Runtime Version: docker://24.0.7
Kubelet Version: v1.28.2
Kube-Proxy Version: v1.28.2

PodCIDR: 10.244.1.0/24
PodCIDRs: 10.244.1.0/24
Non-terminated Pods: (2 in total)
Namespace Name CPU Requests CPU Limits Memory Requests Memory Limits Age
kube-flannel kube-flannel-ds-55mnf 100m (5%) 0 (0%) 50M1 (2%) 0 (0%) 6mas
kube-system kube-proxy-fw6f7 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6mas
Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
Resource Requests Limits
cpu 100m (5%)
memory 50M1 (2%)
ephemeral-storage 0 (0%)
hugepages-1Gi 0 (0%)
hugepages-2Mi 0 (0%)
Events:
Type Reason Age From Message
Normal Starting 5m40s kube-proxy
Normal NodeHasSufficientMemory 6m4s (x5 over 6m6s) kubelet Node workerl status is now: NodeHasSufficientMemory
Normal NodeHasNoD1iskPressure 6mds (x5 over 6m6s) kubelet Node workerl status is now: NodeHasNoD1iskPressure
Normal NodeHasSufficientPID 6m4s (x5 over 6m6s) kubelet Node workerl status is now: NodeHasSufficientPID
Normal RegisteredNode 6m node-controller Node workerl event: Registered Node workerl in Controller
Normal NodeReady 4m48s kubelet Node workerl status is now: NodeReady

image45.png
0o [%]2. ubuntu-kubemetes-master (SSH X [X13. ubuntu-kubernetes-worker1 (SS! X [X14. ubuntu-kubernetes-worker2 (SS x A TF\ 9 Quick connect...

root@master:/home/user# kubectl get nodes
E1205 09: .595901 43523 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp 127.0.0.1:8080: connect: connection refused
E1205 09: .596339 43523 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp 127.0.0.1:8080: connect: connection refused
E1205 09:35:08.598117 43523 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp 127.0.0.1:8080: connect: connection refused
0.0.1
0.0.1

E1205 09: 8.599706 43523 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp 127. :8080: connect: connection refused
E1205 09:35:08.601170 43523 memcache.go:265] couldn't get current server API group list: Get "http://localhost:8080/api?timeout=32s": dial tcp 127. :8080: connect: connection refused
The connection to the server localhost:8080 was refused - did you specify the right host or port?

root@master:/home/user# I

image46.png
[%]2. ubuntu-kubernetes-master (SSH X

[X]3. ubuntu-kubernetes-worker1 (SS!

root@master:/home/user# kubectl get nodes

E1205 09:35:08.595901

E1205 0 .596339
E1205 0 .598117
E1205 0 .599706
E1205 09:35:08.601170

The connection

43523
43523
43523
43523
43523

memcache.
memcache.
memcache.
memcache.
memcache.
to the server localhost:
root@master:/home/user# export KUBECONFIG=/etc/kubernetes/admin.conf

couldn't
couldn't
couldn't
couldn't
couldn't

go:265]
go:265]
go:265]
go:265]
go:265]

get
get
get
get
get

current
current
current
current
current

X

server API
server API
server API
server API
server API

group list:
group list:
group list:
group list:
group list:

4. ubuntu-kubernetes-worker2 (SS X

Get
Get
Get
Get
Get

A

"http://localhost:8680/api?timeout=32s":

"http://localhost:8080/api?timeout=32s
"http://localhost:8080/api?timeout=32s
"http://localhost:8080/api?timeout=32s

"http://localhost:8080/api?timeout=32s":

8080 was refused - did you specify the right host or port?

root@master:/home/user# kubectl get nodes

NAME STATUS ROLES AGE
master Ready control-plane 16h
workerl Ready <none> 16h
worker2 Ready <none> 16h

root@master:/home/user# I

VERSION
v1.28.2
v1.28.2
v1.28.2

@ [Quick connect...

dial
dial
dial
dial
dial

tcp
tcp
tcp
tcp
tcp

127.0.0.
127.0.0.
127.0.0.
127.0.0.

127.0.0.1:8080:

connect:
: connect:
: connect:
: connect:
: connect:

connection
connection
connection
connection
connection

refused
refused
refused
refused
refused

image47.png
root@master:/home/user# echo "source <(kubectl completion bash)" >> /home/user/.bashrc

root@master:/home/user# source /home/user/.bashrc
root@master:/home/user# kubectl get

aplservices.aplregistration.k8s. 1o
certificatesigningrequests.certificates.k8s. io
clusterrolebindings.rbac.authorization.k8s. 1o
clusterroles.rbac.authorization.k8s. 1o
componentstatuses

configmaps

controllerrevisions.apps

cronjobs.batch

csidrivers.storage.k8s. io

mutatingwebhookconfigurations.admissionregistration.k8s. 10
namespaces

networkpolicies.networking.k8s. io

nodes

persistentvolumeclaims

persistentvolumes

poddisruptionbudgets.policy

pods

podtemplates

image48.png

image49.png
GNU nano 6.2
apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-deployment

labels:

app: nginx
spec:

replicas: 3

selector:

matchLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
contatiners:
- name: nginx
image: nginxll
ports:

- containerPort:

80

nginx-deploymen

image50.png
root@master:~/nginx# kubectl create -f nginx-deployment.yaml
deployment.apps/nginx-deployment created

image51.png
root@master:~/nginx# kubectl get deployments
NAME READY UP-TO-DATE AVAILABLE AGE
nginx-deployment 3/3 3 3 95s

image52.png
root@master:~/nginx# kubectl describe deployment nginx-deployment

Name:

Namespace:
CreationTimestamp:
Labels:
Annotations:
Selector:
Replicas:
StrategyType:
MinReadySeconds:
RollingUpdateStrategy:
Pod Template:

nginx-deployment

default

Fri, 02 Dec 2022 14:32:56 +0000
app=nginx
deployment.kubernetes.io/revision: 1
app=nginx

3 desired | 3 updated | 3 total | 3 available | 0 unavailable
RollingUpdate
0

25% max unavailable, 25% max surge

Labels: app=nginx
Contatners:
nginx:
Image: nginx:1.14.0
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <none>
Volumes: <none>
Conditions:
Type Status Reason
Avatilable True MinimumReplicasAvailable
Progressing True NewReplicaSetAvailable
OldReplicaSets: <none>
NewReplicaSet: nginx-deployment-979fbbc48 (3/3 replicas created)
Events:
Type REEE)] Age From Message

Normal ScalingReplicaSet 2m31s
root@master:~/nginx# [l

deployment-controller

Scaled up replica set nginx-deployment-979fbbc48 to 3

image53.png
root@master:~/nginx# kubectl get pods

NAME

nginx-deployment-979fbbc48-bfmkc
nginx-deployment-979fbbc48-k7k61
nginx-deployment-979fbbc48-tw4s2

READY
1/1
1/1
1/1

STATUS

Running
Running
Running

RESTARTS
[¢]
[¢]
0

AGE

3m26s
3m26s
3m26s

image54.png
root@master:~/nginx# kubectl describe pods nginx-deployment-979fbbc48-bfmkc

\ENH nginx-deployment-979fbbc48-bfmkc
Namespace: default
Priority: [¢]
Service Account: default
Node: worker2/172.16.12.152
Start Time: Fri, 02 Dec 2022 14:32:56 +0000
Labels: app=nginx
pod-template-hash=979fbbc48
Annotations: <none>
Status: Running
IP: 10.244.2.2
IPs:
IP: 10.244.2.2
Controlled By: ReplicaSet/nginx-deployment-979fbbc48
Contatiners:
nginx:
Contatiner ID: docker://3d726ee33ea9b4514ad499c58febbbbed1c03802351aae5a611546303596Fe22
Image: nginx:1.14.0
Image ID: docker-pullable://nginx@sha256:8b600a4d029481cc5b459f1380b30ff6cb98e27544fc02370de836e397e34030
Port: 80/TCP
Host Port: 0/TCP
State: Running
Started: Fri, 02 Dec 2022 14:33:23 +0000
Ready: True
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes. io/serviceaccount from kube-api-access-mppmf (ro)
Conditions:
Type Status
Intitialized True
Ready True

ContailnersReady True
PodScheduled True

image55.png
Volumes:
kube-api-access-mppmf:

Type:
TokenExpirationSeconds:

ConfigMapName:
ConfigMapOptional:
DownwardAPI:

QoS Class:

Node-Selectors:
Tolerations:

Events:
Type
Normal
Normal
Normal
Normal

Normal

Scheduled
Pulling
Pulled
Created
Started

Age

4m49s
4m48s
4m36s
4m22s

imZZs

Projected (a volume that contains injected data from multiple sources)

3607
kube-root-ca.crt
<nil>

true

BestEffort
<none>

node.kubernetes. io/not-ready:NoExecute op=Exists for 300s
node.kubernetes. io/unreachable:NoExecute op=Exists for 300s

From
default-scheduler
kubelet

kubelet

kubelet

kubelet

Message

Successfully assigned default/nginx-deployment-979fbbc48-bfmkc to worker2
Pulling image "nginx:1.14.0"

Successfully pulled image "nginx:1.14.0" in 11.792101983s

Created container nginx

Started container nginx

image56.png
apiVersion: vi1
kind: Service
metadata:
name: nginx-service
labels:
run: nginx-service
spec:
type: NodePort
ports:
- port: 80
protocol: TCP
selector:
app: nginx

image57.png
root@master:~/nginx# kubectl create -f nginx-service.yaml
service/nginx-service created

image58.png
root@master:~/nginx# kubectl get service

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.96.0.1 <none> 443/TCP 5h21m
nginx-service NodePort 10.105.151.57 <none> 80:30206/TCP 38s

image59.png
root@master:~/nginx# kubectl describe service nginx-service

Session Affinity:
External Traffic Policy:

Events:

10.244.1.2:80,10.244.1.3:80,10.244.2.2:80

\ENH nginx-service
Namespace: default

Labels: run=nginx-service
Annotations: <none>

Selector: app=nginx

Type: NodePort |

IP Family Policy: SingleStack

IP Families: IPv4

IP: 10.105.151.57
IPs: 10.105.151.57
Port: <unset> 80/TCP
TargetPort: 80/TCP

|NodePort: <unset> 30206/TCP|
Endpoints:

None
Cluster
<none>

image1.png

image60.png
Bienvenue a Nginx!

Si vous voyez cette page, le serveur Web nginx est installé avec succés et
travail. Une configuration supplémentaire est requise.

Pour la documentation et I'assistance en ligne, veuillez consulter nginx.org_.
Le support commercial est disponible sur nginx.com .

Merci d'utiliser nginx.

image61.png
O A& 1721612152

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

image62.png
O A& 172.16.12.150

Welcome to nginx!

If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.

For online documentation and support please refer to nginx.org.
Commercial support is available at nginx.com.

Thank you for using nginx.

image63.png
..Hh ortainer.io
‘IO

image64.png
root@master:/home/user# docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.soc
k -v portainer_data:/data portainer/portainer-ce:latest

Unable to find image 'portainer/portainer-ce:latest' locally

latest: Pulling from portainer/portainer-ce

dec23dc3c3de: Pull complete

ad47d7a2198e: Pull complete

5171176db7f2: Pull complete

52e9438966a5: Pull complete

43d4775415ac: Pull complete

c1cad9f5200f: Pull complete

c73e271b6b3c: Pull complete

200f4f5a5a3c: Pull complete

38b16fac3525: Pull complete

2889f751ee80: Pull complete

4f4fb700ef54: Pull complete

Digest: sha256:eedfaee91bcb43025c072278ada094a548e2ce27ecd64db83a2cebcf172489e9
Status: Downloaded newer image for portainer/portainer-ce:latest
afb7848a9f24a10de29d98325b43e0fdaf9731492322a1250e2b73fdfb837c66
root@master:/home/user# I

image65.png
athor@portainer:~$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
NAMES
29d1a368b51c portainer/portainer-ce:latest "/portainer" 25 seconds ago Up 23 seconds 0.0.0.0:8000->8000/tcp, :::8000->8000/tcp, 0.0.0.0:9443->9443
/tcp, :::9443->9443/tcp, 9000/tcp portainer
soFy s N

image66.png
+ Add environment

image67.png
Environment Wizard

Select your environment(s)

You can onboard different types of environments, select all that apply.

Connect to existing environments

@ Business Feature

A

Docker Standalone Docker Swarm Kubernetes ACI Nomad
Connect to Docker Standalone via URL/IP, Connect to Docker Swarm via URL/IP, API or Connect to a Kubernetes environment via Connect to ACI environment via API Connect to HashiCorp Nomad environment
API or Socket Socket URL/IP via API

Set up new environments

‘ @ Business Feature @ Business Feature
Provision KaaS Cluster Create Kubernetes cluster
Provision a Kubernetes cluster via a cloud Create a Kubernetes cluster on existing
provider's Kubernetes as a Service infrastructure

Start Wizal

image68.png
Environment Wizard

©

Kubernetes

Connect to your Kubernetes environment

4 R

Agent Edge Agent Standard

Information

Ensure that you have deployed the Portainer agent in your cluster first. Refer to the platform related command below to deploy it.

Kubernetes via load balancer Kubernetes via node port

kubectl apply -f https://downloads.portainer.io/ce2-19/portainer-agent-k8s-nodeport.yaml

image69.png
athor@kubcontrol:~$ kubectl apply —-f https://downloads.portainer.io/ce2-16/portainer-agent—k8s-nodeport.yaml
namespace/portainer created

serviceaccount/portainer-sa-clusteradmin created
clusterrolebinding.rbac.authorization.k8s.io/portainer-crb-clusteradmin created

service/portainer-agent created

service/portainer-agent-headless created

deployment.apps/portainer-agent created

image70.png
root@master:/home/user# kubectl get pods --namespace=portatiner -o wide
NAME READY STATUS RESTARTS AGE 1IP NODE NOMINATED NODE READINESS GATES

image71.png
portainer-agent-78f6b9fbdd-v2dxn 1/1 Running 0 49m 10.244.2.3 worker?2 <none> <none>

image72.png
Cc Ok 172.16.12.1 % B G

Upgrade to Business Edition Environment Wizard

Quick Setup

portainer.io

Environment Wizard

®

ker-sur-master

Kubernetes

Dashboard

Connect to your Kubernetes environment
App Templates
Stack [
Containers %

Agent

Volumes
Events R

Information

Host

Settings Kubernetes via load balancer Kubernetes via node port

Users

Environments

Groups ® Copy command

Edge Agent Standard

Ensure that you have deployed the Portainer agent in your cluster first. Refer to the platform related command below to deploy it.

kubectl apply -f https://downloads.portainer.io/ce2-19/portainer-agent-k8s-nodeport.yaml

Import

Imp:

t an existing Kubernetes config

Tags
Registries Name* | kubernetes-cluster
Authentication logs
Environment address* 17216.12.152:30778
Notifications
Settings > More settings

portainer.io Community Edition 2

Close >

% New Environments

image73.png
(& Environment created
kubernetes-cluster

image74.png
% New Environments

kubernetes-cluster
URL: 1721612152:30778

Type: Agent

image75.png
Cc O& 172, LBy & O & — 0%+ & > oo | o~ JdH T 0 v s o »
Upgrade to Business Edition Environment management
: : Environments & 2 ® & user v

portainer.io

A s & Environments Q Search... X @ Remove
- Namel Type URL Group Name Actions
Environment:
kubernetes-cluster & Kubernetes 172.16.12.152:30778 Unassigned 2, Manage access

Settings local & Docker unix:///var/run/docker.sock Unassigned 2, Manage access

2 Users
Items per page | 10 v
B Environments

Groups

Tags

Registries

A ntication logs
Notifications

Settings

portainer.io community Edition 219.3

image76.png
c O6G&G

Upgrade to Business Edition

portainer.io

kubernetes-cluster
>_ kubectl shell

Dashboard

Custom Templates
Namespaces

Helm

Applications

Services

Ingresses
ConfigMaps & Secrets
Volumes

Cluster

Settings

Users

B Environments

172.16.12.150:

Environments

Home ©

& Environments

Click on an environment to manage

Platform Connection ... Status Tags Groups
local ©GUp A 2023-12-0517:52:51 Standalone 24.0.7 /var/run/docker.sock
Group: Unassigned © Notags 4 Local
£ 0 stacks & 36 containers ()18 (H18 V0 Q0 B 1 volume 2 images {8 2 CPU

Q Search by name, group, tag, status, URL...

Agent Version

&3 2 GBRAM

= Live connect

>} Disconnected

user

config

© = s &y 9
a e a
X) Refresh & Kube
Clear all Sort By ‘

kubernetes-cluster & Up - 2023-12-0517:52:51 Kubernetes v1.28.4 17216.12.152:30778
% Group: Unassigned © Notags 4 Agent 219.3
& 6 CPU 3 61 GB RAM B 3 nodes

® Connected

portainer.io Community Edition 2.19.3

Items per page

10

image77.png

